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Abstract 

      The aim of the article is to analyze inhomogeneous sequence data caused by the presence of an unknown 

change point. We assume that the sequence data are from a Exponentiated Inverted Weibull Distribution with 

an unknown point of change in the scale and/or shape parameters. The Bayes estimates of 𝜃 and m are derived 

for asymmetric loss function known as General Entropy Loss Function under natural conjugate prior 

distribution. We propose Bayesian methods of estimating the change point, together with the model 

parameters, before and after its occurrence. Extensive simulations have been conducted to show excellent 

agreement between the distribution of the change point under finite sample sizes. The simulations are 

conducted under a change in the scale parameter as well as a change in both scale or shape parameters. 

 Keywords: General Entropy Loss Function, natural conjugate prior distribution, Bayesian methods, change 

point. 

1.1 Introduction 

 Bayesian inference is an approach to statistics in which all forms of uncertainty are expressed in terms of 

probability. A Bayesian approach to a problem starts with the formulation of a model that we hope is adequate 

to describe the situation of interest. We then formulated a prior distribution over the unknown parameters of 

the model, which is meant to capture our beliefs about the situation before seeing the data. After observing 

some data, we apply Bayes' Rule to obtain a posterior distribution for these unknowns, which takes account 

of  both the prior and the data.  

   This theoretically simple process can be justified as the proper approach to uncertain inference by various 

arguments involving consistency with clear principles of rationality. Despite this, many people are 

uncomfortable with the Bayesian approach, often because they view the selection of a prior as being arbitrary 

and subjective. It is indeed subjective, but for this very reason it is not arbitrary. In theory there is just one 

correct prior, that captures the our prior beliefs. In contrast, other statistical methods are truly arbitrary, in that 
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there are usually many methods that are equally good according to non-Bayesian criteria of goodness, with 

no principled way of choosing between them. 

        In decision theory the loss criterion is specified in order to obtain best estimator. The simplest form of 

loss function is squared error loss function (SELF) which assigns equal magnitudes to both positive and 

negative errors. However this assumption may be inappropriate in most of the estimation problems. Some 

time overestimation leads to many serious consequences. In such situation many authors found the asymmetric 

loss functions, more appropriate. There are several loss functions which are used to deal such type of problem. 

In this research work we have considered some of the asymmetric loss function named general entropy loss 

functions (GELF) suggested by  Calabria and Pulcini (1996) .Such asymmetric loss functions are also studied 

by Parsian and Kirmani (2002), Braess and Dette (2004) and Pandya et. al. (2006). 

1.2 Entropy Loss Function 

In many practical situations, it appears to be more realistic to express the loss in terms of the ratio 
θ̂

θ
  . In this 

case, Calabria and Pulcini (1994) points out that a useful asymmetric loss function is the Entropy loss 

L(δ) ∝ [δp −  p loge(δ) − 1 ],                                                                                                                       (1.2.1) 

Where δ =  
θ̂

θ
 

and whose minimum occurs at θ̂ = θ when p › 0 , a positive error (θ̂ > 𝜃) causes more serious consequences 

than a negative error and vice-versa. For small |p| value, the function is almost symmetric when both θ̂ and 

θ are measured in a logarithmic scale and approximately  

L(δ) ∝
p2

2
[loge(θ̂) − loge(θ)]

2
 

Also, the loss function L(δ) has been used in Dey et al (1987) and Dey and Lin (1992), in the original form 

having p = 1. Thus L(δ) can be  

written as  

L(δ) = b[δ − loge(δ) − 1 ] ;  b > 0,      where δ =  
θ̂

θ
 

In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the true 

value of parameter is expressed by a prior distribution. The parametric inference is made using the posterior 

distribution which is obtained by incorporating the observed data in to the prior distribution using the Bayes 

theorem, The first theorem of inference. Hence we update the prior distribution in the light of observed data. 

Thus the uncertainty about the parameter prior to the experiment is represented by the prior distribution and 

the same, after the experiment, is represented by the posterior distribution. The various statistical models are 

considered are as;  

1.3 Natural Conjugate Prior (NCP) 

 The various prior distributions are considered for different situations, like non-informative, when no 

information about the parameter is available, Natural Conjugate Prior (NCP), when post and prior distribution 

of parameter belong to same distribution family, etc. Hence the appropriate distribution chosen is Natural 

Conjugate Prior. If there is no inherent reason to prefer one prior probability distribution over another, a 
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conjugate prior is sometimes chosen for simplicity. A conjugate prior is defined as a prior distribution 

belonging to some parametric family, for which the resulting posterior distribution also belongs to the same 

family. This is an important property. Since the Bayes estimator, as well as its statistical properties (variance, 

confidence interval, etc.), can all be derived from the posterior distribution. 

