ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

πgN*CLOSED SETS AND QUASI N*- NORMAL SPACES

M.C. Sharma and Poonam Sharma

Department of Mathematics N.R.E.C. College Khurja - 203131 [U.P.] Research Scholar, Department of Mathematics, NH-79, Mewar University Gangrar Chittorgarh(Rajasthan)- 312901, INDIA

Abstract. In this paper, we introduce a new class of sets called gN^* -closed, πgN^* closed sets and its properties are studied and we introduce a new concept of quasi-normal spaces called quasi N*-normal spaces by using N*-open sets due to G. Navalagi [6] in topological spaces and obtained several properties of such a space. Further we obtain a characterization and preservation theorems for quasi N*-normal spaces and by using N*-open sets.

1. Introduction

The notion of quasi normal space was introduced by Zaitsev [11]. Dontchev and Noiri [2] introduce the notion of π g-closed sets as a weak form of g-closed sets due to Levine [4]. By using π g-closed sets, Dontchev and Noiri [2] obtained a new characterization of quasi normal spaces. G.Navalagi [6] introduced the concept of N* and *N-closed sets and discuss some of their basic properties. Recently, Jeyanthi and Janaki [3] introduced the concepts of quasi r-normal spaces in topological spaces by using regular open sets in topological spaces and obtained some characterizations and preservation theorems of such spaces.We introduce the notion of N*g-closed, π gN*-closed, π gN*-closed, π gN*-closed, π gN*-closed, π gN*-closed, π gN*-continuous functions and its properties are studied. Further we obtain characterization and preservation theorems for quasi N*-normal spaces.

2010 AMS Subject classification: 54D15, 54A05, 54C08.

Key words and phrases : N*-closed, N*g-closed πgN *-closed, N*-open N*g-open, πgN *open sets, πgN *-closed, almost πgN *-closed, πgN *-continuous and almost πgN *-continuous functions, N*-normal spaces, mildly N*-normal spaces and quasi N*-normal spaces.

2. Preliminaries.

2.1.Definition. A subset A of a topological space X is called

- 1. **regular closed**[11]) if A = cl(int(A)).
- 2. generalized closed [4](briefly, g-closed) if $cl(A) \subset U$ whenever $A \subset U$

and U is open in X.

- 3. **\pig-closed** [2] if cl(A) \subset U whenever A \subset U and U is π -open in X.
- 4. α -closed[8] if cl(int(cl(A))) \subseteq A.
- 5. ag-closed [5] if α -cl(A) \subseteq U, whenever A \subseteq U and U is in X.
- 6. $\pi g\alpha$ -closed [1] if α -cl(A) $\subset U$ whenever A $\subset U$ and U is π -open in X.

The finite union of regular open sets is said to be π -open. The complement of π -open set is said to be π -closed set. The complement of regular closed (resp. g-closed, π g-closed, α -closed, α g-closed, π g α -closed) set is said to be regular open (resp. g-open, π g-open, α -open, α g-open, π g α -open) sets.

2.2.Definition. A subset A of a topological space X is called

1. N*-closed [6] if αg -cl(A) $\subseteq U$, whenever A $\subseteq U$, and U is g-open in X. 2. N*g-closed if N*-cl(A) $\subseteq U$, whenever A $\subseteq U$, and U is open in X.

3. π **gN***-closed if N*-cl(A) \subset U, whenever A \subset U and U is π -open in X.

The complement of N*- closed (resp. N*g-closed, πgN *-closed) sets is said to be N*-open (resp. N*g-open, πgN *-open). The intersection of all N*-closed subsets of X containing A (i.e. super sets of A) is called the N*-closure of A and is denoted by N*-cl (A). The union of all N*-open sets contained in A is called N*-interior of A and is denoted by N*-int(A). The family of all N*-open (resp. N*-closed) sets of a space X is denoted by N*O(X) (resp. N*C(X)).

2.3. lemma.Let X be a topological space. Then

1. Every α -closed subset of X is N*-closed

2. Every α -open subset of X is N*-open.

We have the following implications for the properties of subsets.

	closed	\Rightarrow	g-closed	\Rightarrow	π g-closed
\Downarrow	\downarrow		\Downarrow		
	α-closed	\Rightarrow	αg-closed	\Rightarrow	π ga-closed
\Downarrow	\Downarrow		\Downarrow		
l	N*-closed	\Rightarrow	N*g-closed	\Rightarrow	πgN*-closed

Where none of the implications is reversible as can be seen from the following examples

 $\{a, d\}, X\}.$ Then the set $A = \{a\}$ is $\pi g \alpha$ -closed set as well $\pi g N^*$ -closed set but not g-closed set in X.

