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Abstract:  In this paper, the concept of Contra and Almost Regular 𝛼 Generalized Continuous Mappings are introduced and 

investigated some of their properties. Also, We have provided some characterization of Bipolar Pythagorean Fuzzy Contra 

Regular 𝛼 generalized Continuous Mappings and Bipolar Pythagorean Fuzzy Almost Regular 𝛼 Generalized Continuous 

Mappings. 
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I. INTRODUCTION 

 

In 1965, Zadeh[11] introduced the concept of Fuzzy set which has a framework to encounter uncertainity, vagueness and partial 

truth and it represents a degree of membership for each member of the universe of discourse to a subset of it. After the extensions 

of fuzzy set theory, a new concept called intuitionistic Fuzzy set[2] was introduced. In intuitionistic Fuzzy set with elements 

comprising membership and non membership degree. Yager[3] familarized the model of Pythagorean fuzzy sets. After the 

Pythagorean fuzzy sets, it was widely used in the field of decision making and was applied for the real life applications. Zhang 

[11] introduced the extension of fuzzy set with Bipolarity, called Bipolar value fuzzy sets. Chen et.al[10] develops extension of 

bipolar fuzzy sets.  

In this paper, we introduced Bipolar Pythagorean Fuzzy Contra Regular 𝛼 Generalized Continuous Mappings and Bipolar 

Pythagorean Fuzzy Almost Regular 𝛼 Generalized Continuous Mappings. 
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II  PRELIMINARIES 

Definition 2.1: Let X be the non empty universe of discourse. A fuzzy set A in X, 𝐴 = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋} where 𝜇𝐴: 𝑋 → [0,1] 

is the membership function of the fuzzy set A; 𝜇𝐴(𝑥) ∈ [0,1] is the membership of 𝑥 ∈ 𝑋. 

 

Definition 2.2: Let X be the non empty universe of discourse. An Intuitionistic fuzzy set(IFS)  

A in X is given by A={𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥): 𝑥 ∈ 𝑋} where the functions 𝜇𝐴(𝑥) ∈ [0,1] and 𝜈𝐴(𝑥) ∈ [0,1] denote the degree of 

membership and degree of non membership of each element 𝑥 ∈ 𝑋 to the set A, respectively, and 0 ⩽ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ⩽ 1 for 

each 𝑥 ∈ 𝑋. The degree of indeterminacy 𝐼𝐴 = 1 − (𝜇𝐴(𝑥) + 𝜈𝐴(𝑥)) for each 𝑥 ∈ 𝑋. 

 

Definition 2.3: Let X be the non empty universe of discourse. A Pythagorean fuzzy set(PFS) P in X is given by 

P={〈𝑥, 𝜇𝑃(𝑥), 𝜈𝑃(𝑥)〉: 𝑥 ∈ 𝑋} where the functions 𝜇𝑃(𝑥) ∈ [0,1] and 𝜈𝑃(𝑥) ∈ [0,1] denote the degree of membership and degree 

of non membership of each element 𝑥 ∈ 𝑋 to the set P, respectively, and 0⩽ 𝜇𝑃
2(𝑥) + 𝜈𝑃

2(𝑥) ⩽1 for each 𝑥 ∈ 𝑋. The degree of 

indeterminacy 𝐼𝑃 = √1 − (𝜇𝑃
2(𝑥) + 𝜈𝑃

2(𝑥)) for each 𝑥 ∈ 𝑋. 

 

Definition 2.4: Let X be a non empty set. A Bipolar Pythagorean Fuzzy Set 𝐴 = {(𝑥, 𝜇𝐴
+, 𝜇𝐴

−, 𝜈𝐴
+, 𝜈𝐴

−): 𝑥 ∈ 𝑋} where 𝜇𝐴
+: 𝑋 →

[0,1], 𝜈𝐴
+: 𝑋 → [0,1], 𝜇𝐴

−: 𝑋 → [−1,0], 𝜈𝐴
−: 𝑋 → [−1,0] are the mappings such that 0 ⩽ (𝜇𝐴

+(𝑥))2 + (𝜈𝐴
+(𝑥))2 ⩽1 and 0 ⩽

(𝜇𝐴
−(𝑥))2 + (𝜈𝐴

−(𝑥)2 ⩽1 where 𝜇𝐴
+(𝑥) denote the positive membership degree. 𝜈𝐴

+(𝑥) denote the positive non membership degree. 

𝜇𝐴
−(𝑥) denote the negative membership degree. 𝜈𝐴

−(𝑥) denote the negative non membership degree. 

 

Definition 2.5: Bipolar Pythagorean Fuzzy Topological Spaces: Let 𝑋 ≠ ∅ be a set and 𝜏𝑝 be a family of Bipolar Pythagorean 

fuzzy subsets of X. If      

(i)   0𝑋, 1𝑋 ∈ 𝜏𝑝 

(ii)   For any 𝑃1, 𝑃2 ∈ 𝜏𝑝, we have 𝑃1 ∩ 𝑃2 ∈ 𝜏𝑝. 

(iii)  𝑃𝑖 ∈ 𝜏𝑝 for arbitrary family {𝑃𝑖  s uch that 𝑖 ∈ 𝐽} ⊆ 𝜏𝑝.  

Then 𝜏𝑝  is called Bipolar Pythagorean Fuzzy Topology on X and the pair (𝑋, 𝜏𝑝) is said to be Bipolar Pythagorean 

Fuzzy Topological space. Each member of 𝜏𝑝 is called Bipolar Pythagorean fuzzy open set(BPFOS). The complement of a 

Bipolar Pythagorean Fuzzy open set is called a Bipolar Pythagorean fuzzy Closed set(BPFCS). 

 

Definition 2.6:  Let (𝑋, 𝜏𝑝) be a BPFTS and 𝑃 = {〈𝑥, 𝜇𝐴
+(𝑥), 𝜈𝐴

+(𝑥), 𝜇𝐴
−(𝑥), 𝜈𝐴

−(𝑥)〉: 𝑥 ∈   𝑋} be a BPFS over X. Then the Bipolar 

Pythagorean Fuzzy Interior, Bipolar Pythagorean Fuzzy Closure of P are defined by: 

(i) BPFint(P) = ∪ {𝐺/𝐺    𝑖𝑠    𝑎    𝐵𝑃𝐹𝑂𝑆    𝑖𝑛    (𝑋, 𝜏𝑝)   𝑎𝑛𝑑    𝐺 ⊆ 𝑃} 

                                              (ii) BPFcl(P) = ∩ {𝐾    / 𝐾    𝑖𝑠    𝑎    𝐵𝑃𝐹𝐶𝑆    𝑖𝑛    (𝑋, 𝜏𝑝)    𝑎𝑛𝑑    𝑃 ⊆ 𝐾} 

It is clear that 

a. BPFint(P) is the biggest Bipolar Pythagorean Fuzzy Open set contained in P. 

b. BPFcl(P) is the smallest Bipolar Pythagorean Fuzzy Closed set containing P.  