    In each case we observe that the statistical analysis based on the sufficient statistic will be effective as the 

one based on the entire data set x . 

 As in frequentist framework, sufficient statistic plays an important role in Bayesian inference in 

constructing a family of prior distributions known as Natural Conjugate Prior (NCP). The family of prior 

distributions g(θ) , θ ϵ Ω , is called a natural conjugate family if the corresponding posterior distribution 

belongs to the same family as g(θ) . De Groot(1970) has outlined a simple and elegant method of constructing 

a conjugate prior for a family of distributions f (x|θ) which admits a sufficient statistic. 

 One of the fundamental problems in Bayesian analysis is that of the choice of prior distribution g(θ) of 

θ. The non informative and natural conjugate prior distributions are which in practice, Box and Tiao(1973) 

and Jeffrey(1961) provide a thorough discussion on non informative priors.  

 Both De Groot(1970) and Raffia & Schlaifer (1961) provide proof that when a sufficient statistics exist 

a family of conjugate prior distributions exists. 

 The most widely used prior distribution of θ is the inverted Gamma distribution with the parameters ‘a’ 

and ‘b’ ( > 0 ) with p.d.f. given by  

g(θ)  =  {
ba

Γa
θ−(α+1)e−b

θ⁄  ;  θ > 0 ;  (𝑎, 𝑏) > 0,

0                  , otherwise.
                                                        (1.3.1) 

 The main reason for general acceptability is the mathematical tractability resulting from the fact that the 

inverted Gamma distribution is conjugate prior of θ Raffia & Schlaifer (1961), Bhattacharya (1967) and others 

have found that the inverted Gamma can also be used for practical reliability applications. .  

        In this paper the Bayesian estimation of  change point ‘m’ and scale parameter ′𝜃′  of Exponentiated 

Inverted Weibull distribution is done by using General Entropy Loss Function (GELF) and Natural conjugate 

Prior distribution as Inverted Gamma prior. The sensitivity analysis of Bayesian estimates of change point 

and the parameters of the distributions have been done by using R-programming.   

1.4 Exponentiated Inverted Weibull Distribution  

The inverted Weibull distribution is one of the most popular probability distribution to analyze the life time 

data with some monotone failure rates. (Khan et al. 2008) Explained the flexibility of the three parameters 

inverted Weibull distribution and its interested properties. Exponentiated (generalized) Inverted Weibull 

Distribution is a generalization to the Inverted c through adding a new shape parameter 𝜆 ∈ ℛ+ by 

exponentiation to distribution function F,the new distribution function Fλ. E.K.al-hussaini et 

al.(2010)explained that the cumulative distribution function is flexible to monotone and non-monotone failure 

rates. G.S.mudholka et al (1995) introduced the Exponentiated Weibull Distribution as generalization of the 

statndard Weibull Distribution, the applied the new distribution as a suitable model to the bus-motor failure 

time data. M.N.Nasar et al.(2003) reviewed the Exponentiated Weibull Distribution with new measures. 

http://www.ijcrt.org/
http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Parametric_family


www.ijcrt.org                                                  © 2022 IJCRT | Volume 10, Issue 10 October 2022 | ISSN: 2320-2882 

IJCRT2210358 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d92 
 

R.D.Gupta et al.(2001) studied the exponentiated exponential distribution in details as an alternative 

distribution to Weibull distribution and gamma distribution. S.Nadarajah et al (2005) discussed in details the 

moments of the exponentiated Weibull distribution and compared exponentiated Weibull distribution with 

two parameters Weibull distribution and gamma distribution with respect to failure rate as well as some basic 

properties with data analysis. G.S.Mudholkar et at (1996) applied the exponentiatced Weibull distribution to 

the flood data with some properties. R.jiang et al (1999) introduced a graphical analysis  as approach to study 

the parameters characterization of the exponentiated Weibull distribution. 

