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ABSTRACT 

Having access to quality health care is crucial to 

surviving in life. However, getting an appointment 

with a doctor when you're sick can be difficult. The 

health care sector is expanding and has a profound 

impact on many facets of human existence. The 

healthcare sector is developing in tandem with 

technological innovation. Rapid technological 

advancements in the medical sciences promise 

improved methods of disease prevention, diagnosis, 

and treatment. Artificial intelligence (AI) is 

undergoing a sea change due to its numerous 

applications; for instance, it is reshaping the 

healthcare industry by allowing for better monitoring 

of patients with chronic diseases. Researchers have 

their work cut out for them as they try to streamline 

the architecture and management of intelligent 

delivery systems as a whole. The vast majority of 

these systems are driven by cutting-edge learning 

algorithms like Convolution Neural Network. The 

Convolutional Neural Network (CNN) algorithm is 

frequently used as an illustrative example of DL 

architecture. With the arrival of CNN hardware 

accelerators and a subsequent increase in the quantity 

of available annotated data, the field of CNN research 

and development has experienced a recent uptick, 

resulting in benchmarks being implemented on a wide 

range of different applications. For this meta-analysis, 

researchers looked for publications published 

between January 1, 2012 and June 6, 2022 in the 

databases Ovid-MEDLINE, Embase, Science Citation 

Index, and Conference Proceedings Citation Index. It 

was considered valid study to compare the diagnostic 

precision of deep learning models to that of 

healthcare professionals utilising medical imaging. 

Key words:Neural network, Healthcare, Deep 

Learning, CNN. 

1. INTRODUCTION  

Recent developments in data analytics using wireless 

sensing systems have resulted in positive advances 

across a wide range of fields, including remote 

healthcare, agriculture technology, smart trackers, 

and augmented reality. The main forces behind data 

analysis are state-of-the-art machine learning and 

deep learning algorithms. Feed-forward artificial 

neural networks are one of the most well-known 

implementations of Convolution Neural Network 

(CNN) approaches. Inspiring the interneuron pattern 

of connectivity in this type of network is the visual 

cortex of an animal's brain. Individual neurons in the 

visual cortex have a limited "receptive field" that only 

receives information from a certain region. Receptive 

fields of neurons with nodes at opposite ends of their 

connections may overlap to cover the entire visual 

field. It was previously shown [1] that a 3D 

convolution approach often employed in CNNs can 

be used to estimate quantitatively the reaction of 

different neurons to the stimuli inside its receptive 

area. 

Increasingly, doctors are turning to AI in an effort to 

address some of the field of medicine's most pressing 

problems. Based on what we already know, it looks 

like we will be able to solve some of the most 

important problems in healthcare right now. One of 

the most promising areas of AI research is machine 

learning. The health care sector is expanding rapidly 

and has far-reaching implications. Consistent with 

other sectors of the economy, the health care sector is 

advancing. Better methods of prevention, diagnosis, 
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and treatment are all on the horizon as a result of the 

fast convergence of technology and the medical 

sciences. Emergency room wait times can be 

predicted with this technology, which is being used 

by the healthcare administration. According to 

medical professionals, promptness in making a 

correct diagnosis is of utmost importance, as this can 

have a significant positive impact on the health of the 

patient [2]. These days, much healthcare 

documentation is done digitally. Keeping up with the 

volume of incoming data necessitates a fast, reliable, 

and secure electronic method of storing and filing 

information. Thus, it is clear that the future would 

benefit from combining machine learning with the 

medical sciences. Precision medicine tries to "make 

sure that the right medicine is given to the right 

patient at the right time" by taking into account a 

patient's molecular traits, environment, electronic 

health records (EHRs), and way of life[3]. 

Some people have even thought that AI applications 

could eventually replace whole areas of medicine or 

make new jobs for doctors, like "information 

specialists," in the health domain. However, due to its 

reliance on human interpretation and growing 

resource constraints, medical imaging is becoming 

less and less of a reliable diagnostic tool. Even in 

low- and middle-income countries, the demand for 

diagnostic imaging is outstripping the supply of 

specialists. 