 

Definition 2.7: If BPFS 𝐴 = {〈𝑥, 𝜇𝐴
+(𝑥), 𝜈𝐴

+(𝑥), 𝜇𝐴
−(𝑥), 𝜈𝐴

−(𝑥)〉: 𝑥 ∈   𝑋} in a BPTS (𝑋, 𝜏𝑝) is said to be 

(a) Bipolar Pythagorean Fuzzy Semi closed set (BPFSCS) if 𝑖𝑛𝑡(𝑐𝑙(𝐴)) ⊆ 𝐴 

(b) Bipolar Pythagorean Fuzzy Semi open set (BPFSOS) if 𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(c) Bipolar Pythagorean Fuzzy Pre-closed set(BPFPCS) if 𝑐𝑙(𝑖𝑛𝑡(𝐴)) ⊆ 𝐴 

(d) Bipolar Pythagorean Fuzzy Pre-open set(BPFPOS) if 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) 

(e) Bipolar Pythagorean Fuzzy 𝛼 closed set (BPFR𝛼CS) if 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐴)) ⊆ 𝐴 

(f) Bipolar Pythagorean Fuzzy 𝛼 open set (BPF𝛼OS) if 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(g) Bipolar Pythagorean Fuzzy 𝛾 closed set (BPF𝛾CS) if 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) ∪ 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(h) Bipolar Pythagorean Fuzzy 𝛾 open set (BPF𝛾OS) if 𝑐𝑙(𝑖𝑛𝑡(𝐴)) ∪ 𝑖𝑛𝑡(𝑐𝑙(𝐴)) ⊆ 𝐴 
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(i) Bipolar Pythagorean Fuzzy regular closed set (BPFRCS) if 𝐴 = 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(j) Bipolar Pythagorean Fuzzy regular open set (BPFROS) if 𝐴 = 𝑖𝑛𝑡(𝑐𝑙(𝐴)) 

(k) If BPF set 𝐴 of a BPFTS (𝑋, 𝜏𝑝) is a Bipolar Pythagorean Fuzzy Generalized closed set(BPFGCS), if 𝑐𝑙(𝐴) ⊆ 𝑈whenever 

𝐴 ⊆ 𝑈 and 𝑈 is BPFOS in X. 

(l) If BPF set 𝐴 of a BPFTS (𝑋, 𝜏𝑝) is a Bipolar Pythagorean Fuzzy Generalized open set(BPFGOS), if 𝐴𝑐 is a BPFGCS in X. 

(m) If BPF set 𝐴 of a BPFTS (𝑋, 𝜏𝑝) is a Bipolar Pythagorean Fuzzy Regular Generalized closed set(BPFRGCS), if 𝑐𝑙(𝐴) ⊆

𝑈whenever 𝐴 ⊆ 𝑈 and 𝑈 is BPFROS in X. 

(n) If BPF set 𝐴 of a BPFTS (𝑋, 𝜏𝑝) is a Bipolar Pythagorean Fuzzy Regular Generalized open set(BPFRGOS), if 𝐴𝑐 is a 

BPFRGCS in X. 

 

Definition 2.8: A Bipolar Pythagorean Fuzzy Set A of a Bipolar Pythagorean Fuzzy Topological Space (𝑋, 𝜏𝑝) is called Bipolar 

Pythagorean Regular 𝛼 Generalized closed set (BPFR𝛼GCS in short), if 𝛼𝑐𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is BPF regular open 

set in X. 

 

Definition 2.9: A Bipolar Pythagorean Fuzzy Set A of a Bipolar Pythagorean Fuzzy Topological Space (𝑋, 𝜏𝑝) is called Bipolar 

Pythagorean Regular 𝛼 Generalized open set (BPFR𝛼GOS in short), if 𝛼𝑖𝑛𝑡(𝐴) ⊇ 𝑈 whenever 𝐴 ⊇ 𝑈 and 𝑈 is BPF regular 

closed set in X. 

 

Definition 2.10: A function 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is called BPFR𝛼G continuous mapping if the inverse image of every BPF closed 

set in Y is BPFR𝛼G closed set in X. 

 

Definition 2.11: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be 

(i) BPF semi continuous mapping if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝑆𝑂(𝑋) for every 𝐴 ∈ (𝑌, 𝜎𝑝). 

(ii) BPF𝛼 continuous mapping if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝛼𝑂(𝑋) for every 𝐴 ∈ (𝑌, 𝜎𝑝). 

(iii) BPF Pre continuous mapping if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝑃𝑂(𝑋) for every 𝐴 ∈ (𝑌, 𝜎𝑝). 

(iv) BPF𝛾 continuous mapping if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝛾𝑂(𝑋) for every 𝐴 ∈ (𝑌, 𝜎𝑝). 

 

Definition 2.12: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be BPF Generalized Continuous mapping (BPFG continuous mapping) 

if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝐺𝐶(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝). 

 

Definition 2.13: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be BPF𝛼 Generalized Continuous mapping (BPF𝛼G continuous 

mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝛼𝐶(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝). 

 

Definition 2.14: A BPFTS (𝑋, 𝜏𝑝) is said to be a 𝐵𝑃𝐹𝑅𝛼𝑐𝑇1/2 space (Bipolar Pythagorean Fuzzy Regular 𝛼𝑐𝑇1/2 space) if every 

BPFRGCS in (𝑋, 𝜏𝑝) is a BPFCS in (𝑋, 𝜏𝑝). 

 

Definition 2.15: A BPFTS (𝑋, 𝜏𝑝) is said to be a BPFR𝛼𝑔𝑇1/2 space (Bipolar Pythagorean Fuzzy Regular 𝛼𝑔𝑇1/2 space) if every 

BPFR𝛼GCS in (𝑋, 𝜏𝑝) is a BPFGCS in (𝑋, 𝜏𝑝). 

 

Definition 2.16: A BPFTS (𝑋, 𝜏𝑝) is said to be a BPFR𝛼𝛼𝑇1/2 space (Bipolar Pythagorean Fuzzy Regular 𝛼𝛼𝑇1/2 space) if every 

BPFR𝛼GCS in (𝑋, 𝜏𝑝) is a BPF𝛼CS in (𝑋, 𝜏𝑝). 

 

Definition 2.17: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy irresolute mapping (BPF irresolute 

mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝐶𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝). 
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Definition 2.18: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Generalized irresolute mapping (BPFG 

irresolute mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝐺𝐶𝑆(𝑋) for every BPFGCS A in (𝑌, 𝜎𝑝). 

