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ABSTRACT: 

 In the present paper, a deterministic inventory model has been developed. In this model, the demand 

rate of an item decreases negative exponentially with time and inventory is depleted not only by demand but 

also by deterioration. The items are deteriorating at constant rate and it starts after a time interval which 

may be called the life period of the item in inventory. The model is developed by considering shortages and 

instantaneous delivery. It is shown that the developed model can be related to Aggarwal’s model(2), Sharma 

et al model (8) and standard model without deterioration. 
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INTRODUCTION : 

 First Inventory models for deteriorating items have been undertaken by many researcher in recent 

years. When the items are kept in the stock to meet the future demand, there may be deterioration of items 

in inventory due to many factors like storage condition, weather condition, insect biting etc. So, 

deterioration character of the items has the significant impact on inventory system. The rate of deterioration 

may be a constant or variable proportion of the on hand inventory when the item is produced or purchased, 

it is fresh and new and deterioration starts after a certain period, this certain period is called life time of that 

particular item and it is different for different items. Fruits have small life period while drugs have a large 

life period. 

 Chowdhury and Chaudhuri(3) developed an order level inventory model for deteriorating items with 

finite rate of replenishment. Goel and Aggarwal(4) developed, an order level inventory system with power 

demand pattern for deteriorating items. Kumar and Sharma (5,6) developed models for deteriorating items. 
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Sharma et.al (10) developed  order level inventory models for deteriorating items with declining demand 

and Weibull distributed deterioration.  

 Shah and Jaiswal (9) carried out a study for an order level inventory model for deteriorating items 

with constant rate of deterioration. Aggarwal(2) developed an order level inventory model by rectifying 

errors in Shah and Jaiswal’s model(9). 

 In the present paper, an attempt has been made to study a situation in which demand decreases 

exponentially over a fix time horizon and deterioration of items starts after a time u (u0) from the instant 

of the arrival of stock. The proposed model allows for shortages and are completely backlogged as well. 

 

ASSUMPTIONS AND NOTATIONS :- 

The proposed inventory model is developed under the following assumptions and notations. 

(i) Demand rate, D(t) is known and decrease exponentially i.e. at time t, t≥ 0,  D t Ae t( )   , A is 

initial demand and  is constant governing the decreasing rate of the demand. 

(ii) The prescribed schedule period ‘T’ is constant. 

(iii) The units in the system deteriorates at a constant rate ‘‘(say) of the on hand inventory per unit time 

only after the expiry of the life period ‘u’ of the item. 

 Hence, the deterioration fraction can be taken in the following  

form :- 

  =H(t-u) , 0 < <1 

     u>0 

 Where H(t-u) is heavisides function defined as follow :- 

  H(t-u)=1  t u 

   =0  t<u 

(iv) Replenishment rate is infinite. Replenishment size is constant and lead time is zero. 

(v) The lot size ‘q’ raises the initial inventory level in each schedule period to the order level S. 

(vi) Shortages, if any are allowed and backlogged as soon as a fresh stock arrives. 

(vii) The unit cost C per unit, inventory holding cost C
1
 and shortage cost  C

2
per unit per unit time is 

known and constant during the period under consideration. 

MATHEMATICAL MODELLING AND ANALYSIS :- 

 At t=0 of the period, the lot size ‘q’ enters the system from which  

(q-S) units are delivered towards backorders leaving ‘S’ units (S>0) as the initial inventory. Thereafter 

during (0,u) the inventory level gradually decreases due to market demand and during (u,t1) (t1<T) due to 

demand and  partly due to deterioration. Shortages occur during time period ( , )t T
1

that are fully 

backlogged. Let t T t
2 1
    
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 Let I(t) be the inventory level of the system at time ‘t’ ( 0  t  T). 