Recently the two parameter Exponentiated Inverted Weibull Distribution (EIW) distribution has been 

proposed by Flaih et al. (2012). The two parameter EIW distribution has the following probability density 

function 

𝑓(𝑥) = 𝜃𝛽𝑥−(𝛽+1)(𝑒−𝜃𝑥)
−𝛽

;       𝑥 > 0, (𝛽 > 0, 𝜃 > 𝑜)                                               (1.4.1)        

And the distribution function    

𝐹(𝑥) = (𝑒−𝑥−𝛽
)
𝜃

;                     𝑥 > 0                                                                            (1.4.2)              

Also, the reliability function of the EIW distribution with two shape parameters 𝜃 and 𝛽 are given by 

𝑅(𝑡) = 1 − (𝑒−𝑡−𝛽
)
𝜃

;                     𝑡 > 0                                                                                 (1.4.3)  

𝟏. 𝟓 Bayesian Estimation of Change Point in Exponentiated Inverted Weibull Distribution under 

General Entropy Loss Function (GELF ) 

   A sequence of independent lifetimes 𝑥1 ,𝑥2,  …… . 𝑥𝑚,𝑥(𝑚+1), ………𝑥𝑛   (𝑛 ≥ 3)  were observed from 

Exponentiated Inverted Weibull Distribution with parameter  𝛽, 𝜃 .   But it was found that there was a change 

in the system at some point of time ‘m’ and it is reflected in the sequence after ‘𝑥𝑚’ which results change in 

a sequence as well as parameter value. The Bayes estimate of 𝜃 and ‘m’are derived for symmetric and 

asymmetric loss function under inverted gamma prior as natural conjugate prior. 

𝟏. 𝟓. 𝟏 Likelihood, Prior, Posterior and Marginal  

Let 𝑥1, …… …… . 𝑥𝑛, (n≥ 3 ) be a sequence of observed  discrete life times . First let observations 

𝑥1, … ……… . 𝑥𝑛    have come from Exponentiated Inverted Weibull Distribution with probability density 

function as 

f(x, 𝛽, 𝜃) = 𝜃𝛽𝑥−(𝛽+1)(𝑒−𝜃𝑥)
−𝛽

;                  (x, 𝛽, 𝜃 > 0)                                            (1.5.1.1)                         

     Let ‘m’ is change point in the observation which breaks the distribution in two sequences as 

 ( 𝑥1, 𝑥2, ……… . . 𝑥𝑚)   &  ( 𝑥𝑚+1, 𝑥𝑚+2, …………𝑥𝑛)  
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𝑓1(𝑥) = 𝜃1 𝛽1 𝑥
−(𝛽1+1) (𝑒−𝜃1𝑥)

−𝛽1
                                                                       (1.5.1.2)   

                                                           Where 𝑥1, 𝑥2, ……… . . 𝑥𝑚, 𝜃1, 𝛽1 > 𝑜                             

𝑓2(𝑥) = 𝜃2 𝛽2 𝑥
−(𝛽2+1) (𝑒−𝜃2𝑥)

−𝛽2
              𝑥𝑚+1, ……𝑥𝑛, 𝜃2, 𝛽2 > 0   ,                  (1.5.1.3)       

The likelihood functions of probability density function of the sequence are  

𝐿1(𝑥, 𝜃1,𝛽1) = ∏ 𝑓(𝑥𝑗  ,
𝑚
𝑗=1 𝜃1,𝛽1)      

𝐿1(𝑥, 𝜃1,𝛽1) = (𝜃1𝛽1)
𝑚𝑈1𝑒

−𝜃1 𝑇2𝑚                                                                           (1.5.1.5) 

Where      𝑈1 = ∏ 𝑥𝑗
−(𝛽1+1)𝑚

𝑗=1     

𝑇2𝑚 = ∑ 𝑥𝑗
−𝛽1𝑚

𝑗=1       

𝐿2(𝑥, 𝜃2,𝛽2) = ∏ 𝑓(𝑥𝑗  ,
𝑛
𝑗=𝑚+1  𝜃2,𝛽2)  

 𝐿2(𝑥, 𝜃2,𝛽2) = 𝜃2
𝑛−𝑚𝛽2

𝑛−𝑚 ∏ 𝑥𝑗
−(𝛽2+1)𝑒−𝜃2 ∑ 𝑥𝑗

−𝛽2𝑚
𝑗=1𝑛

𝑗=𝑚+1   

𝐿2(𝑥, 𝜃2,𝛽2) = (𝜃2𝛽2)
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇2𝑛−𝑇2𝑚)                                                             (1.5.1.5) 