 

Definition 2.19: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra continuous mapping (BPF 

contra continuous mapping) if 𝑓−1(𝐴) ∈ BPFOS(X) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

Definition 2.20: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra 𝛼 continuous mapping (BPF 

contra 𝛼 continuous mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝛼𝑂𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

Definition 2.21: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra Pre continuous mapping (BPF 

contra Pre continuous mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝑃𝑂𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

Definition 2.22: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra semi continuous mapping (BPF 

contra semi continuous mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝑆𝑂𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

Definition 2.23: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra Generalized continuous 

mapping (BPF contra G continuous mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝐺𝑂𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

Definition 2.24: A mapping 𝑓: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be Bipolar Pythagorean Fuzzy Contra𝛼G continuous mapping (BPF 

contra𝛼G continuous mapping) if 𝑓−1(𝐴) ∈ 𝐵𝑃𝐹𝑃𝛼𝐺𝑂𝑆(𝑋) for every BPFCS A in (𝑌, 𝜎𝑝).  

 

III BIPOLAR PYTHAGOREAN FUZZY CONTRA REGULAR 𝜶 GENERALIZED CONTINUOUS MAPPINGS 

  

In this section we introduced Bipolar Pythagorean Fuzzy Contra Regular 𝛼 Generalized continuous mappings and 

studied some of its properties. 

 

Definition 3.1: A mapping 𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is called Bipolar phythagorean fuzzy contra regular 𝛼 generalized continuous 

(BPFCR𝛼G continuous in short) mapping if 𝜙−1(𝜔) is a BPFR𝛼GCS in X for every BPFOS 𝜔 of Y. 

 

Example 3.2: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.7), (-0.4, -0.3)), 𝑇2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.2, -0.1), (-0.8, -0.7)) and 𝑇3 = (y, 

(0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)). Define a mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3 = (y, 

(0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)) is BPFOS in Y and 𝑇1, 𝑇2 are BPFROS in X. Now 𝜙−1(𝑇3) = (x, (0.4, 0.2), (0.8, 

0.7), (-0.5, -0.3), (-0.8, -0.7)) is a BPFR𝛼GCS in X, as 𝛼𝑐𝑙(𝜙−1(𝑇3)) = 𝑇1
𝑐 ⊆ 𝑇1 whenever 𝜙−1(𝑇3) ⊆ 𝑇1 and 𝑇1 is BPFROS in 

X. Therefore, 𝜙 is BPFCR𝛼G continuous mapping in X. 

 

Proposition 3.3: Every BPFC continuous mapping is a BPFCR𝛼G continuous mapping but not conversely. 

Proof: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFC continuous mapping. Let 𝜔 be a BPFOS in Y. By hypothesis, 𝜙−1(𝜔) is a BPFCS in 

X. Since every BPFCS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a BPFR𝛼GCS in X.  Hence 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Example 3.4: From Example 3.2, 𝜙 is BPFCR𝛼G continuous mapping but not BPFC continuous mapping, as 𝑐𝑙(𝜙−1(𝑇3)) =

𝑇1
𝑐 ≠ 𝜙−1(𝑇3). 
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 Proposition 3.5: Every BPFC𝛼 continuous mapping is a BPFCR𝛼G continuous mapping but not conversely. 

 

Proof: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFC continuous mapping. Let 𝜔 be a BPFOS in Y. By hypothesis, 𝜙−1(𝜔) is a BPF𝛼CS 

in X. Since every BPF𝛼CS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a BPFR𝛼GCS in X. Hence 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Example 3.6: From Example 3.2, 𝜙 is BPFCR𝛼G continuous mapping but not BPF𝛼C continuous mapping, as 𝛼𝑐𝑙(𝜙−1(𝑇3)) =

𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇3))) = 𝑇1
𝑐 ⊆ 𝜙−1(𝑇3). 

 

Proposition:3.7: Every BPFCR continuous mapping is a BPFCR𝛼G continuous mapping but not conversely. 

Proof : Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFC continuous mapping. Let 𝜔 be a BPFOS in Y. By hypothesis, 𝜙−1(𝜔) is a BPFCS in 

X. Since every BPFCS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a BPFR𝛼GCS in X. Hence 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Example: 3.8: From Example 3.2, 𝜙 is BPFCR𝛼G continuous mapping but not BPFCR continuous mapping, as 𝛼𝑐𝑙(𝜙−1(𝑇3)) =

𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇3))) = 𝑇1
𝑐 ⊆ 𝜙−1(𝑇3). 

 

Proposition:3.9: Every BPFCG continuous mapping is a BPFCR𝛼G continuous mapping but not conversely. 

Proof: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFCG continuous mapping. Let 𝜔 be a BPFOS in Y. By hypothesis, 𝜙−1(𝜔) is a BPFGCS 

in X. Since every BPFGCS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a BPFR𝛼GCS in X. Hence 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Example: 3.10: From Example 3.2, 𝜙 is BPFCR𝛼G continuous mapping but not BPFCG continuous mapping, as 𝑐𝑙(𝜙−1(𝑇3)) =

𝑇2
𝑐 ⊈ 𝑈. 

 

Proposition:3.11: Every BPFC𝛼G continuous mapping is a BPFCR𝛼G continuous mapping but not conversely. 

Proof: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFC𝛼G continuous mapping. Let 𝜔 be a BPFOS in Y. By hypothesis, 𝜙−1(𝜔) is a 

BPF𝛼GCS in X. Since every BPF𝛼GCS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a BPFR𝛼GCS in X. Hence 𝜙 is a BPFCR𝛼G continuous 

mapping. 

 

Example: 3.12: From Example 3.2, 𝜙 is BPFCR𝛼G continuous mapping but not BPFC𝛼G continuous mapping, as 

𝛼𝑐𝑙(𝜙−1(𝑇3)) = 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇3))) = 𝑇2
𝑐 ⊈ 𝑈. 

 

 Remark 3.13: Every BPFCP continuous mapping and BPFCR𝛼G continuous mapping are independent of each other. 

 

Example 3.14: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.7), (-0.4, -0.3)), 𝑇2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.2, -0.1), (-0.8, -0.7)) and 𝑇3 = (y, 

(0.4, 0.2), (0.5, 0.6), (-0.5, -0.3), (-0.8, -0.7)). Define a mapping 𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3 = (y, 

(0.4, 0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)) is BPFOS in Y and 𝑇1, 𝑇2 are BPFROS in X. Then 𝜙−1(𝑇3) = (x, (0.4, 0.2), (0.8, 

0.7), (-0.5, -0.3), (-0.8, -0.7)) is a BPFR𝛼GCS in X but (𝜙−1(𝑇3)) is not BPFPCS, as 𝑐𝑙(𝑖𝑛𝑡(𝜙−1(𝑇3))) = 𝑇1
𝑐 ⊈ 𝜙−1(𝑇3). 

Therefore, 𝜙 is not a BPFCP continuous mapping in X. 

