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ABSTRACT 

The machine learning-based handwritten digit identification system suggested in this research study is a model that 

can be used to detect and recognize digits written by a user on an editable canvas widget inside a Graphical User 

Interface (GUI). This research article describes handwritten digit recognition systems in depth, our strategy to 

creating one, and analyzes the accuracy of several machine learning methods that may be used to create such 

systems. 
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I. INTRODUCTION 
Because it is a highly practical technique, handwritten digit identification is one of the most essential topics that 

should be tackled in the area of machine learning. There are several handwritten digit recognition applications, such 

as check processing in banks, data input in forms, mail sorting, and so on. 

Machine learning is one of the most important ideas to highlight in order to fulfill the ever-increasing everyday 

demands of the IT sector. We tackled the challenge of constructing a handwritten digit recognition system utilizing 

machine learning to better comprehend it and apply it to problem solving. This issue will enable us to master 

machine learning methods from the ground up, and it also includes a variety of application cases that may benefit 

people or businesses. 

Machine learning encompasses several kinds of learning models. These are the following: 

A. Supervised Education 

Naive Bayes, K-Nearest Neighbors, Random Forest, Decision Trees, Linear Regression, and Support Vector Machine 

are some of the algorithms used in supervised learning. 

During the training phase of supervised learning, a model is trained using a labeled dataset in which two variables, 

called 'input' and 'output,' are mapped to each other. 

B. Unsupervised Learning  

Unsupervised learning methods include Neural Network, Anomaly Detection, K-Mean Clustering, and Multivariate 

Analysis. 

During the training phase in unsupervised learning, the model is trained using an unlabeled dataset, whether 

classified or unclassified. During the learning phase, input is not transferred to output; instead, the training input 

dataset is classified into classes, which are then used to predict the output for the testing dataset. 

C. Reinforcement Learning 

Reinforcement learning methods include Negative, Positive, Q Learning, and Markov Decision Process. 

Decisions are made progressively in reinforcement learning. An intelligent agent behaves on the basis of collective 

benefits in order to maximize these rewards. 
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II. MNIST DATASET 
 

 

Yann LeCun, Corinna Cortes, and Christopher Burges created the MNIST dataset, which stands for 

Modified National Institute of Standards and Technology. Handwritten digit recognition systems utilizing 

machine learning methods have long been popular among academics. 

 

The scanned digits were standardized in size and justified as centered, making it an ideal database for 

testing these models. The error rate may be greatly lowered by utilizing separate classifiers for different 

methods and parameters. As training examples, the MNIST collection contains a variety of handwritten 

digits. It comprises of 70,000 photos, 60,000 of which are used in the training dataset and 10,000 of which 

are used in the testing dataset, both of which include suitably labeled images of the digits 0-9. Handwritten 

digits are displayed as grayscale pictures of 28*28 pixels. Every MNIST data point consists of two 

components: a target label associated with the handwritten digit and a picture of the handwritten digit 

itself. When utilizing the MNIST dataset, very little data cleaning is necessary, allowing one to concentrate 

completely on the goal of his/her machine learning/deep learning model.. 

Fig 1: Various styles of handwritten labels within the dataset 

III. LITERATURE SURVEY 
Machine learning methods may be used to develop handwritten digit recognition systems. The time necessary to 

train the model and the final accuracy of the model that is assessed might vary when various techniques are 

employed to tackle this particular challenge. In general, there is a time-accuracy tradeoff when developing such 

systems using various techniques. Some techniques take less time to train the model entirely than others, but they 

yield poorer accuracy as a consequence. On the other, several alternative techniques require a lengthy time to 

thoroughly train the model yet eventually result in more accurate results. 

Because this technology has many applications, some of them demand better precision to operate well and have no 

time constraints, whilst others may require the model to be trained quicker but with a bigger margin of error. 

Because the outcomes of various algorithms differ in terms of time and accuracy, they may be compared 

appropriately. Our study will focus on accuracy, and we will compare several algorithms on the same. To construct 

a handwritten digit recognition system, we recommended using the advantages of a Convolutional Neural Network. 

