IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A New class of Binary Open Sets in Binary Topological Space

J.Elekiah¹ and G.Sindhu²

¹Research Scholar, ²Assistant Professor

¹Nirmala College for Women

Coimbatore.

²Nirmala College for Women

Coimbatore.

Abstract: In this paper, we introduced new type of binary open sets namely binary s_{α} -open sets in binary topological space. Also, some of the properties have been discussed.

Keywords: ^bSα- closed set, ^bSα-open set.

I. INTRODUCTION

In 2011, S.Nithyanantha Jothi and P.Thangavelu [2] introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A,B) where A \subseteq X and B \subseteq Y. In 2000, G.B.Navalagi, proposed semi- α open sets in topological spaces. In 2014, S.N.Jothi and P.Thangavelu [5] introduced generalized binary closed sets in binary topological spaces. Also, S.N.Jothi and P.Thangavelu [3] introduced binary semiopen open sets and discussed some of their properties in binary topological spaces. In continuation, we have found b S α - closed set in binary topological spaces and analyzed some of their properties and also explored its relationship with other existing sets.

II. PRELIMINARIES

Definition 2.1.[2] Let X and Y be any two nonempty sets. A binary topology is a binary structure $M \subseteq P(X) \times P(Y)$ from X to Y which satisfies the following axioms:

- (i) $(\emptyset, \emptyset) \in M$; $(X, Y) \in M$.
- (ii) $(A_1 \cap A_2, B_1 \cap B_2) \in M$ where $A_1, A_2, B_1, B_2 \in M$
- (iii) If $(A_{\alpha}, B_{\alpha} : \alpha \in A)$ is a family of members of M, then $(\cup_{\alpha \in A} A_{\alpha}, \cup_{\alpha \in A} B_{\alpha}) \in M$.

If M is a binary topology from X to Y, then the triplet (X, Y, M) is called binary topological space and the members of M are called the binary open sets of the binary topological space (X, Y, M).

c53

Definition 2.2.[2] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in P(X) \times P(Y)$. If $A \subseteq C$ and $B \subseteq D$, then $(A, B) \subseteq (C, D)$.

Definition 2.3.[2] Let (X, Y, M) be a binary topological space and $(A, B) \subseteq (X, Y, M)$.

 $(A,B)^{1^{\circ}} = \bigcup \{A_{\alpha} : (A_{\alpha},B_{\alpha}) \text{ is binary open and } (A_{\alpha},B_{\alpha}) \subseteq (A,B) \}$

 $(A,B)^{2^{\circ}}=\cup\{B_{\alpha}:(A_{\alpha},B_{\alpha})\text{ is binary open and }(A_{\alpha},B_{\alpha})\subseteq(A,B)\}.$

Definition 2.4.[2] The ordered pair $((A, B)^1, (A, B)^2)$ is called the binary interior of (A, B) and it is denoted by b-int(A, B).

Definition 2.5.[2] Let (X, Y, M) be a binary topological space and $(A, B) \subseteq (X, Y, M)$.

 $(A,B)^1$ ^{*} = $\cap \{A_\alpha : (A_\alpha,B_\alpha) \text{ is binary closed and } (A_\alpha,B_\alpha)\supseteq (A,B) \text{ and }$

 $(A, B)^2$ ^{*} = $\cap \{B_\alpha : (A_\alpha, B_\alpha) \text{ is binary closed and } (A_\alpha, B_\alpha) \supseteq (A, B).$

Definition 2.6.[2] The ordered pair $((A, B)^{1})^{*}$, $(A, B)^{2}$) is called the binary closure of (A, B). The binary closure of (A, B) is denoted by b - cl(A, B).

Definition 2.7.[2] A subset (A, B) of a binary topological space (X, Y, M) is called

- (i) binary regular open if (A, B) = b -int(b -cl(A, B)) and binary regular closed if (A, B) = b -cl(b-int(A, B)).
- (ii) binary semi open set if (A, B) \subseteq b- int(b- cl(A, B)). The compliment of binary semiopen set is binary semi closed set.

Definition 2.8[3]. A subset (A, B) of a binary topological space (X, Y, M) is called

- (i) binary pre closed if $b cl(b int(A, B)) \subseteq (A, B)$
- (ii) binary semi pre closed (or binary θ closed if b-cl(b-int(b-cl(A, B))) \subseteq (A, B)
- (iii) binary α closed if $b int(b cl(b int(A, B))) \subseteq (A, B)$.

Definition 2.9[4]. In a topological space (X,τ) , the subset A of X is said to be semi- α -open if there exists a α -open set U in X such that $U \subseteq A \subseteq cl(U)$. The family of all semi- α -open sets of X is denoted by $S_{\alpha}(X)$.

Definition 2.10[3]. Let (X, Y, M) be a binary topological space. Let $(A, B) \subseteq (X, Y)$. Then (A, B) is called binary semi open if there exists a binary open set (U, V) such that $(U, V) \subseteq (A, B) \subseteq b\text{-cl}(U, V)$

III. ON BINARY SEMI-α-OPEN SETS

Definition 3.1. Let (X,Y,M) be a binary topological space and $(A,B) \subseteq (X,Y)$. The subset (A,B) is said to be binary semi α -open $({}_{b}S_{\alpha}O)$ if there exists an binary α -open set (U,V) in X such that $(U,V) \subseteq (A,B) \subseteq cl(U,V)$.

Theorem 3.2. In a binary topological space (X,Y,M), if the subset $(A,B) \in bao(U,V)$ iff there exists a binary open set (C,D) such that $(C,D) \subseteq (A,B) \subseteq bint(bcl(C,D))$.