 

Example 3.15: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.5), (-0.4, -0.3)), 𝑇2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.3, -0.1), (-0.7, -0.6)) and 𝑇3 = (y, 

(0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6)). Define a mapping 𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3 = (y, 

(0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6)) is BPFOS in Y and 𝑇1, 𝑇2 are BPFROS in X. Then 𝜙−1(𝑇3) = (x, (0.1, 0.2), (0.8, 

0.8), (-0.1, -0.2), (-0.6, -0.6)) is a BPFPCS in X but 𝜙−1(𝑇3) is not BPFR𝛼GCS, as 𝛼𝑐𝑙(𝜙−1(𝑇3)) = 𝑇1
𝑐 ⊆ 𝑇1 ⊈ 𝑇2. Therefore, 𝜙 

is not a BPFCR𝛼G continuous mapping in X. 
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Remark 3.16: Every BPFCS continuous mapping and BPFCR𝛼G continuous mapping are independent of each other. 

 

Example 3.17: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.7, 0.6), (0.5, 0.3), (-0.6, -0.7), (-0.4, -0.3)), 𝑇2 = (x, (0.3, 0.2), (0.7, 0.6), (-0.2, -0.1) (-0.8, -0.7)) and 𝑇3 = (y, (0.4, 

0.2), (0.5, 0.6), (-0.5, -0.3), (-0.8, -0.7)). Define a mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3 = (y, (0.4, 

0.2), (0.8, 0.7), (-0.5, -0.3), (-0.8, -0.7)) is BPFOS in Y and 𝑇1, 𝑇2 are BPFROS in X. Then 𝜙−1(𝑇3) = (x, (0.4, 0.2), (0.8, 0.7), (-

0.5, -0.3), (-0.8, -0.7)) is a BPFR𝛼GCS in X but (𝜙−1(𝑇3)) is not BPFSCS, as 𝑖𝑛𝑡(𝑐𝑙((𝜙−1(𝑇3))) = 𝑇1
𝑐 ⊈ 𝜙−1(𝑇3). Therefore, 𝜙 

is not a BPFCS continuous mapping in X. 

 

Example 3.18: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.5, 0.3), (0.6, 0.7), (-0.4, -0.2), (-0.5, -0.6)), 𝑇2 = (x, (0.2, 0.2), (0.7, 0.7), (-0.2, -0.1), (-0.5, -0.6)) and 𝑇3 = (y, 

(0.5, 0.3), (0.6, 0.7), (-0.4, -0.2), (-0.5, -0.6)). Define a mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3 = (y, 

(0.1, 0.2), (0.8, 0.8), (-0.1, -0.2), (-0.6, -0.6)) is BPFOS in Y and 𝑇1 is BPFROS in X. Then 𝜙−1(𝑇3) = (x, (0.1, 0.2), (0.8, 0.8), (-

0.1, -0.2), (-0.6, -0.6)) is a BPFSCS in X but (𝜙−1(𝑇3)) is not BPFR𝛼GCS, as 𝛼𝑐𝑙(𝜙−1(𝑇3))) = 𝑇1
𝑐 ⊈ 𝑇1). Therefore, 𝜙 is not a 

BPFCR𝛼G continuous mapping in X. 

 

Theorem 3.19: A mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is BPFCR𝛼G continuous mapping if and only if the inverse image of each 

BPFCS in Y is a BPFR𝛼GOS in X. 

 

Proof: (Necessity:) Let 𝜔 be BPFCS in Y. This implies 𝜔𝑐 is BPFOS in Y. Since 𝜙 is BPFCR𝛼G continuous mapping, 𝜙−1(𝜔𝑐) 

is BPFR𝛼GCS in X. Since 𝜙−1(𝜔𝑐) = (𝜙−1(𝜔))𝑐. Thus, 𝜙−1(𝜔) is BPFR𝛼GOS in X. 

 

(Sufficiency:) Suppose that 𝜔 is BPFOS in Y. This implies 𝜔𝑐 is BPFCS in Y. By hypothesis, 𝜙−1(𝜔𝑐) is BPFR𝛼GOS in X. 

Since 𝜙−1(𝜔𝑐) = (𝜙−1(𝜔))𝑐, where (𝜙−1(𝜔))𝑐 is BPFR𝛼GOS in X, 𝜙−1(𝜔) is BPFR𝛼GCS in X. Hence 𝜙 is BPFCR𝛼G 

continuous mapping. 

 

Theorem 3.20: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping and let 𝜙−1(𝜔) be a BPFROS in X for every BPFCS 𝜔 in Y. Then 𝜙 is a 

BPFCR𝛼G continuous mapping. 

Proof: Let 𝜔 be a BPFCS in Y. By hypothesis, 𝜙−1(𝜔) is BPFROS in X. Since every BPFROS is BPFR𝛼GOS, 𝜙−1(𝜔) is 

BPFR𝛼GOS in X. Thus, 𝜙 is BPFCR𝛼G continuous mapping, by Theorem 3.12. 

 

Theorem 3.21 Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be BPFCR𝛼G continuous mapping and 𝜓: (𝑌, 𝜎𝑝) → (𝑍, 𝛾𝑝) be BPF continuous mapping, 

then (𝜓 ∘ 𝜙): (𝑋, 𝜏𝑝) → (𝑍, 𝛾𝑝) is BPFCR𝛼G continuous mapping. 

Proof: Let 𝜔 be BPFOS in Z. Then 𝜓−1(𝜔) is BPFOS in Y, by hypothesis. Since 𝜙 is BPFCR𝛼G continuous mapping, 

𝜙−1(𝜓−1(𝜔)) is BPFR𝛼GCS in X. Hence (𝜓 ∘ 𝜙) is BPFCR𝛼G continuous mapping. 

 

Theorem 3.22: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFCR𝛼G continuous mapping and 𝜓: (𝑌, 𝜎𝑝) → (𝑍, 𝛾𝑝) be a BPFG continuous 

mapping and Y is a 𝐵𝑃𝐹𝑇1/2 space, then 𝜓 ∘ 𝜙: (𝑋, 𝜏𝑝) → (𝑍, 𝛾𝑝) is a BPFCR𝛼G continuous mapping. 

Proof: Let 𝜔 be a BPFOS in Z. Then 𝜓−1(𝜔) is a BPFOS in Y, by hypothesis. Since Y is a BPF𝑇1/2 space, 𝜓−1(𝜔) is a BPFOS 

in Y. Therefore, 𝜙−1(𝜓−1(𝜔)) is a BPFR𝛼GCS in X, by hypothesis. Hence 𝜓 ∘ 𝜙 is a BFCR𝛼G continuous mapping. 

 

Theorem 3.23: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping. Suppose that one of the following properties hold: 

(i) 𝜙(𝛼𝑐𝑙(𝜔)) ⊆ 𝑖𝑛𝑡(𝜙(𝜔)) for each BPFS 𝜔 in X. 

(ii) 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊆ 𝜙−1(𝑖𝑛𝑡(𝛿)) for each BPFS 𝛿 in Y. 
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(iii) 𝜙−1(𝑐𝑙(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)) for each BPFS 𝛿 in Y. 

Then 𝜙 is a BPFCR𝛼G continuous mapping. 