2. LITERATURE REVIEW 

"Deep learning," a subfield of machine learning, is a 

neural network that attempts to simulate the way the 

human brain works. Recently, Deep Neural Network 

(DNN) models and other Machine Learning 

approaches have gained popularity in the healthcare 

industry because to the growing complexity of 

healthcare data. The fact that this is an image 

collection means that machine learning could prove 

quite helpful in making diagnoses. Machine learning 

algorithms, such as neural networks, can be used to 

evaluate medical images obtained by medical 

imaging modalities. In a standard Deep Neural 

Network (DNN) [4], an input value is weighted and 

bias-corrected before being fed into a non-linear 

activation function like ReLu or softmax. 

Accordingly, DNN training seeks to maximise the 

network's weights in a way that minimises the loss 

function [5].

Table1.Different ML and DLTechniquesforDiagnosisofVariousDiseases 
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3. APPLICATION OF CNN IN INTELLIGENT 

HEALTHCARE 

In healthcare, Neural Networks have been utilised for 

decades. They aid in the discovery of a previously 

unseen pattern in healthcare data, which in turn 

improves the accuracy and timeliness with which an 

illness can be diagnosed [21]. The success of CNN in 

extracting spatial features has led to its rise in 

popularity as a deep learning algorithm [22]. CNN is 

useful in several fields, including linguistics [23], 

facial recognition [24], and computer vision [25]. 

Drug discovery, medicine, medical imaging, and the 

genome are just a few examples of how CNN is 

influencing the healthcare industry [26]. 

Some uses for radiology include: 

• CT scans for the detection of lung cancer. 

• Identifying and classifying tumours 

automatically (mammography scans, 

MRI, or CT). 

• Analyzing Brain Images (both in health 

and disease). 

• Profiling gene expression in a variety of 

malignancies (one molecular signature 

was found recently for hepatocellular 

carcinomas). 

• Prostate, lung, and MS CAD systems are 

among those attempting to adopt deep 

learning methodologies. 

• Analysis of medical images for the 

purpose of segmenting anatomical 

structures (this varies a lot, from the 

prostate to brain substructures, and 

abdominal organs to the heart). 

Automated microbiological analysis is a significant 

area where deep learning has the potential to 

significantly improve medicine [27]. Commonly done 

in a medical lab, this method still requires human 

intervention to check if bacteria grow in a Petri dish 

and identify the species. 

Traditional image recognition techniques have been 

unreliable for use in analysing microorganisms [28]. 

In contrast, deep learning algorithms perform 

exceptionally well in this respect. It was proposed by 

Talo [29] that automatic bacterial picture 

classification may be achieved by the use of a deep 

learning-based algorithm. In addition, they used 

transfer learning to speed up CNN's training process. 

It is a significant step forward to automate 

microbiological analysis with the help of deep 

learning, which will allow many patients to receive 

their test result sooner (medical labs working 24/7 is 

of high importance for people with urgent health 

needs), cheaper (without humans being involved, 

medical labs will be able to cut cost on the process), 

and with greater confidence in their diagnosis (due to 

minimised risk of a human error happening in the lab) 

[30, 31]. Labs conducting industrial microbiology 

research reap similar rewards. The healthcare industry 

is extremely diverse, and it would be impossible to 

cover all of its facets in a single essay. Consequently, 

we focus on how CNN can be used in the medical 

field specifically.

 

 

Fig. 1. An overview of drug discovery process using deep learning. 
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3.1 Applications of Deep Learning in Medicine  

Algorithms based on deep learning have been 

significant in the advancement of medical science 

[32]. To find a new drug is a procedure that is not 

only lengthy and difficult, but also extremely costly. 

Current estimates place the total cost of developing a 

new drug at $2.5 billion, with an average time to 

market of over 12 years [33, 34]. Furthermore, only 

around one in ten drugs ever developed really 

receives regulatory approval. Machine learning is 

being incorporated into the drug discovery process by 

researchers in an effort to increase productivity, 

decrease development time, and cut expenses 

significantly [35, 36]. Additionally, this indicates that 

a considerable portion of the time, resources, and 

money currently being invested in traditional methods 

of drug discovery could be redirected to other 

projects with higher potential for return on investment 

or to the development of innovative new 

technologies. 

The massive volume of new biological data being 

generated every day, from which useful information 

must be retrieved, represents a potential bottleneck 

for machine learning. With the current state of 

technology, it is practically difficult to efficiently 

handle the up to 10,000 pieces of published content 

produced daily by the world's biomedical journals 

[37]. Other businesses are analysing data from 

healthy and sick patient samples with machine 

learning to discover new biomarkers and therapeutics. 