Where      𝑈2 = ∏ 𝑥𝑗
−(𝛽2+1)𝑛

𝑗=𝑚+1    

𝑇2𝑛 − 𝑇2𝑚 = ∑ 𝑥𝑗
−𝛽2𝑛

𝑗=𝑚+1       

And the joint Likelihood function is given by  

L(𝜃1, 𝜃2|𝑥) ∝ (𝜃1𝛽1)
𝑚𝑈1𝑒

−𝜃1 𝑇2𝑚(𝜃2𝛽2)
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇2𝑛−𝑇2𝑚)                                (1.5.1.6) 

Suppose the marginal prior distributions 0f   𝜃1, 𝜃2 are natural conjugate prior  

𝜋1(𝜃1, x) =
𝑏1

𝑎1

Γ𝑎1
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1;            𝑎1,𝑏1 > 0, 𝜃1 > 0                                            (1.5.1.7)          

𝜋2(𝜃2, x) =
𝑏2

𝑎2

Γ𝑎2
𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2  ;      𝑎2, 𝑏2 > 0, 𝜃2 > 0                                               (1.5.1.8) 

The joint prior distribution of 𝜃1,𝜃2 and change point ‘m’ is   

 𝜋(𝜃1, 𝜃2, 𝑚) ∝
𝑏1

𝑎1

Γ𝑎1
 
𝑏2

𝑎2

Γ𝑎2
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2                                              (1.5.1.9)  

                                                              where 𝜃1, 𝜃2 > 0  & m = 1,2.........(n-1)               

The joint posterior density of 𝜃1, 𝜃2 and m say 𝜌(𝜃1, 𝜃2, 𝑚/𝑥) is obtaited by using equations (1.5.1.6) & 

(1.5.1.9)  
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𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
L(𝜃1 ,𝜃2 𝑥 ⁄ )π(𝜃1 ,𝜃2,𝑚) 

∑ ∬ L(𝜃1 ,𝜃2 𝑥 ⁄ )π(𝜃1,𝜃2,𝑚)𝑑𝜃1𝑑𝜃2𝜃1𝜃2𝑚

                                         (1.5.1.10)                   

 𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃1(𝑇2𝑚+𝑏1)  𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2)

∑ ∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1)∞

0𝑚  𝜃1
(𝑚+𝑎1−1)

 𝑑𝜃1  ∫ 𝜃2
(𝑛−𝑚+𝑎2−1)

  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝑑𝜃2
∞

0

  

Assuming    𝜃1(𝑇2𝑚 + 𝑏1) = 𝑥   &                𝜃2(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2) = 𝑦                   

𝜃1 =
𝑥

(𝑇2𝑚+𝑏1)
             &                                               𝜃2 =

𝑦

𝑇2𝑛−𝑇2𝑚+𝑏2
                                      

𝑑𝜃1 =
𝑑𝑥

(𝑇2𝑚+𝑏1)
                                  &         d𝜃2 =

𝑑𝑦

𝑇2𝑛−𝑇2𝑚+𝑏2
                                  

𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃1(𝑇2𝑚+𝑏1)  𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2)

∑ ∫ 𝑒−𝑥∞

0𝑚  
𝑥(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑥

(𝑇2𝑚+𝑏1)
  ∫ e−y∞

0
  

y(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)
   

𝑑𝑦

(𝑇2𝑛−𝑇2𝑚+𝑏2)
                    

  

 𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)

∑
Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)

  

𝜌(𝜃1, 𝜃2 , 𝑚|𝑥) =
𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                  (1.5.1.11) 

Where  𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛) =  ∑ [
Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)𝑚+𝑎1
 

Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)]
𝑛−1
𝑚=1            

The Marginal posterior distribution of change point ‘m’ using the equations (1.5.1.6), (1.5.1.7) & (1.5.1.8)  

𝜌(𝑚|𝑥) =  
L(𝜃1 ,𝜃2 𝑥 ⁄ ) π(θ1) π(θ2)

∑ L(𝜃1 ,𝜃2 𝑥 ⁄ ) π(θ1) π(θ2)𝑚
                                                                     

On solving which gives  

 𝜌(𝑚|𝑥) =
(𝜃1𝛽1)𝑚 𝑈1 𝑒−𝜃1 𝑇2𝑚 (𝜃2𝛽2)𝑛−𝑚 𝑈2 𝑒−𝜃2( 𝑇2𝑛−𝑇2𝑚) 