IV. Proof, Let (A,B) be a binary α -open set in binary topological space. Then, $(A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(\operatorname{bint}(A,B)))$. We have $\operatorname{bint}(A,B) \subseteq (A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(\operatorname{bint}(A,B)))$. Let $(C,D) = \operatorname{bint}(A,B)$. Then there exists a open set $\operatorname{bint}(A,B)$ such that $(C,D) \subseteq (A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(C,D))$. Conversely, suppose there exists a binary open set (C,D) such that $(C,D) \subseteq (A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(C,D))$. Since, $\operatorname{bint}(A,B)$ is the largest binary open set contained in (A,B), then $(C,D) \subseteq \operatorname{bint}(A,B)$ which implies $\operatorname{bcl}(C,D) \subseteq \operatorname{bcl}(\operatorname{bint}(A,B))$. Hence, $\operatorname{bint}(\operatorname{bcl}(C,D)) \subseteq \operatorname{bint}(\subseteq \operatorname{bcl}(\operatorname{bint}(A,B)))$. But we have $(C,D) \subseteq (A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(C,D))$. Therfore, $(A,B) \subseteq \operatorname{bint}(\operatorname{bcl}(\operatorname{bint}(A,B)))$. Hence $(A,B) \in \operatorname{bao}(U,V)$.

Theorem 3.3. In a binary topological space, union of any family of binary S_{α} - open set is binary S_{α} - open set.

V. Proof. Let $\{(A_i, B_i)\}$ be a family of binary S_{α} - open set in a binary topological space. To prove, $\bigcup_{i \in \Delta}(A_i, B_i)$ is a binary S_{α} - open set. Since, $(A_i, B_i) \in {}_bS_{\alpha}O(X)$, then there exists a binary α -open set (U_i, V_i) such that $(U_i, V_i) \subseteq (A_i, B_i) \subseteq {}_bcl(U_i, V_i)$ which implies $\bigcup_{i \in \Delta}(U_i, V_i) \subseteq \bigcup_{i \in \Delta}(A_i, B_i) \subseteq \bigcup_{i \in \Delta}(bcl(U_i, V_i)) \subseteq bcl(\bigcup_{i \in \Delta}(U_i, V_i))$. Since, arbitrary union of binary α -open set is binary α -open, $\bigcup_{i \in \Delta}(U_i, V_i)$ is also binary α -open set. Hence, $\bigcup_{i \in \Delta}(A_i, B_i)$ is binary S_{α} -open set.

Remark 3.4.

- 1. Every binary S_{α} open set is binary semi open set.
- **2.** Every binary S_{α} open set is binary α open set.
- 3. Every binary S_{α} open set is binary pre open set.
- 4. Every binary S_{α} open set is binary β open set.
- 5. Every binary S_{α} open set is binary b open set.

Following example shows that converse of the above remarks need not be true.

Example 3.5

 $X=\{a,b,c\},Y=\{1,2\}$

 $M = \{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(\{b\},Y),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\}),(\{b,c\},Y)\}$

 S_{α} open set ={ $(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\})}$

Semi open set= $\{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\}),(\{b,c\},Y),(\{a,c\},\{2\})\}\}$

 $\alpha \text{ open set} = \{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(\{b\},Y),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\}),(\{b,c\},Y)\}\}$

Pre open set= $\{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(\{b\},Y),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\})\}\}$

 $\beta \text{ open set} = \{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(\{b\},Y),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\}),(X,\{1\}),(\{a,c\},\{2\})\}\}$

 $b \ open \ set=\{(\emptyset,\emptyset),(X,Y),(\emptyset,\{2\}),(\{b\},\{1\}),(\{b\},Y),(X,\{2\}),(\{b,c\},\{2\}),(\{b\},\emptyset),(\{b\},\{2\}),(\{a,c\},\{2\})\}\}$

the set ($\{b,c\},Y$) is binary semi open and binary α open but not binary S_{α} open set

the set ($\{b\},Y$) is binary pre open, binary β open set and binary b open set but not binary S_{α} open set

VI. REFERENCES

- [1] S. Jayalakshmi and A. Manonmani, Binary Pre Generalized Regular Beta Closed Sets in Binary Topological spaces, International Journal of Mathematics Trends and Technology (IJMTT), Volume 66 Issue 7, July 2020.
- [2] S. Nithyanantha Jothi and P. Thangavelu, Topology between two sets, Journal of Mathematical Sciences and Computer Applications, 1 (3): 95–107, 2011.
- [3] S. Nithyanantha Jothi, Binary semiopen sets in binary topological spaces, International Journal of Mathematical Archive-7(9), 2016.
- [4] S. Nithyanantha Jothi, P. Thangavelu, Generalized Binary Regular Closed Sets, IRA-International Journal of Applied Sciences, Vol.04, Issue 02 (2016).
- [5] Nithyanantha Jothi.S and Thangavelu.P, Generalized binary closed sets in binary topological spaces, Ultra Scientist Vol.26 (1) A, (2014)25-30.
- [6] S. Nithyanantha Jothi and P.Thangavelu, On binary topological spaces, Pacific-Asian Journal of Mathematics, 5(2)(2011), 133-138.
- [7] S. Nithyanantha Jothi and P.Thangavelu, On binary continuity and binary separation axioms, Ultra Scientist Of Physical Sciences, Vol. 24(1)A, (2012), 121-126.
- [8] C.Santhini and T. Dhivya, New notion of generalised binary closed sets in binary topological space, International Journal of Mathematical Archive-9(10), 2018.
- [9] D. Savithiri and C. Janaki, Binary Regular Generalized Closed Sets In Binary Topological Spaces, IJSRSET, Volume 6, Issue 3, 2019.