We trained our model with numerous convolution and pooling layers to achieve high accuracy. Our suggested work 

necessitates the precise identification of digit strings in order to transform the recognized decimal number to the 

binary/octal/hexadecimal number system. According to our findings, CNN is the best potential algorithm for 

reaching maximum accuracy. 

A. Existing System 

● Proximal Support Vector Machine (PSVM), Multilayer Perceptron, Support Vector Machine (SVM), Random Forest, 
Bayes Net, Naive Bayes, J48, and Random Tree are some of the techniques used to create handwritten digit 
recognition systems. 

● According to past research, these algorithms yield accuracies on the order of: Proximal SVM - 98 percent Multilayer 
Perceptron - 90 percent 

● 87 percent for SVM 

● Random Forest had an 85 percent success rate, Bayes Net had an 84 percent success rate, and Naive Bayes had an 
81 percent success rate. 
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Even while these algorithms may be effective in certain applications based on this technology, many other 

applications, such as banking sector applications, need superior outcomes that may be delivered utilizing alternative 

algorithms than the ones listed above. 

B. Proposed System 

Convolutional Neural Network (CNN) may be used to create handwritten digit recognition systems in order to 

minimize error and increase overall efficiency. To do this, our suggested system employs CNN with numerous 

pooling and convolutional layers, as well as a 3x3 kernel. During the training phase, our model employs 60,000 28*28 

grayscale photos. Our model is trained over a normal 5 epochs to reach accuracy of the order of 99.16 percent, which 

is much greater than the usual techniques used to create handwritten digit recognition systems such as SVM, 

Multilayer Perceptron, Bayes Net, Random Forest, and so on. 

IV. PROPOSED APPROACH 

Fig 2: Activity diagram of our proposed project 

The suggested work aims to detect user-defined handwritten digits and identify the whole number (by default in 

decimal number system) that is input by the user, which is then converted to binary/octal/hexadecimal number 

system based on the user's preference. For the same, a graphical user interface (GUI) will be constructed in which 

the user will be presented with a canvas widget that he or she may use to design handwritten digit strings for 

recognition and conversion. The canvas may then be cleared for future development. 

 

A. Dataset 

The suggested model is trained using the MNIST dataset. It is made up of 70,000 digital photos that may be used to 

train and evaluate the model. These training and testing datasets are designed around a specified ratio. This picture 

data is then cleaned and preprocessed in preparation for future processing. 

B. Image Preprocessing 

Image preprocessing is the process of using numerous approaches such as scaling pictures, converting them to 
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grayscale format, and image augmentation in order to properly employ digital image data inside the machine 

learning model. 

C. Training Neural Network 

Following the completion of data preprocessing, the CNN model will be generated, which will include several 

convolutional and pooling layers as well as a 3x3 sized kernel. The model will then be trained using training and 

validation data from multiple Python libraries, including TensorFlow, Pillow, OpenCV, Tkinter, and Numpy, which 

were preloaded to accomplish these particular tasks. 

D. Testing Accuracy of Neural Network 

We utilize the testing dataset to assess the model's performance after it has been trained using the training dataset. 

A subset of the whole MNIST dataset is utilized as the testing dataset, from which the suggested model's accuracy is 

calculated. 

E. User Draws Digit on GUI Canvas 

The trained model is then employed through a Graphical User Interface (GUI) based canvas where a user creates 

digits using the mouse pointer by clicking and dragging the mouse suitably once the model has been assessed, i.e. 

trained and tested using the MNIST dataset. 

F. Recognize Number/Clear Canvas 

● Following the user's selection of numbers on the GUI canvas, the user is presented with two options: 

● Recognize Number: This option use the CNN model to anticipate the user's string of numbers. 

● Clear Canvas: This option enables the user to clear the canvas and draw additional numbers to continue the 
drawing. 

G. Convert to Different Number System 

● Following the digit prediction, the user is presented with three options: 

● Convert to Binary: The Convert to Binary option transforms the recognized decimal number to its binary 
counterpart. 

● Convert to Hexadecimal: Converts a recognized decimal number to its hexadecimal counterpart. 

● Convert to Octal: Converts the recognized decimal number to its octal counterpart. 