𝑏2
𝑎2

Γ𝑎2
𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2

𝑏1
𝑎1

Γ𝑎1
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1  

∑ (𝜃1𝛽1)𝑚 𝑈1 𝑒−𝜃1 𝑇2𝑚 (𝜃2𝛽2)𝑛−𝑚 𝑈2 𝑒−𝜃2( 𝑇2𝑛−𝑇2𝑚)
𝑏2
𝑎2

Γ𝑎2
𝜃2

(𝑎2−1)
𝑒−𝑏2𝜃2

𝑏1
𝑎1

Γ𝑎1
𝜃1

(𝑎1−1)
𝑒−𝑏1𝜃1  𝑚

      

 𝜌(𝑚|𝑥) =
𝜃1

(𝑚+𝑎1−1)
 𝑒−𝜃1(𝑇2𝑚+𝑏1)  𝜃2

(𝑛−𝑚+𝑎2−1)
  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2)

∑ 𝜃1
(𝑚+𝑎1−1)

 𝑒−𝜃1(𝑇2𝑚+𝑏1)  𝜃2
(𝑛−𝑚+𝑎2−1)

  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2)
𝑚

    

  𝜌(𝑚|𝑥) =
∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1) 𝑑𝜃1  ∫  𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

 𝑑𝜃2
∞
0

  
∞
0

∑ ∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1)

 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

 𝑑𝜃2
∞

0
  

∞

0𝑚

  

Assuming    𝜃1(𝑇2𝑚 + 𝑏1) = 𝑦       &               𝜃2(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2) = 𝑧                    

𝜃1 =
𝑦

(𝑇2𝑚+𝑏1)
                     &                                       𝜃2 =

𝑧

𝑇2𝑛−𝑇2𝑚+𝑏2
                         

𝑑𝜃1 =
𝑑𝑦

(𝑇2𝑚+𝑏1)
                    &                                    𝑑𝜃2 =

𝑧

𝑇2𝑛−𝑇2𝑚+𝑏2
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  𝜌(𝑚|𝑥) =
∫ 𝑒−𝑦 

𝑦(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)
 ∫ e−z∞

0
  

z(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)   
𝑑𝑧

(𝑇2𝑛−𝑇2𝑚+𝑏2)
 

∞

0

∑ ∫ 𝑒−𝑦∞

0𝑚  
𝑦(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)
  ∫ e−z∞

0
  

z(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)
   

𝑑𝑧

(𝑇2𝑛−𝑇2𝑚+𝑏2)

 

 𝜌(𝑚|𝑥) =

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)

∑
Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)

  

𝜌(𝑚|𝑥) =  

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                                          (1.5.1.12)              

The marginal posterior distribution of  𝜃1, using equations (1.5.1.6)& (1.5.1.7) 

𝜌(𝜃1|𝑥) =  
L(𝜃1 ,𝜃2  x⁄ ) π(θ1)

∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ1)dθ1
∞

0

 

𝜌(𝜃1|𝑥) = =
∑ ∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ1) π(θ2) dθ2

∞

0𝑚

∑ ∬ L(𝜃1 ,𝜃2  x⁄ ) π(θ1) π(θ2) dθ1 dθ2
∞

0𝑚

 

On solving which gives  

  𝜌(𝜃1|𝑥) = =
∑ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)  ∫    𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1) 𝑑𝜃2

∞
0𝑚

∑ ∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1)

 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

 𝑑𝜃2
∞

0
  

∞

0𝑚

      

Assuming    𝜃1(𝑇2𝑚 + 𝑏1) = 𝑦           &         𝜃2(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2) = 𝑧                    

𝜃1 =
𝑦

(𝑇2𝑚+𝑏1)
              &                                  𝜃2 =

𝑧

𝑇2𝑛−𝑇2𝑚+𝑏2
                                           

𝑑𝜃1 =
𝑑𝑦

(𝑇2𝑚+𝑏1)
           &                          d𝜃2 =

𝑑𝑧

𝑇2𝑛−𝑇2𝑚+𝑏2
                                    

𝜌(𝜃1|𝑥) = =
∑ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 ∫ e−z∞

0
  

z(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)   
𝑑𝑧

(𝑇2𝑛−𝑇2𝑚+𝑏2)𝑚

∑ ∫ 𝑒−𝑦∞

0𝑚   
𝑦(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)
 ∫ e−z∞

0
  

z(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)
   

𝑑𝑧

(𝑇2𝑛−𝑇2𝑚+𝑏2)

   