Proof:  (i) → (ii) Suppose that 𝛿 is a BPFS in Y. Then, 𝜙−1(𝛿) is a BPFS in X. By hypothesis, 𝜙(𝛼𝑐𝑙(𝜙−1(𝛿))) ⊆

𝑖𝑛𝑡(𝜙(𝜙−1(𝛿))) ⊆ 𝑖𝑛𝑡(𝛿). Now 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊆ 𝜙−1(𝜙(𝛼𝑐𝑙(𝜙−1(𝛿)))) ⊆ 𝜙−1(𝑖𝑛𝑡(𝛿)). 

 

(ii) → (iii) is obvious by taking complement in (ii). 

 

Suppose (iii) holds: Let 𝜔 be a BPFCS in Y. Then, 𝑐𝑙(𝜔) = 𝜔 and 𝜙−1(𝜔) is a BPFS in X. Now 𝜙−1(𝜔) = 𝜙−1(𝑐𝑙(𝜔)) ⊆

𝛼𝑖𝑛𝑡(𝜙−1(𝜔)) ⊆ 𝜙−1(𝜔), by hypothesis. This implies, 𝜙−1(𝜔) is a BPF𝛼OS in X and hence 𝜙−1(𝜔) is a BPFR𝛼GOS in X. 

Thus 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Theorem 3.24: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a bijective mapping. Then 𝜙 is a BPFCR𝛼G continuous mapping if 𝑐𝑙(𝜙(𝜔)) ⊆

𝜙(𝛼𝑖𝑛𝑡(𝜔)) for every BPFS 𝜔 in X. 

Proof: Let 𝜔 be a BPFCS in Y. Then, 𝑐𝑙(𝜔) = 𝜔 and 𝜙−1(𝜔) is a BPFS in X. By hypothesis, 𝑐𝑙(𝜙(𝜙−1(𝜔))) ⊆

𝜙(𝛼𝑖𝑛𝑡(𝜙−1(𝜔)). Since 𝜙 is an onto, 𝜙(𝜙−1(𝜔)) = 𝜔.Therefore𝜔 = 𝑐𝑙(𝜔) = 𝑐𝑙(𝜙(𝜙−1(𝜔))) ⊆ 𝜙(𝛼𝑖𝑛𝑡(𝜙−1(𝜔))). Now 

𝜙−1(𝜔) ⊆ 𝜙−1(𝜙(𝛼𝑖𝑛𝑡(𝜙−1(𝜔)))) = 𝛼𝑖𝑛𝑡(𝜙−1(𝜔)) ⊆ 𝜙−1(𝜔)Hence 𝜙−1(𝜔) is a BPF𝛼OS in X and hence a BPFR𝛼GOS in 

X. Thus 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Theorem 3.25: If 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is a BPFCR𝛼G continuous mapping, where X is a BPFR𝛼𝑇1/2 space, then the following 

conditions hold: 

(i) 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊆ 𝜙−1(𝑖𝑛𝑡(𝛼𝑐𝑙(𝛿))) for every BPFOS 𝛿 in Y. 

(ii) 𝜙−1(𝑐𝑙(𝛼𝑖𝑛𝑡(𝛿))) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)) for every BPFCS 𝛿 in Y. 

Proof: (i) Let 𝛿 be a BPFOS in Y. By hypothesis 𝜙−1(𝛿) is a BPFR𝛼GCS in X. Since X is a BPFR𝛼𝑇1/2 space, 𝜙−1(𝛿) is a 

BPF𝛼CS in X. This implies, 𝛼𝑐𝑙(𝜙−1(𝛿)) = 𝜙−1(𝛿) = 𝜙−1(𝑖𝑛𝑡(𝛿)) ⊆ 𝜙−1(𝑖𝑛𝑡(𝛼𝑐𝑙(𝛿))).(ii) can be proved easily by taking the 

complement of (i). 

 

Theorem 3.26: A mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is a BPFCR𝛼G continuous mapping if 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝛿)) for every 

BPFS 𝛿 in Y. 

Proof: Let 𝛿 ⊆ 𝑌 be a BPFCS. Then 𝑐𝑙(𝛿) = 𝛿. Since every BPFCS is a BPF𝛼CS, 𝛼𝑐𝑙(𝛿) = 𝛿. Now by hypothesis, 𝜙−1(𝛿) =

𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝑖𝑛𝑡(𝜙−1(𝛿)) ⊆ 𝜙−1(𝛿). This implies, 𝜙−1(𝛿) = 𝑖𝑛𝑡(𝜙−1(𝛿)). Therefore, 𝜙−1(𝛿) is a BPFOS in X. Hence 𝛿 is 

a BPFC continuous mapping. Then by Remark 3.3, 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Theorem 3.27: A mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is a BPFCR𝛼G continuous mapping, where X is a BPFR𝛼𝑇1/2 space if and only 

if 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝛿))) for every BPFS 𝛿 in Y. 

Proof: Necessity: Let 𝛿 ⊆ 𝑌 be a BPFS. Then 𝑐𝑙(𝛿) is a BPFCS in Y. By hypothesis 𝜙−1(𝑐𝑙(𝛿)) is a BPFR𝛼GOS in X. Since X 

is a BPFR𝛼𝑇1/2 space, 𝜙−1(𝑐𝑙(𝛿)) is a BPF𝛼OS in X. This implies, 𝜙−1(𝑐𝑙(𝛿)) = 𝛼𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝛿))). Therefore, 

𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝜙−1(𝑐𝑙(𝛿)) = 𝛼𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝛿))). 

 

Sufficiency: Let 𝛿 ⊆ 𝑌 be a BPFS. Then 𝑐𝑙(𝛿) is a BPFCS in Y. By hypothesis, 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝑐𝑙(𝛿))) =

𝛼𝑖𝑛𝑡(𝜙−1(𝛿)). But 𝛼𝑐𝑙(𝛿) = 𝛿. Therefore, 𝜙−1(𝛿) = 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)) ⊆ 𝜙−1(𝛿). This implies, 𝜙−1(𝛿) is a 

BPF𝛼OS in X and hence 𝜙−1(𝛿) is a BPFR𝛼GOS in X. Hence 𝛿 is a BPFCR𝛼G continuous mapping. 

 

Theorem 3.28: A BPF continuous mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is a BPFCR𝛼G continuous mapping, if BPFR𝛼GO(X) = 

BPFR𝛼GC(X). 
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Proof: Let 𝜔 ⊆ Y be a BPFOS. By hypothesis, 𝜙−1(𝜔) is a BPFOS in X and hence 𝜙−1(𝜔) is a BPFR𝛼GOS in X. Thus 𝜙−1(𝜔) 

is a BPFR𝛼GCS in X, as BPFR𝛼GO(X) = BPFR𝛼GC(X). Therefore, 𝜙 is a BPFCR𝛼G continuous mapping. 

