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Abstract:  The inappropriate identification of a menace, such as ballistic missiles, poses a serious danger to defence system analysts. 

Thus, it poses a huge risk and puts the defensive capability of fighter aircrafts under test. Due to the surrounding environment, 

Radar provides noisy measurements. 

We propose the utilization of the Kalman Filter to estimate and track the location of missile for capture attempt by terminating 

countermeasures. The Kalman Filter produces estimates of hidden variables based on inaccurate and uncertain measurements. It 

also provides a prediction of the future system state based on past estimations. 

The Extended Kalman Filter is a broadened version of the Kalman Filter where non-linearity is approximated utilizing the first or 

second order derivative. Both the filters utilize similar methods however Extended Kalman Filter beats the constraints of Kalman 

filter. 

The aim is to estimate the states (position, velocity) of the ballistic missile. In this paper a mathematical model for the target will 

be developed, simulated and the noise corrupted data will be filtered using Extended Kalman Filter. The performance of the filters 

will be shown in the results. 

 

Index Terms – Ballistic Missile, Kalman Filter, Extended Kalman Filter. 

I. INTRODUCTION 

     Incoming ballistic missiles are a serious danger to the country. They can be detected with the assistance of tracking radars. They 

are utilized to compute the objective's (Ballistic missile) relative position in range, azimuth angle, elevation angle, and speed. It is 

the important part of both military and civilian radar systems particularly for missile guidance. Missile guidance is exceedingly 

difficult without target tracking, as a matter of fact. The issue is that the radar estimation contains specific vulnerability in the 

measurement of current position of the rocket. In radar, the objective is to estimate the location of targets (ballistic missiles, 

aircrafts.) by examining the two-way transit timing of received echoes of transmitted signals. Since the reflected heartbeats are 

unavoidably embedded in noise, their measured values are randomly distributed. The measurements which contain data in regards 

of interest are often associated with a noisy signal. The Kalman filter has been regarded as the optimal solution to many tracking 

and data prediction tasks. A Kalman filter is an algorithm used to estimate states of a system from indirect and uncertain 

measurements. Kalman filters are great for systems which are constantly changing. They make use of their benefit that they are 

light on memory (they don't have to keep any history other than the preceding state), and they are fast, making them appropriate for 

real time problems. 

II. EXTENDED KALMAN FILTER 

In Extended Kalman Filter(EKF), it uses the method called first order Taylor expansion to obtain linear approximation of the 

polar coordinate measurements in the update. In this process, a Jacobian matrix is produced, which represents the linear mapping 

from polar to Cartesian coordinate, applied at the update step. 

To apply extended Kalman-filtering techniques, it is first necessary to describe the real world by a set of nonlinear differential 

equations.                                                                               ẋ=f(x) + w  

where x is a vector of the system states, f(x) is a nonlinear function of those states, and w is a random zero-mean process.  

      The process-noise matrix describing the random process w for the preceding model is given by Q=E (wwT ). 

Finally, the measurement equation, required for the application of extended Kalman filtering, is considered to be a nonlinear function 

of the states according to  

z = h(x) + v 

where v is a zero-mean random process described by the measurement noise matrix R, which is defined as  

R=E (vvT ) 

For systems in which the measurements are discrete, the nonlinear measurement equation can be rewritten as  

Zk = h (x k) + vk 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                      © 2022 IJCRT | Volume 10, Issue 8 August 2022 | ISSN: 2320-2882 

IJCRT2208222 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b732 
 

The matrices are related to the nonlinear system and measurement equations according to  

𝐹 =
𝜕𝑓(𝑥)

𝜕𝑥 𝑥=𝑥
 

𝐻 =
𝜕ℎ(𝑥)

𝜕𝑥 𝑥=𝑥
 

The fundamental matrix, required for the discrete Riccati equations, can be approximated by the Taylor-series expansion for exp(FTs) 

and is given by  

Φ𝑇𝑠
= 𝐼 + 𝐹𝑇𝑠

𝐹2𝑇𝑠
2

2!
+
𝐹3𝑇𝑠

3

3!
 

where Ts is the sampling time and I is the identity matrix.  

Often the series is approximated by only the first two terms or  

𝚽𝑘 ~ 𝐼 + 𝐹𝑇𝑠 
𝑀𝑘 = 𝚽𝑘 𝑃𝑘−1 𝚽𝑘𝑇 + 𝑄𝑘 

𝐾𝐾 = 𝑀𝑘 𝐻𝑇 (𝐻𝑀𝑘 𝐻𝑇 + 𝑅𝑘 ) −1 

 𝑃𝑘 = (𝐼 − 𝐾 𝐾 𝐻)𝑀𝑘 

where Pk is a covariance matrix representing errors in the state estimates after an update and Mk is the covariance matrix 

representing errors in the state estimates before an update. 