 𝜌(𝜃1|𝑥) = =
∑ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 

Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

∑
Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)𝑚  
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)

  

𝜌(𝜃1|𝑥) = =  
∑ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1)
 

Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                     (1.5.1.13)                        

The marginal posterior distribution of  𝜃2, using the equation (1.5.1.6) & (1.5.1.8) is 

  𝜌(𝜃2|𝑥) =  
L(𝜃1 ,𝜃2  x⁄ ) π(θ2)

∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ2) dθ2
∞

0

 

𝜌(𝜃2|𝑥) = =
∑ ∫ L(𝜃1 ,𝜃2  x⁄ ) π(θ1) π(θ2) dθ1

∞
0𝑚

∑ ∬ L(𝜃1 ,𝜃2  x⁄ ) π(θ1) π(θ2) dθ1 dθ2
∞

0𝑚
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𝜌(𝜃2|𝑥) = =
∑ 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)
∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1

(𝑚+𝑎1−1) 𝑑𝜃1
∞

0𝑚

∑ ∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1) 𝑑𝜃1  ∫    𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1) 𝑑𝜃2
∞

0
  

∞

0𝑚

 

Assuming 𝜃1(𝑇2𝑚 + 𝑏1) = 𝑦         &    𝜃1 =
𝑦

(𝑇2𝑚+𝑏1)
 

 𝜌(𝜃2|𝑥) = = 
∑ 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)
∫ 𝑒−𝑦 𝑦(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)

∞
0𝑚

∑ ∫ 𝑒−𝑦∞

0𝑚   
𝑦(𝑚+𝑎1−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)
 ∫ e−z∞

0
  

z(𝑛−𝑚+𝑎2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−1)
   

𝑑𝑧

(𝑇2𝑛−𝑇2𝑚+𝑏2)

 

𝜌(𝜃2|𝑥) = =

∑
Γ(𝑚 + 𝑎1)

(𝑇2𝑚 + 𝑏1)
(𝑚+𝑎1)𝑚 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2

(𝑛−𝑚+𝑎2−1)

∑
Γ(𝑚 + 𝑎1)

(𝑇2𝑚 + 𝑏1)
(𝑚+𝑎1)𝑚  

Γ(𝑛 − 𝑚 + 𝑎2)
(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2)

(𝑛−𝑚+𝑎2)

 

𝜌(𝜃2|𝑥) =
∑

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)𝑚 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
                                          (1.5.1.14) 

𝟏. 𝟓. 𝟐 Bayes Estimators under General Entropy Loss Function (GELF)   

 Occasionally, the use of symmetric loss function, namely SELF, was found to inappropriate, since for 

example, an overestimation of the reliability function usually much more serious than an underestimation. 

Here was consider asymmetric loss function namely GELF proposed by Calabria and Pulcini (1994), is given 

by  

L5(θ, d) = (
d

θ
)α2 − α2 ln (

d

θ
) − 1  ;  (α2 ≠ 0)                                                     (1.5.2.1) 

Where as for the change point m, the loss function is defined as  

L5(m, m̂BE) = (
m̂BE

m
)α2 − α2 ln(

m̂BE

m
) − 1  ;  (α2 ≠ 0)                                                (1.5.2.2) 

where, α2 ≠ 0 , m = 1,2,….(n-1), and m̂BE = 1,2, … . . (n − 1) Here, θ̂BE is the smallest integer greater than 

the analytical solution. The sign of the shape parameter α2 > 0 , if over estimation is more serious than 

under estimation, and vice versa, and the magnitude of α2 reflects the degree of asymmtery. The Bayes 

estimator of 𝜃 under the GELF is given by  

        𝜃𝐵𝐸 = [𝐸𝜌(𝜃−𝑘2)]
1∕𝑘2

                                                                                          (1.5.2.3) 

  The Bayes estimate 𝑚̂𝐵𝐸 of m under GELF using marginal posterior distribution equation (1.5.1.13), we 

get as                     𝑚̂𝐵𝐸 = [∑ 𝑚−𝑘2  𝜌(𝑚|𝑥)𝑚 ]
−1∕𝑘2

  

𝑚̂𝐵𝐸 = [
∑ 𝑚−𝑘2

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1) 
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1 𝑘2⁄

                                          (1.5.2.4) 