V. IMPLEMENTATION DETAILS 

A. Digit Recognizer File 

The MNIST dataset will be used to develop the handwritten digit recognition system needed for this project. The 

MNIST dataset will be put into our digit recognition Python script to do this. Following that, a sequential CNN model 

will be built, to which convolution and pooling layers will be added. The digital picture data will be filtered using a 

3x3 kernel. Following the pooling and convolution layers, the data is transformed using the 'flatten' function to turn 

the multidimensional data input into a single dimension in order to shift to a fully connected layer. The suggested 

CNN model will be trained using the'relu' activation function. 

Following that, the picture data is binarized, or changed from 28*28 grayscale image format to binary format matrix. 

Following that, the MNIST dataset is separated into 60,000 training samples and 10,000 testing samples. Finally, the 

model is built by training it over 5 epochs using the 'rmsprop' optimizer and a batch size of 64. The suggested CNN 

model's loss and accuracy are then tested, and the model is stored for further use in the GUI python file. 
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B. GUI File 

The saved model is first imported into the GUI python file, and then the primary GUI window displaying the canvas 

widget is generated using the 'Tk' function. For the master window, a mainloop is established, which runs 

indefinitely until the user closes the window. The primary GUI window is then given a title linked to the proposed 

project. The primary window has two buttons: 'Recognize Number' and 'Clear Canvas.' Following that, the functions 

for implementing functionality such as cleaning the canvas, drawing digits, activating the event for doing so, and 

digit recognition are defined. 

To recognize the handwritten user-defined digit strings on the canvas displayed within the GUI, a list of contours is 

created, which is very useful for detecting the digit and analyzing its shape. A contour is a line that connects every 

point around the borderline of an image that has similar intensity. 

The 'Recognize Number' button is then hit, causing the model to anticipate each digit one by one. It presents the 

result in a new window, where each number is identified independently, as well as the precision with which they are 

detected. This new window is given the needed title and has three additional possibilities in addition to the 

recognized number. 

These three choices, in the end, give the feature of converting the recognized decimal number to the 

binary/hexadecimal/octal number system of the user's choosing. 

VI. LIMITATIONS 
One of the most challenging aspects of developing a handwritten digit identification system is that there are several 

diverse handwriting styles, which is a very personal activity. Numbers may have distinct stress portions, be written 

at different angles, and have varied lengths of certain segments. Although machine learning developers face these 

challenges, several steps have already been taken, such as fine tuning already defined models and developing 

cutting-edge classification methods for predicting handwritten digits effectively by reducing computational cost, 

time, and also improving accuracy. Extensive study is also being undertaken in this sector to ensure its long-term 

viability. 

If this concept is applied on a large scale, many complications may occur. Recognizing handwritten numerals, if used 

maliciously, might lead to a number of problems. People may use such technology to identify bank pins, ATM pins, 

and so forth in order to commit monetary crimes. On the contrary, even if such issues arise, steps can be taken to 

effectively address them and sustain the use of this technology to automate many processes such as banking, address 

recognition, shipping systems, the postal industry, and so on, making it beneficial to use because it will ultimately 

have more pros than constant. 

VII. CONCLUSION 
Based on our findings, we may conclude that Machine Learning algorithms function very well at detecting trends in 

various writing styles. Handwritten digits may be recognized using a variety of techniques. CNN delivers the highest 

level of accuracy for recognizing/predicting handwritten digits. By deleting the ensemble features and fine-tuning 

the hyper parameters of the pure CNN architecture, the accuracy of these classic CNNs may be increased even more. 

This reduces the computational difficulties as well as the total cost of implementing the model. 

This technique may also be used on GPUs alongside CPUs to boost efficiency by lowering calculation time. Compute 

Unified Device Architecture (CUDA) on a GPU shortens training time, increasing the overall efficacy of the proposed 

machine learning model. When it comes to the future potential of this machine learning-based technology, it is 

incredibly adaptable and has several applications in the banking, postal, and shipping sectors, where it may allow 

the automation of many procedures. Some of them include identifying the amount and account details on cash slips 

to automate and save time in the banking process. Address recognition software may also be used to help the postal 

and shipping industries. Overall, this technology may be utilized to serve a wide range of complicated applications, 

some of which may or may not be real-time. 
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