2.5.Example. Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, d, c\}, \{a, b, c\}, \{a, c, c\}, \{a,$ d}, {a, b, c}, X}. Then the set A = {c} is $\pi g\alpha$ -closed set as well as πgN^* -closed set but not α g-closed and not N*g-closed set in X.

 $\{a, d\}, X\}.$ Then the set $A = \{c\}$ is $\pi g\alpha$ -closed set as well as πgN^* -closed set but not πg -closed set in X. JCR

2.7.Theorem.

(a) Finite union of $\pi g N^*$ -closed sets are $\pi g N^*$ -closed.

(b) Finite intersection of $\pi g N^*$ -closed need not be a $\pi g N^*$ -closed.

(c) A countable union of $\pi g N^*$ -closed sets need not be a $\pi g N^*$ -closed.

Proof. (a) Let A and B be $\pi g N^*$ -closed sets. Therefore N*-cl (A) $\subset U$ and N*-cl(B) $\subset U$ whenever $A \subset U$, $B \subset U$ and U is π -open. Let $A \cup B \subset U$ where U is π -open. Since N*-cl(A \cup B) \subset N*-cl(A) \cup N*-cl(B) \subset U, we have $A \cup B$ is $\pi g N^*$ -closed.

(b) Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Let A = {a, b, c}, B = {a, b, d}. A and B are πgN^* -closed sets. But A \cap B = {a, b} \subset {a, b} which is π open. N*-cl(A \cap B) $\not\subset$ {a, b}. Hence A \cap B is not π gN*-closed.

(c) Let R be the real line with the usual topology. Every singleton is πgN^* -closed. But, A = $\{1/i : i = 2, 3, 4 \dots\}$ is not πgN^* -closed. Since A \subset (0, 1) which is π -open but N*-cl(A) $\not\subset$ (0, 1).

2.8.Theorem. If A is πgN^* -closed and A \subset B \subset N*-cl(A) then B is πgN^* -closed.

Proof. Since A is πgN^* -closed, $N^*(A) \subset U$ whenever $A \subset U$ and U is π -open. Let $B \subset U$ and U be π -open. Since $B \subset N^*$ -cl(A), N^* -cl(B) $\subset N^*$ -cl(A) $\subset U$. Hence B is πgN^* -closed.

2.9.Theorem. Let A be a π gN*-closed set in X. Then N*-cl(A) – A does not contain any non empty π -closed set.

Proof. Let F be a non empty π -closed set such that $F \subset N^*$ -cl(A) – A. Then $F \subset N^*$ cl(A) $\cap (X - A) \subset X - A$ implies $A \subset X - F$ where X - F is π -open. Therefore N^* cl(A) $\subset X - F$ implies $F \subset (N^*$ -cl(A))^C. Now $F \subset N^*$ -cl(A) (A) $\cap (N^*$ -cl(A))^C implies F is empty.

Reverse implication does not hold.

2.10.Corollary. Let A be $\pi g N^*$ closed. A is N*-closed iff N*-cl(A) – A is π -closed.

Proof. Let A be N*-closed set then $A = N^*-cl(A)$ implies N*-cl(A) $-A = \phi$ which is π -closed.

Conversely if N*-cl(A) – A is π -closed then A is N*-closed.

2.11. Theorem. If A is π -open and π gN*-closed. Then A is N*-closed hence clopen.

Proof. Let A be regular open. Since A is πgN^* -closed, N^* -cl(A) \subset A implies A is N*closed. Hence A is closed (Since every π -open, N*-closed set is closed). Therefore A is clopen.

2.12. Theorem :- For a topological space X, the following are equivalent :

- (a) X is extremally disconnected.
- (b) Every subset of X is π gN*-closed.

(c) The topology on X generated by $\pi g N^*$ -closed sets.

Proof. (a) \Rightarrow (b). Assume X is extremally disconnected. Let $A \subset U$, where U is π -open in X. Since U is π -open, it is the finite union of regular open sets and X is extremally disconnected, U is finite union of clopen sets and hence U is clopen. Therefore N*-cl(A) \subset cl(A) \subset cl(U) \subset U implies A is π gN*-closed.