Using machine learning, scientists may extract these 

potentially valuable targets from biological data and 

put into practise the first form of tailored treatment. 

Many new companies have arisen as a result of the 

use of machine learning into the drug development 

process, which has helped researchers shorten the 

time and money needed to bring a novel drug to 

market [38]. All of these cutting-edge methods will 

eventually help us decipher the molecular blueprint of 

each individual patient, paving the way for precision 

medicine. 

While it would be a huge undertaking to implement a 

drug discovery system powered by deep learning, the 

time and money saved would be well worth it. The 

incorporation of a deep-learning or AI model into the 

drug discovery process is essential for the creation of 

a novel compound's early development system. 

Developing a personalised method for processing 

precise prediction criteria for hitherto unknown 

molecules is the most important step in constructing a 

drug discovery system using deep learning [39]. 

Incorporating deep learning principles, these 

algorithms will reliably foretell how various 

medication molecules will interact with certain 

proteins. All of their information comes from other 

sources, such similar experiments and simulations 

(see Fig. 1). By linking together these parameter 

references, it will be able to forecast whether a 

molecule is bio-active or not with up to 99 percent 

accuracy in a fraction of the time it would take using 

typical quantum mechanical calculations. This 

approach is analogous to performing only a few 

dozen experiments to estimate the activity of 

hundreds of substances before fully evaluating them. 

Screening candidate molecules is now done over a 

thousand times faster than with previous calculations 

[40], which is why so many pharmaceutical 

companies are using these technologies for early 

research. 

4. RESULTS COMPARISON ANALYSIS

 

Table 2: Model training and validation for the 32 included studies 
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Figure 2 displays the summary ROC curves of 

these 25 investigations in a hierarchical 

format. After pooling data from all relevant 

trials, researchers found that deep learning 

algorithms had a sensitivity of 88% (95% CI: 

85-79%) and that human doctors had a 

sensitivity of 79% (74%-83%). When 

comparing the pooled specificity of deep 

learning algorithms and that of healthcare 

professionals, the former came up at 93% 

(92%-95%), while the latter was 88% (82%-

91%).
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Figure 2: Hierarchical ROC curves of all studies included in the meta-analysis (25 studies) 

ROC=receiver operating characteristic 

In order to evaluate the efficacy of deep 

learning algorithms to that of healthcare 

experts, 25 studies were conducted, but only 

14 of those studies employed the same sample 

for out-of-sample validation (54 tables for 

healthcare professionals vs. 25 tables for deep 

learning algorithms) (figure 3).

 

 

Figure 3: Hierarchical ROC curves of studies using the same out-of-sample validation sample for 

comparing performance between health-care professionals and deep learning algorithms (14 studies) 

ROC=receiver operating characteristic. 

Overall, the sensitivity was 85.7 percent (95.5 percent 

confidence interval [CI]: 78.6 to 90.7) for deep 

learning algorithms and 80.4 percent (74.9% to 83.2 

percent) for doctors and nurses. The overall 

specificity for deep learning algorithms was 93.5 

percent (89.5 percent to 96.1 percent) while for 

human doctors it was 87.5 percent (81.8 percent to 

91.6 percent). 
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CONCLUSION 

Machine learning and deep learning algorithms 

provide numerous benefits in the medical field. They 

are more effective and quicker than current 

technologies and help in illness prevention, diagnosis, 

and treatment. They have been proven both 

theoretically and practically. Providing healthcare is 

becoming increasingly difficult and expensive. To fix 

these problems, a number of machine learning 

methods are employed. There is a great deal of 

promise in applying deep learning algorithms for 

disease diagnosis. Based on the results of this 

preliminary meta-analysis, we tentatively assert that 

deep learning algorithms are as accurate as healthcare 

professionals, while also noting the need for further 

research into the practical application of these tools. 

An overstated claim from a poorly planned or badly 

reported study could damage the credibility and route 

to impact of such diagnostic algorithms, according to 

the more relevant result concerning methodology and 

reporting. Through this analysis, we hope to draw 

attention to some of the more salient methodological 

and reporting concerns that researchers should keep 

in mind. These concerns are important for assuring 

the quality of studies on deep learning diagnostics, or 

any other machine learning technique, so that the 

performance of these algorithms may be evaluated in 

a way that benefits patients and health systems in 

everyday practise. 
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