 

Figure  1: The relation between various types of BPFCRG continuous are given in the following diagram 

 

 

 

 

 

IV  BIPOLAR PYTHAGOREAN FUZZY ALMOST REGULAR 𝜶 GENERALIZED CONTINUOUS MAPPINGS 

 

 In this section we introduced Bipolar Pythagorean Fuzzy Almost Regular 𝛼 Generalized continuous mappings and 

investigated some of its properties. 

 

Definition 4.1: A mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is said to be a Bipolar Pythagorean Fuzzy Almost Regular 𝛼 Generalized 

Continuous (BPFaR𝛼G continuous in short) mapping if 𝜙−1(𝜔) is a BPFR𝛼GCS in X for every BPFRCS 𝜔 in Y. 

 

Example 4.2: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y respectively, 

where 𝑇1= (x, (0.6, 0.5), (0.2, 0.2), (-0.6, -0.7), (-0.2, -0.1)), 𝑇2 = (x, (0.3, 0.2), (0.7, 0.5), (-0.3, -0.2), (-0.7, -0.5)), 𝑇3 = (y, (0.4, 

0.4), (0.2, 0.2), (0.4, -0.4), (-0.2, -0.1)) and 𝑇4 = (y, (0.3, 0.2), (0.6, 0.6), (-0.3, -0.2), (-0.6, -0.6)). Define a mapping 𝜙: (𝑋, 𝜏𝑝) →

(𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇4
𝑐 = (y, (0.6, 0.6), (0.3, 0.2), (-0.6, -0.6), (-0.3, -0.2)) is BPFRCS in Y and 𝜙−1(𝑇4

𝑐) = 

(x, (0.6, 0.6), (0.3, 0.2), (-0.6, -0.6), (-0.3, -0.2)) is BPFS in X. Then 𝛼𝑐𝑙(𝜙−1(𝑇4
𝑐)) = 𝑇2

𝑐 ⊆ 1𝑝 as 𝜙−1(𝑇4
𝑐) ⊆ 1𝑝. Therefore, 

𝜙−1(𝑇4
𝑐) is BPFR𝛼GCS in X. Thus 𝜙 is BPFaR𝛼G continuous mapping in X. 

 

Proposition 4.3: Every BPF continuous mapping is a BPFaR𝛼G continuous mapping but not conversely. 

Proof: Suppose that 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) is a BPF continuous mapping. Let 𝛿 be a BPFRCS in Y. Since every BPFRCS is a 

BPFCS, 𝛿 is a BPFCS in Y. Then 𝜙−1(𝛿) is a BPFCS in X, by hypothesis. Since every BPFCS is a BPFR𝛼GCS, 𝜙−1(𝛿) is a 

BPFR𝛼GCS in X. Hence 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Example 4.4: From Example 4.2, 𝜙 is BPFaR𝛼G continuous mapping but not BPF continuous mapping, as 𝑐𝑙(𝜙−1(𝑇4
𝑐)) = 𝑇2

𝑐 ≠

𝜙−1(𝑇4
𝑐). 

 

Proposition 4.5: Every BPF𝛼 continuous mapping is a BPFaR𝛼G continuous mapping but not conversely. 
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Proof: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPF𝛼 continuous mapping. Let 𝜔 be a BPFRCS in Y. Since every BPFRCS is a BPFCS, 𝜔 

is a BPFCS in Y. Then 𝜙−1(𝜔) is a BPF𝛼CS in X, by hypothesis. Since every BPF𝛼CS is a BPFR𝛼GCS, 𝜙−1(𝜔) is a 

BPFR𝛼GCS in X. Hence 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Example 4.6: From Example 4.2, 𝜙 is BPFaR𝛼G continuous mapping but not BPF continuous mapping, as 

𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇4
𝑐))) = 𝑇2

𝑐 ⊈ 𝜙−1(𝑇4
𝑐). 

 

Proposition 4.7: Every BPFR continuous mapping is a BPFaR𝛼G continuous mapping but not conversely. 

Proof : Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPF continuous mapping. Let 𝜔 be a BPFRCS in Y. Since every BPFRCS is a BPFR𝛼GCS, 

𝜔 is a BPFRCS in Y. Then, 𝜙−1(𝜔) is a BPFR𝛼GCS in X, by hypothesis. Hence 𝜙 is a BPFaR𝛼G Continuous mapping. 

 

Example 4.8: From Example 4.2, 𝜙 is BPFaR𝛼G continuous mapping but not BPFR continuous mapping, as 

𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇4
𝑐))) = 𝑇2

𝑐 ≠ 𝜙−1(𝑇4
𝑐). 

 

Proposition 4.9: Every BPFG continuous mapping is a BPFaR𝛼G continuous mapping but not conversely. 

Proof : Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFG continuous mapping. Let 𝜔 be a BPFRCS in Y. Since every BPFRCS is a BPFGCS, 

𝜔 is a BPFGCS in Y. 𝜙−1(𝜔)is a BPFGCS in X, by hypothesis. Since every BPFGCS is a BPFR𝛼GCS, 𝜙−1(𝜔)is a BPFRGCS 

in X. Hence 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Example 4.10: From Example 4.2, 𝜙 is BPFaR𝛼G continuous mapping but not BPFG continuous mapping, as 𝑐𝑙(𝜙−1(𝑇4
𝑐)) =

𝑇2
𝑐 ⊈ 𝑈. 

 

Proposition 4.11: Every BPF𝛼G continuous mapping is a BPFaR𝛼G continuous mapping but not conversely. 

Proof: Let𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPF𝛼G continuous mapping. Let 𝜔 be a BPFRCS in Y. Since every BPFRCS is a 

BPF𝛼GCS, 𝜔 is a BPF𝛼GCS in Y. 𝜙−1(𝜔) is a BPF𝛼GCS in X, by hypothesis. Since every BPF𝛼GCS is a BPFRGCS, 𝜙−1(𝜔) 

is a BPFRGCS in X. Hence 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Example 4.12: From Example 4.2, 𝜙 is BPFaR𝛼G continuous mapping but not BPF𝛼G continuous mapping, as 

𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝑇4
𝑐))) = 𝑇2

𝑐 ⊈ 𝑈. 

 

Remark: 4.13: Every BPFP continuous mapping and BPFaR𝛼G continuous mapping are independent to each other. 

 

Example 4.14: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y 

respectively, where 𝑇1= (x, (0.6, 0.5), (0.6, 0.4), (-0.6, -0.4), (-0.6, -0.3)), 𝑇2 = (x, (0.2, 0.3), (0.7, 0.6), (-0.4, -0.3), (-0.6, -0.6)), 𝑇3 

= (y, (0.6, 0.6), (0.3, 0.3), (-0.6, -0.5), (-0.3, -0.2)) and 𝑇4 = (y, (0.1, 0.1), (0.9, 0.9), (-0.1, -0.1), (-0.9, -0.9)). Define a mapping 

𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3
𝑐 = (y, (0.3, 0.3), (0.6, 0.6), (-0.3, -0.2), (-0.6, -0.5)) is BPFRCS in Y 

and 𝑇1, 𝑇2 are BPFROS in X. Now, 𝜙−1(𝑇3
𝑐) = (x, (0.3, 0.3), (0.6, 0.6), (-0.3, -0.2), (-0.6, -0.5)) is a BPFPCS in X but 𝜙−1(𝑇3

𝑐) is 

not a BPFR𝛼GCS, as 𝛼𝑐𝑙(𝜙−1(𝑇3
𝑐)) = 𝑇1

𝑐 ⊈ 𝑇1. Therefore, 𝜙 is BPFP continuous mapping but not a BPFaR𝛼G continuous 

mapping in X. 