(b \Rightarrow (a). Let A be regular open set of X. Since A is πgN^* -closed by **Theorem 2.11** A is clopen. Hence X is extremally disconnected.

(b) \Leftrightarrow (c) is obvious.

2.13. Lemma[**11**]. If A is a subset of X, then

1. $X - N^*-cl(X - A) = N^*-int(A)$.

2. $X - N^*-int(X - A) = N^*-cl(A)$.

2.14. Theorem. A subset A of a topological space X is πgN^* -open iff $F \subset N^*$ -int(A) whenever F is π -closed and $F \subset A$.

Proof. Let F be π -closed set such that $F \subset A$. Since X - A is πgN^* -closed and $X - A \subset X - F$ we have $F \subset N^*$ -int(A).

Conversely. Let $F \subset N^*$ -int(A) where F is π -closed and $F \subset A$. Since $F \subset A$ and X - F is π -open, N^* -cl(X - A) = $X - N^*$ -int(A) $\subset X - F$. Therefore A is πgN^* -open.

2.15. Theorem. If N*-int(A) \subset B \subset A and A is π gN*-open then B is π gN*-open.

Proof. Since N*-int(A) \subset B \subset A using **Theorem 2.8**, N*-cl(X – A) \supset (X – B) implies B is πgN^* -open.

2.16. Remark. For any $A \subset X$, N^* -int(A) $(N^*$ -cl(A)) - A)) = ϕ .

2.17. Theorem. If $A \subset X$ is $\pi g N^*$ closed then $N^* cl(A) - A$ is $\pi g N^*$ -open.

Proof. Let A be πgN^* -closed and F be a π -closed set such that $F \subset N^* cl(A) - A$. By **Theorem 2.9**, $F = \phi$ implies $F \subset N^*$ -int(A) (N^* cl(A) - A)). By **Theorem 2.14**, N^*-cl(A) - A is πgN^* -open.

Converse of the above theorem is not true.

2.18.Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $A = \{b\}$. Then A is not πgN^* -closed but N^* -cl(A) – A = $\{a, b\} \pi gN^*$ -open.

3. Quasi N*-normal spaces

3.1.Definition. A topological space X is said to be N*-normal (resp. quasi N*-normal, mildly N*-normal) if for every pair of disjoint closed (resp. π -closed, regularly closed) subsets H, K of X, there exist disjoint N*-open sets U, V of X such that $H \subset U$ and $K \subset V$.

3.2.Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. The pair of disjoint closed subsets of X are $A = \phi$ and $B = \{d\}$. Then N*-closed sets in X are X, ϕ , $\{a\}, \{b\}, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, c\}, \{a, c\}, \{b, d\}, \{a, c, d\}, \{b, c, d\}$. Also $U = \{b\}$

and $V = \{c, d\}$ are N*-open sets such that $A \subset U$ and $B \subset V$. Hence X is N*-normal but it is not normal.

3.3.Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a\}$ and $V = \{b, c, d\}$ are open sets such that $A \subset U$ and $B \subset V$. Hence X is quasi-normal as well as quasi N*-normal because every open set is N*-open set.

By the definitions and examples stated above, we have the following diagram:

normality \Rightarrow quasi-normality \Rightarrow mild-normality

 $\begin{array}{cccc}
\downarrow & & \downarrow \\
N^*-normality \Rightarrow quasi N^*-normality \Rightarrow mild N^*-normality
\end{array}$

3.4. Theorem. For topological space X, the following are equivalent: (a) X is quasi N*-normal.

(b) For any disjoint π -closed sets H and K, there exist disjoint N*g-open sets

U and V such that $H \subset U$ and $K \subset V$.

(c) For any disjoint π -closed sets H and K, there exist disjoint π gN*-open sets

U and V such that $H \subset U$ and $K \subset V$.

(d) For any π -closed set H and any π -open set V containing H, there exist a

N*g-open set U of X such that $H \subset U \subset N^*$ -cl(U) $\subset V$.

(e) For any π -closed set H and any π -open set V containing H, there exist a

 $\pi g N^*$ -open set U of X such that $H \subset U \subset N^*$ -cl(U) $\subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (d) \Rightarrow (e), (c) \Rightarrow (d) and (e) \Rightarrow (a).