The Bayes Estimate 𝜃1𝐵𝐸 of 𝜃1 under GELF using marginal posterior distribution equation (1.5.1.14), we 

get  
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 𝜃1𝐵𝐸 = ⌊𝐸𝜌(𝜃1
−𝑘2)⌋

−1∕𝑘2
     

𝜃1𝐵𝐸 =

[
 
 
 ∑ 𝜃1

−𝑘2𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−1)  

Γ(𝑛 − 𝑚 + 𝑎2)
(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2)

(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑚, 𝑛)
]
 
 
 
−1∕𝑘2

 

 𝜃1𝐵𝐸 = [
∑  

Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2) ∫ 𝑒−𝜃1(𝑇2𝑚+𝑏1) 𝜃1
(𝑚+𝑎1−𝑘2−1)

𝑑𝜃1
∞

0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1∕𝑘2

 

Assuming  𝜃1(𝑇2𝑚 + 𝑏1) = 𝑦  &     𝜃1 =
𝑦

(𝑇2𝑚+𝑏1)
  

 𝜃1𝐵𝐸 = [
∑  

Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2) ∫ 𝑒−𝑦 𝑦(𝑚+𝑎1−𝑘2−1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−𝑘2−1)  
𝑑𝑦

(𝑇2𝑚+𝑏1)

∞

0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1 𝑘2⁄

 

 𝜃1𝐵𝐸 = [
∑

Γ(𝑚+𝑎1−𝑘2)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1−𝑘2) 
Γ(𝑛−𝑚+𝑎2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1 𝑘2⁄

 

   𝜃1𝐵𝐸 = [
𝜉[(𝑎1−𝑘2),𝑎2,𝑏1,𝑏2,𝑚,𝑛]

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]
−1 𝑘2⁄

                                                                   (1.5.2.5) 

The Bayes Estimate 𝜃2𝐵𝐸 of 𝜃2 under GELF using marginal posterior distribution equation (1.5.1.15), we 

get  

         𝜃2𝐵𝐸 = ⌊𝐸𝜌(𝜃2
−𝑘2)⌋

−1∕𝑘2
    

  𝜃2𝐵𝐸 = [
∑ 𝜃2

−𝑘2 Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)𝑚 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−1)

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1∕𝑘2

 

 𝜃2𝐵𝐸 = [
∑

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1) ∫ 𝑒−𝜃2(𝑇2𝑛−𝑇2𝑚+𝑏2) 𝜃2
(𝑛−𝑚+𝑎2−𝑘2−1)𝑑𝜃2

∞
0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1∕𝑘2

 

Assuming  𝜃2(𝑇2𝑛 − 𝑇2𝑚 + 𝑏2) = 𝑦      &   𝜃2 =
𝑦

(𝑇2𝑛−𝑇2𝑚+𝑏2)
  

Then    𝜃2𝐵𝐸 = [
∑

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1) ∫ e−y 
y(𝑛−𝑚+𝑎2−𝑘2−1)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−𝑘2−1)   
𝑑𝑦

(𝑇2𝑛−𝑇2𝑚+𝑏2)

∞

0𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1∕𝑘2

 

       𝜃2𝐵𝐸 = [
∑

Γ(𝑚+𝑎1)

(𝑇2𝑚+𝑏1)(𝑚+𝑎1)
Γ(𝑛−𝑚+𝑎2−𝑘2)

(𝑇2𝑛−𝑇2𝑚+𝑏2)(𝑛−𝑚+𝑎2−𝑘2)𝑚

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]

−1∕𝑘2

 

        𝜃2𝐵𝐸 = [
𝜉[𝑎1,(𝑎2−𝑘2),𝑏1,𝑏2,𝑚,𝑛]

𝜉(𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛)
]
−1∕𝑘2

                                                                    (1.5.2.6) 
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Numerical Comparison for Exponentiated Inverted  Weibull Distribution 

   We have generated 20 random observations from Exponentiated Inverted Weibull distribution with 

parameter 𝜃 = 2 and  𝛽 = 0.5. The observed data mean is 𝜇 = 1.5616 and variance 𝜎2 = 0.6812. Let  the change 

in sequence is at 11th  observation, so the means and variances of both sequences (x1,x2,…,xm) and (x(m+1), 

x(m+2),…, xn)  are 𝜇1 = 1.5491, 𝜇2 = 1.5768, 𝜎1
2 = 1.0197 and 𝜎2

2 = 0.3427. If the target value of  𝜇1  is unknown, 

its estimating (𝜇̂1) is given by the mean of first m sample observation given m=11,  𝜇 = 1.5491. 