 

Example 4.15: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y 

respectively, where 𝑇1= (x, (0.7, 0.5), (0.1, 0.1), (-0.7, -0.4), (-0.1, -0.1)), 𝑇2 = (x, (0.1, 0.2), (0.5, 0.5), (-0.1, -0.2), (-0.4, -0.4)), 𝑇3 

= (y, (0.6, 0.7), (0.2, 0.1), (-0.6, -0.5), (-0.1, -0.2)) and 𝑇4 = (y, (0.1, 0.1), (0.8, 0.8), (-0.1, -0.1), (-0.8, -0.7)). Define a mapping 

𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇4
𝑐 = (y, (0.8, 0.8), (0.1, 0.1), (-0.8, -0.7), (-0.1, -0.1)) is BPFRCS in Y 

and 𝑇2 is BPFROS in X. Now, 𝜙−1(𝑇4
𝑐) = (x, (0.8, 0.8), (0.1, 0.1), (-0.8, -0.7), (-0.1, -0.1)) is a BPFR𝛼GCS in X but 𝜙−1(𝑇4

𝑐) is 
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not a BPFPCS, as 𝑐𝑙(𝑖𝑛𝑡((𝜙−1(𝑇4
𝑐))) = 1𝑝 ⊈ 𝜙−1(𝑇4

𝑐). Therefore, 𝜙 is a BPFaR𝛼G continuous mapping but not a BPFP 

continuous mapping in X. 

 

Remark 4.16: Every BPFS continuous mapping and BPFaR𝛼G continuous mapping are independent to each other. 

 

Example 4.17: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y 

respectively, where 𝑇1= (x, (0.5, 0.5), (0.3, 0.2), (-0.5,-0.4), (-0.3, -0.1)), 𝑇2 = (x, (0.1, 0.2), (0.7, 0.6), (-0.1, -0.2), (-0.6, -0.6)), 𝑇3 

= (y, (0.5, 0.5), (0.3, 0.1), (-0.5, -0.4), (-0.3, -0.1)) and 𝑇4 = (y, (0.3, 0.3), (0.8, 0.8), (-0.3, -0.2), (-0.5, -0.6)). Define a mapping 

𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇4
𝑐 = (y, (0.8, 0.8), (0.3, 0.3), (-0.5, -0.6), (-0.3, -0.2)) is BPFRCS in Y 

and 𝑇1,𝑇2 are BPFROS in X. Now 𝜙−1(𝑇4
𝑐) = (x, (0.8, 0.8), (0.3, 0.3), (-0.5, -0.6), (-0.3, -0.2)) is a BPFR𝛼GCS in X but 𝜙−1(𝑇4

𝑐) 

is not BPFSCS, as 𝑖𝑛𝑡(𝑐𝑙((𝜙−1(𝑇4
𝑐))) = 1𝑝 ⊈ 𝜙−1(𝑇4

𝑐). Therefore, 𝜙 is BPFaR𝛼G continuous mapping but not a BPFS 

continuous mapping in X. 

 

Example 4.18: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y 

respectively, where𝑇1= (x, (0.6, 0.7), (0.2, 0.2), (-0.6, -0.5), (-0.3, -0.2)),𝑇2 = (x, (0.2, 0.2), (0.8, 0.8), (-0.2, -0.2), (-0.6, -0.5)), 𝑇3 

= (y, (0.2, 0.2), (0.6, 0.7), (-0.4, -0.3), (-0.6, -0.5)) and 𝑇4 = (y, (0.5, 0.5), (0.4, 0.4), (-0.5, -0.5), (-0.5, -0.4)). Define a mapping 

𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3
𝑐 = (y, (0.6, 0.7), (0.2, 0.2), (-0.6, -0.5), (-0.4, -0.3)) is BPFRCS in Y 

and 𝑇1, 𝑇2 are BPFROS in X. Now 𝜙−1(𝑇3
𝑐) = (x, (0.6, 0.7), (0.2, 0.2), (-0.6, -0.5), (-0.4, -0.3)) is a BPFSCS in X but 𝜙−1(𝑇3

𝑐) is 

not a BPFR𝛼GCS, since 𝛼𝑐𝑙(𝜙−1(𝑇3
𝑐)) = 𝑇2

𝑐 ⊈ 𝑇1 as 𝜙−1(𝑇3
𝑐) ⊆ 𝑇1 . Therefore, 𝜙 is a BPFS continuous mapping but not a 

BPFaR𝛼G continuous mapping in X. 

 

Theorem 4.19: A mapping 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a BPFaR𝛼G continuous mapping if and only if the inverse image of each 

BPFROS in Y is a BPFR𝛼GOS in X. 

Proof: Necessity: Let 𝜔 be a BPFROS in Y. This implies 𝜔𝑐 is a BPFRCS in Y. Since 𝜙 is a BPFaR𝛼G continuous mapping, 

𝜙−1(𝜔𝑐) is a BPFR𝛼GCS in X. Since 𝜙−1(𝜔𝑐) = (𝜙−1(𝜔))𝑐, 𝜙−1(𝜔) is a BPFR𝛼GOS in X. 

Sufficiency: Let 𝜔 be a BPFRCS in Y. This implies 𝜔𝑐 is a BPFROS in Y. By hypothesis, 𝜙−1(𝜔𝑐) is a BPFR𝛼GOS in X. Since 

𝜙−1(𝜔𝑐) = (𝜙−1(𝜔))𝑐, 𝜙−1(𝜔) is a BPFR𝛼GCS in X. Thus 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Theorem 4.20: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping where 𝜙−1(𝛿) is a BPFRCS in X for every BPFCS in Y. Then 𝜙 is a 

BPFaR𝛼G continuous mapping but not conversely. 