(a) \Rightarrow (b). Let X be quasi N*-normal. Let H, K be disjoint π -closed sets of X. By assumption, there exist disjoint N*-open sets U, V such that $H \subset U$ and $K \subset V$. Since every N*-open set is N*g-open, U and, V are N*g-open sets such that $H \subset U$ and $K \subset V$.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exists N*g-open sets U and V such that H \subset U and K \subset V. Since N*g-open set is πgN^* -open, U and V are πgN^* -open sets such that H \subset U and K \subset V.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist N*g-open set U of X such that $H \subset U \subset N^*$ -cl(U) $\subset V$. Since, every N*g-open set is πgN^* -open, there exist πgN^* -open sets U of X such that $H \subset U \subset N^*$ -cl(U) $\subset V$.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist π g N*-open sets U and W such that H \subset U and X - V \subset W. By **Theorem 2.14**, we get X - V \subset N*-int(W) and N*-cl (U) \cap N*-int(W)= ϕ . Hence H \subset U \subset N*-cl (U) \subset X - N*-int (W) \subset V.

(e) \Rightarrow (a). Let H, K be any two disjoint π -closed set of X. Then H \subset X – K and X–K is π - open. By assumption, there exist πg N*-open set G of X such that H \subset G \subset N*-cl(G) \subset X – K. Put U = N*-int(G), V = X – N*-cl(G). Then U and V are disjoint N*-open sets of X such that H \subset U and K \subset V.

4. Some Functions

- **4.1. Definition.** A function $f : X \rightarrow Y$ is said to be
- 1. almost closed [9](resp. almost N*-closed , almost N*-g-closed) if

f (F) is closed (resp. N*-closed , N*g-closed) in Y for every $F \in RC(X)$.

- 2. $\pi g N^*$ -closed (resp. almost $\pi g N^*$ -closed) if for every closed set (resp. regularly closed) F of X, f(F) is $\pi g N^*$ -closed in Y.
- 3. π -continuous [2] (resp. π g α -continuous[1], π gN*-continuous) if f⁻¹(F) is π -closed (resp. π g α -closed, π gN*-closed) in X for every closed set F of Y.
- 4. almost continuous [9] (resp. almost π-continuous [2], almost πgα-continuous[1], almost πgN*-continuous) if f⁻¹(F) is closed (resp. π-closed, πgα-closed, πgN*-closed) in X for every regularly closed set F of Y.

5. **rc-preserving** [7] if f(F) is regularly closed in Y for every $F \in RC(X)$.

From the definitions stated above, we obtain the following diagram:

closed \Rightarrow α -closed \Rightarrow α g-closed \Rightarrow π g α -closed $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ al.-closed \Rightarrow al.N*-closed \Rightarrow al. N*g-closed \Rightarrow al. π gN*-closed

where al. = almost

Moreover, by the following examples, we realize that none of the implications is reversible. **4.2. Example.** $X = \{a, b, c, d\}, \tau = \{\phi, X, \{c\}, \{a, b, d\} \text{ and } \sigma = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{a, c, d\}, \{a, d\}, X\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function, then f is $\pi g\alpha$ -closed as well as $\pi g N^*$ -closed but not πg -closed. Since $A = \{c\}$ is not πg -closed in (X, σ) .

4.3. Example. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{c\}, \{a, b, d\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, X, \{a\}, \{c, d\}, \{a, c, d\}, \{d\}, \{a, d\}\}$.Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is almost $\pi g\alpha$ -closed as well as almost πgN^* -closed but not πgN^* -closed. Since $A = \{a\}$ is not πgN^* -closed

4.4.Theorem. If $f: X \to Y$ is an almost π -continuous and πgN^* -closed function, then f(A) is πgN^* -closed in Y for every πgN^* -closed set A of X.

Proof. Let A be any πgN^* -closed set A of X and V be any π -open set of Y containing f(A). Since f is almost π -continuous, f⁻¹(V) is π -open in X and $A \subset f^{-1}(V)$. Therefore N*cl(A) \subset f⁻¹(V) and hence f(N*-cl(A)) \subset V. Since f is πgN^* -closed, f(N*-cl(A)) is πgN^* closed in Y. And hence we obtain N*-cl(f(A)) \subset N*-cl(f(N*-cl(A))) \subset V. Hence f(A) is πgN^* -closed in Y.