Sensitivity Analysis of Bayes Estimates 

 In this section we have studied the sensitivity of the Bayes estimates with respect to changes in the 

parameters of prior distribution 𝑎1, 𝑏1, 𝑎2 and 𝑏2. The means and variances of the prior distribution are used 

as prior information in computing these parameters. Then with these parameter values we have computed the 

Bayes estimates of m, 𝜃1 and 𝜃2 under GELF considering different set of values of (𝑎1, 𝑏1) and (𝑎2, 𝑏2).We 

have also considered the other values like parameter of loss function 𝛼2= - 2 and different sample sizes 

n=10(10)30. The Bayes estimates of the change point ‘m’ and the parameters 𝜃1 and 𝜃2 are given in table-(1) 

under GELF. Their respective mean squared errors (M.S.E’s) are calculated by repeating this process 1000  

times and presented in same table in small parenthesis under the estimated values of parameters. All these 

values appears to be robust with respect to correct choice of prior parameter values and appropriate sample 

size. All the estimators perform better with sample size n=20 .Similarly the Bayes estimates of  GELF are 

presented in table (1) appears to be  sensitive with wrong choice of prior parameters and  sample size.  All the 

calculations are done by R- programming. From the below table we conclude that – 

    The Bayes estimates of the parameters 𝜽𝟏 and 𝜽𝟐 of EIW obtained with loss function  GELF have 

more or less same numerical values. The respective M.S.E’s shows that the Bayes estimates are 

uniformly smaller  of 𝜽̂𝟏𝑩𝑬  and  𝜽̂𝟐𝑩𝑬 under GELF except of 𝒎̂𝑩𝑬.     

Table 1.1 

            Bayes Estimates of m, 𝜽𝟏& 𝜽𝟐for  EIW sequences and their respective M.S.E.'s Under  GELF 

(𝐚𝟏, 𝐛𝟏) (𝐚𝟐, 𝐛𝟐) n 𝐦̂𝐁𝐄 𝛉̂𝟏𝐁𝐄 𝛉̂𝟐𝐁𝐄 

(1.25,1.50) (1.50,1.60) 10 2.3457 

(0.1234) 

      0.2427 

     (1.6181) 

      0.4926 

      (1.2458) 

  20 3.0864 

(0.0666) 

      0.1283 

     (1.6788) 

      0.3939 

     (1.2641) 

  30 2.3416 

(0.0424) 

0.1096 

(1.7039) 

0.4288 

(1.2167) 

(1.50,1.75) (1.70,1.80) 10        2.2426 

       (0.1263) 

0.2909 

(1.5788) 

0.5732 

(1.2447) 

  20 3.3456 

(0.0153) 

0.1152 

(1.7600) 

0.5044 

(1.0572) 

  30 3.2059 

(0.0069) 

0.0811 

(1.7054) 

0.3582 

(1.0290) 

(1.75,2.0) (1.90,2.0) 10 2.3890 0.1870 0.5096 
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(0.0013) (1.7158) (1.2211) 

  20 3.5386 

(0.1222) 

0.1289 

(1.7094) 

0.5053 

(1.4499) 

  30 7.7266 

(0.0017) 

0.1656 

(1.7046) 

0.3501 

(1.0839) 

(2.0,2.25) (2.10,2.20) 10 2.3171 

(0.0275) 

0.1793 

(1.6589) 

0.3901 

(1.1961) 

  20 2.8099 

(0.0474) 

0.1679 

(1.6708) 

0.5211 

(1.3038) 

  30 3.7478 

(0.3713) 

0.1086 

(1.5872) 

0.3994 

(1.3689) 

(2.25,2.50) (2.30,2.40) 10 2.5595 

(0.0930) 

0.2216 

(1.6251) 

0.4293 

(1.2699) 

  20         3.0246 

       (0.3996) 

       0.1462 

      (1.7026) 

       0.5035 

      (1.1441) 

  30 3.6281 

(1.5774) 

        0.1026 

    (1.80453) 

        0.3350 

      (1.2933) 

(2.50,2.75) (2.50,2.60) 10 

 

       1.9741 

       (0.1213) 

0.1652 

(1.7217) 

        0.5663 

      (1.1375) 

  20         3.6849 

        (1.3200) 

0.1428 

(1.7733) 

0.4229 

(1.3479) 

  30 3.3825 

(2.1143) 

       0.1335 

      (1.8388) 

0.4328 

(1.3039) 
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