 The differential equations governing the stock status over the cycle time (0,T) can be written as 

 utAe
dt

tdI t   0
)(      (1) 

1)(
)(

ttuAetI
dt

tdI t       (2)   

 TttAe
dt

tdI t  

1

)(      (3) 

Using boundary conditions i.e.  I(t) = S at t = 0 and I(t)=I(u)   at t=u 

I(t)=0  at t=t1 

The solutions of equation (1) and (3)  are  obtained using boundary conditions and after adjusting constant 

of integration. 
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Also I(t1)=0 given by (5) as 
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Lot size  entering the system becomes 
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Inventory holding cost over the period (0,T) is given by 
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 Total amount of deteriorated units 
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 Unit cost over the period (0,T) is given by 
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 Shortage cost is given by 
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Hence the total average  cost K(S) per unit time is given by 

K(S)= Average unit cost + Average holding cost + Average shortage cost. 
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THE APPROXIMATE SOLUTION PROCEDURE :- 

 According to equation (12), finding optimal solution of the model is very difficult. In most of the 

cases  and   are small. Hence, here Maclaurin series for approximation can be used. 
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Now substituting value of t1 from equation (7), we get 
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 Now using series for logarithmic terms and ignoring terms of second and higher powers of  and  

as  and  are very small and  <<T, (-) < A 

 The correct total cost equation of the system then becomes 
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 Now for cost K(S) to be minimum, condition is  
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 This equation simplifies to the following equation 
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 Solution of equation (15) for S gives the optimum order level So under condition (17).   The optimum 

lot size and the minimum cost can be obtained by substituting the optimum order level So in the equations 

(16) and (14) respectively. 
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 Where S
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 is the solution of (15) 

 Also 

TA

SC

A

C

AT

C

TA

SC

AT

C

AT

C

dS

SKd
2

222

2

11

2

2 )(3)()(2)()(  









  

00
)(

2

2

 Sfor
dS

SKd
      (17) 

  SPECIAL CASES :- 

 Two special cases illustrate the effectiveness of the developed model. 

Case (i)  

 If  = 0, = 0 and A=R i.e. there is no deterioration and demand rate is constant. 

 S
C

C C
RT

0
2

1 2




 

 which is the standard formula as given by Naddor (7) for finding the order level S=S
0
 for an order 

level system for non deteriorating items. 
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Case (ii) 

 If = 0 and A=R, then our model reduces to Aggarwal’s Model (2) 
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 NUMERICAL EXAMPLE :- 

 The following example illustrates the effectiveness of the developed model. Assume that the 

demand rate equation as D t e t( )  250   whereas the value of the other variables are C = 0.20 Rs., C
1
 = 

0.30 Rs., C
2

= 1.50 Rs.,  

T = One Year. The optimum values of t t S K S q
1 2
, , , ( ), are calculated numerically for different values of  

and  of the model. Table 1 lists these values and provides the following necessary information. 

(i) When   increases, t
1
 increases K S( ) , q, S and  t

2
decreases. 

(ii) When  increases t
1
 decreases, K S( ) , q, S and  t

2
increases. 

 

TABLE-  Effect of  and  on the order level system. 

 

  t
1
 t

2
 S Q K(S) 

0.0 0.05 0.83 0.17 210.90 258.90 33.95 

 0.10 0.82 0.18 214.08 268.33 36.74 

0.30 0.05 0.88 0.12 199.16 210.33 24.69 

 0.10 0.87 0.13 200.61 217.80 26.35 

 0.15 0.86 0.14 203.17 225.24 27.40 

0.35 0.05 0.89 0.11 197.84 203.03 23.16 

 

CONCLUDING  REMARKS :- 

 In this paper, a deterministic inventory model for deteriorating items with an exponential declining 

demand is developed for a fixed and finite planning horizon considering shortage and excess demand is 

backlogged as well. Two special cases illustrate the effectiveness of the developed model. The modal is 

resolved by using Maclaurin series. 

 The present model provides valuable reference for decision makers in the planning as well as 

controlling the inventory. A numerical example is also presented to examine the effect of  and . The 

immediate extension of the model is for variable deterioration rate and stochastic nature of demand. 
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