As was already mentioned, the preceding approximations for the fundamental and measurement matrices only have to be used in 

the computation of the Kalman gains. The actual extended Kalman-filtering equations do not have to use those approximations but 

instead can be written in terms of the nonlinear state and measurement equations. With an extended Kalman filter the new state 

estimate is the old state estimate projected forward to the new sampling or measurement time plus a gain times a residual or  

𝑥̂𝑘 = 𝑥̅𝑘 + 𝐾𝑘[𝑧𝑘 − ℎ(𝑥̅𝑘)] 
In the preceding equation the residual is the difference between the actual measurement and the nonlinear measurement equation. 

The old estimates that have to be propagated forward do not have to be done with the fundamental matrix but instead can be 

propagated directly by integrating the actual nonlinear differential equations forward at each sampling interval. For example, Euler 

integration can be applied to the nonlinear system differential equations yielding  

𝑥̅𝑘 = 𝑥̂𝑘−1 + 𝑥̂̇𝑘−1𝑇𝑠 
where the derivative is obtained from  

𝑥𝑘−1̇̂ = 𝑓(𝑥𝑘−1) 
In the preceding equation the sampling time Ts is used as an integration interval. In problems where the sampling time is large, Ts 

would have to be replaced by a smaller integration interval, or possibly a more accurate method of integration has to be used. The 

best way to show how an extended Kalman filter is implemented and performs is by doing an example. 

III. RESULTS AND DISCUSSION 

 
Fig 1. Ballistic Trajectory 

Figure 1 displays the true ballistic trajectory, radar 

measurements and the estimated projectile trajectory based 

on the raw radar measurements. The blue colour in the graph 

indicates the true ballistic trajectory, the red colour in the 

graph indicates the radar measurements and the black colour 

indicates the EKF estimate of the trajectory. The figure 

depicts the trajectory of a Short Range Ballistic Missile 

(SRBM). 

The range of the missile is 819.5 km, the altitude 

is 324.6 km and the total time of flight is 520sec. The initial 

launch velocity of the missile is 3000m/s and launch angle is 

45 degrees. 

 
 

Fig 2. Error in estimate of range 

Figure 2 displays the error in estimate of range of 

the ballistic missile. The red colour in the graph indicates the 

measurement error while the black colour in the graph 

indicates the EKF error. The error in measurement which is 

up to 500m is reduced to 0 metres by the end of the time of 

flight as seen in the figure.  

http://www.ijcrt.org/


www.ijcrt.org                                                      © 2022 IJCRT | Volume 10, Issue 8 August 2022 | ISSN: 2320-2882 

IJCRT2208222 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b733 
 

 
Fig 3. Error in estimate of altitude 

Figure 3 displays the error in estimate of altitude of the 

ballistic missile. The red color in the graph indicates the 

measurement error while the black color in the graph 

indicates the EKF error. The error in measurement error 

which is up to 500m is reduced to around 50 meters by the 

end of the time of flight as seen in the figure. 

 

Fig 4. Error in estimate of Range Velocity 

Figure 4 shows how the single simulation run errors 

in the estimates of velocity compare with the theoretical 

predictions of the Riccati equation covariance matrix (i.e., 

square root P22). 

 
Fig 4. Error in estimate of Altitude Velocity 

Figure 4 shows how the single-run simulation 

errors in the estimates of the projectile's altitude velocity 

compare with the theoretical predictions of the covariance 

matrix (i.e., square root of P44). Again, we can see that the 

single-run simulation results lie within the theoretical bounds 

68% of the time, giving us a good indication that the filter is 

performing properly.

 

IV. CONCLUSION 

Noise is removed very precisely using EKF. The efficiency is also increased. The error in Range and Altitude was 500 metres which 

was reduced to 0 metres and 50 metres respectively. The error in Range Velocity and Altitude Velocity is reduced completely to 

zero towards the finish of the time of flight. 

EKF handles the Kalman gain rather than the state and measurement noise covariance. The elements of EKF helps to achieve the 

actual position of the moving target. It works by linearizing the nonlinear states. There is not really any difference between the real 

position and estimated position. The actual and estimated graphs are overlying on each other providing the precise data.  

The states (position, velocity) of the ballistic missile have been estimated. In this paper, a mathematical model for the target has 

been developed and the noise corrupted data is filtered using Extended Kalman Filter. The performance of the filter has been shown 

in the results. 

 

VI.FUTURE SCOPE 

When the state transition and observation state space models – the predict and update functions f and h are highly non-linear, the 

EKF cannot give up to the mark performance because the linearization of the underlying non-linear model propagates the 

covariance. Although EKF is straightforward and simple it suffers from instability due to linearization and erroneous parameters, 

costly calculation of Jacobian matrices, and the biased nature of its estimates. The EKF can be improved to deal with highly 

nonlinear functions. 

Similarly, there arises the case of getting more than one measurement sample for a tracking radar when an object other than the 

desirable. The filter prediction can be used to select and proceed with the correct measurement. 

Later, the Extended Kalman Filter can be further developed where it can track multiple objects at a time and with much more 

accuracy. 
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