Proof: Let 𝛿 be a BPFRCS in Y. Since every BPFRCS is a BPFCS, 𝛿 is a BPFCS in Y. Then 𝜙−1(𝛿) is a BPFRCS in X. Since 

every BPFRCS is a BPFR𝛼GCS, 𝜙−1(𝛿) is a BPFR𝛼GCS in X. Hence 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Example 4.21: Let X={a,b} and Y={u,v}. Then 𝜏𝑝 = {0𝑝, 𝑇1, 𝑇2, 1𝑝} and 𝜎𝑝 = {0𝑝, 𝑇3, 𝑇4, 1𝑝} are BPFTs on X and Y 

respectively, where 𝑇1= (x, (0.7, 0.7), (0.3, 0.2), (-0.7, -0.5), (-0.3, -0.2)),𝑇2 = (x, (0.2, 0.2), (0.8, 0.8), (-0.2, -0.2), (-0.7, -0.6)), 𝑇3 

= (y, (0.7, 0.7), (0.3, 0.2), (-0.7, -0.6), (-0.2, -0.2)) and 𝑇4 = (y, (0.2, 0.2), (0.9, 0.9), (-0.1, -0.1), (-0.8, -0.7)). Define a mapping 

𝜙 : (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) by 𝜙(𝑎) = 𝑢 and 𝜙(𝑏) = 𝑣. Here 𝑇3
𝑐 = (y, (0.3, 0.2), (0.7, 0.7), (-0.2, -0.1), (-0.7, -0.6)) is BPFRCS in Y 

and 𝜙−1(𝑇3
𝑐) = (x, (0.3, 0.2), (0.7, 0.7), (-0.2, -0.1), (-0.7, -0.6)) is a BPFS in X. Now 𝜙−1(𝑇3

𝑐) ⊆ 𝑇1 where 𝑇1 is BPFROS in X 

and 𝛼𝑐𝑙(𝜙−1(𝑇3
𝑐)) = 𝑇1

𝑐 ⊆ 𝑇1. Therefore 𝜙−1(𝑇3
𝑐) is a BPFR𝛼GCS in X but not a BPFRCS in X, since 𝑇3

𝑐 is BPFCS in Y but 

𝑐𝑙(𝑖𝑛𝑡(𝜙−1(𝑇3
𝑐))) = 𝑇1

𝑐. Thus 𝜙 is a BPFaR𝛼G continuous mapping but not the mapping in Theorem 4.14. 

 

Theorem 4.22: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping. If 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)) for every BPFS 𝛿 in Y, then 𝜙 is a 

BPFaR𝛼G continuous mapping. 
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Proof: Let 𝛿 be a BPFROS in Y. By hypothesis, 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)). Since 𝛿 is a BPFROS, it is a BPF𝛼OS in Y. 

Therefore 𝛼 𝑖𝑛𝑡(𝛿) = 𝛿. Hence 𝜙−1(𝛿) = 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)) ⊆ 𝜙−1(𝛿). Therefore 𝜙−1(𝛿) = 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)). This 

implies 𝜙−1(𝛿) is a BPF𝛼OS in X and hence 𝜙−1(𝛿) is a BPFR𝛼GOS in X. Thus 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Remark 4.23: The converse of the above theorem 4.16 is true if 𝛿 is a BPFROS in Y and X is a BPFR𝛼𝑇1/2 space. 

Proof: Let 𝜙 be a BPFaR𝛼G continuous mapping. Let 𝛿 be a BPFROS in Y. Then 𝜙−1(𝛿) is a BPFR𝛼GOS in X. Since X is a 

BPFR𝛼𝑇1/2 space, 𝜙−1(𝛿) is a BPF𝛼OS in X. This implies 𝜙−1(𝛿) = 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)).Now 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝜙−1(𝛿) =

𝛼𝑖𝑛𝑡(𝜙−1(𝛿)).Therefore 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝛼𝑖𝑛𝑡(𝜙−1(𝛿)). 

 

Theorem 4.24: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping. If 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊆ 𝜙−1(𝛼𝑐𝑙(𝛿)) for every BPFS 𝛿 in Y, then 𝜙 is a 

BPFaR𝛼G continuous mapping. 

Proof: Let 𝛿 be a BPFRCS in Y. By hypothesis, 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊆ 𝜙−1(𝛼𝑐𝑙(𝛿)). Since 𝛿 is a BPFRCS, it is a BPF𝛼CS in Y. 

Therefore 𝛼 𝑐𝑙(𝛿) = 𝛿. Hence 𝜙−1(𝛿) = 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊇ 𝛼𝑐𝑙(𝜙−1(𝛿)) ⊇ 𝜙−1(𝛿). Therefore 𝜙−1(𝛿) = 𝛼𝑐𝑙(𝜙−1(𝛿)). This 

implies 𝜙−1(𝛿) is a BPF𝛼CS in X and hence 𝜙−1(𝛿) is a BPFR𝛼GCS in X. Thus 𝜙 is a BPFaR𝛼G continuous mapping. 

 

Remark 4.25: The converse of the above theorem 4.18 is true if 𝛿 is a BPFRCS in Y and X is a BPFR𝛼𝑇1/2 space. 

Proof: Let 𝜙 be a BPFaR𝛼G continuous mapping. Let 𝛿 be a BPFRCS in Y. Then 𝜙−1(𝛿) is a BPFR𝛼GCS in X. Since X is a 

BPFR𝛼𝑇1/2 space, 𝜙−1(𝛿) is a BPF𝛼CS in X. This implies 𝛼𝑐𝑙(𝜙−1(𝛿)) = 𝜙−1(𝛿). Now 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊇ 𝜙−1(𝛿) =

𝛼𝑐𝑙(𝜙−1(𝛿)).Therefore 𝜙−1(𝛼𝑐𝑙(𝛿)) ⊇ 𝛼𝑐𝑙(𝜙−1(𝛿)). 

 

Theorem 4.26: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping where X is a BPFR𝛼𝑇1/2 space. If 𝜙 is a BPFaR𝛼G continuous mapping, 

then 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝛿)))) ⊆ 𝜙−1(𝛼𝑐𝑙(𝛿)) for every BPFRCS 𝛿 in Y. 

Proof: Let 𝛿 be a BPFRCS in Y. By hypothesis, 𝜙−1(𝛿) is a BPFR𝛼GCS in X. Since X is a BPFR𝛼𝑇1/2 space, 𝜙−1(𝛿) is a 

BPF𝛼CS in X. This implies 𝛼𝑐𝑙(𝜙−1(𝛿)) = 𝜙−1(𝛿). Now 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝛿)))) ⊆ 𝜙−1(𝛿) ∪ 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝛿)))) ⊆

𝛼𝑐𝑙(𝜙−1(𝛿)) = 𝜙−1(𝛿) = 𝜙−1(𝛼𝑐𝑙(𝛿)), as every BPFRCS is a BPF𝛼CS. Hence 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝜙−1(𝛿)))) ⊆ 𝜙−1(𝛼𝑐𝑙(𝛿)). 

 

Theorem 4.27: Let 𝜙: (𝑋, 𝜏𝑝) → (𝑌, 𝜎𝑝) be a mapping where X is a BPFR𝛼𝑇1/2 space. If 𝜙 is a BPFaR𝛼G continuous mapping, 

then 𝜙−1(𝛼𝑖𝑛𝑡(𝛿)) ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝜙−1(𝛿)))) for every BPFROS B in Y. 

Proof: This theorem can be easily proved by taking complement in Theorem 4.26. 
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