4.5. Theorem. A surjection $f: X \to Y$ is almost πgN^* -closed if and only if for each subset S of Y and each $U \in RO(X)$ containing $f^{-1}(S)$ there exists a πgN^* -open set V of Y such that S $\subset V$ and $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose that f is almost πgN^* -closed. Let S be a subset of Y and $U \in RO(X)$ containing f⁻¹(S). If V = Y - f(X - U), then V is a πgN^* -open set of Y such that S $\subset V$ and f⁻¹(V) $\subset U$.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$ and X $-F \in RO(X)$. There exists πgN^* -open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is πgN^* -closed in Y which shows that f is almost πgN^* -closed.

5. Preservation Theorem

5.1.Theorem. If $f : X \to Y$ is an almost πgN^* -continuous, rc-preserving injection and Y is quasi N*-normal then X is quasi N*-normal.

Proof. Let A and B be any disjoint π -closed sets of X. Since f is an rc-preserving injection, f(A) and f(B) are disjoint π -closed sets of Y. Since Y is quasi N*-normal, there exist disjoint N*-open sets U and V of Y such that $f(A) \subset U$ and $f(B) \subset V$. Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are regularly open sets such that $f(A) \subset G$ and $f(B) \subset H$. Since f is almost πgN^* -continuous, f⁻¹ (G) and f⁻¹(H) are disjoint πgN^* -open sets containing A and B which shows that X is quasi N*-normal.

5.2.Theorem. If $f: X \rightarrow Y$ is π -continuous, almost N*-closed surjection and X is quasi N*-normal space then Y is N*-normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets of X. Since X is quasi N*-normal, there exist disjoint N*-open sets of U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Let G = int(cl(V)) and H = int(cl(V)). Then G and H are disjoint regularly open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Set K = Y - f(X - G) and L = Y - f(X - H). Then K and L are N*-open sets of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$, $f^{-1}(L) \subset H$. Since G and H are disjoint, K and L are disjoint. Since K and L are N*-open and we obtain $A \subset N*int(K)$, $B \subset N*-int(L)$ and $N*-int(K) \cap N*-int(L) = \phi$. Therefore Y is N*-normal.

5.3.Theorem. Let $f : X \rightarrow Y$ be an almost π -continuous and almost π gN*-closed surjection. If X is quasi N*-normal space then Y is quasi N*-normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π -continuous, $f^{-1}(A)$, $f^{-1}(B)$ are disjoint closed subsets of X. Since X is quasi N*-normal, there exist disjoint N*-open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Put G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regularly open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By **Theorem 4.5**, there exist πgN^* -open sets K and L of Y such that $A \subset K$, B $\subset L$, $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so are K and L by **Theorem 2.14**, $A \subset N^*int(K)$, $B \subset N^*-int(L)$ and $N^*-int(K) \cap N^*-int(L) = \phi$. Therefore, Y is quasi N*-normal.

5.3.Corollary. If $f: X \to Y$ is almost continuous and almost closed surjection and X is a normal space, then Y is quasi N*-normal.

Proof. Since every almost closed function is almost πgN^* -closed so Y is quasi N*-normal.

REFERENCES

- 1. Arockiarani and C. Janaki, πgα-closed sets and quasi α-normal spaces, *Acta Ciencia Indica*, Vol. XXXIII M. No. 2, (2007), 657-666.
- J. Dontchev and T. Noiri, Quasi-normal spaces and πg-closed sets, *Acta Math. Hungar.* 89(3)(2000), 211-219.
- 3. V. Jeyanthi and C. Janaki, Quasi r-normal spaces, *Scholar J. of Physics, Math. and Stat.* 1(2) (2014),108-110.
- N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* 19(1970),89-96.
- 5. H. Maki, R. Devi and Balachandran K., Generalized α-closed sets in topology, *Bull. Fukuoka Univ. ed. Part* III **42** (1993), 13-21.
- 6. G.Navalagi,Properties of N*-and *N-closed sets in topology, Internat. J.of Innovative Res.in Sci.,Engg.and Tech.(2020),6485-6496.
- 7. T. Noiri, Mildly normal spaces and some functions. *Kyungpook Math. J.*36(1996),183 190.
- 8. Njastad, O.,On some class of nearly open sets, *Pacific. J. Math.*, **15**(1965), 961-970.
- 9.M. K. Singal and A. R. Singal, Almost continuous mappings, *Yokohama Math. J.* **16**(1968), 63-73.
- M.H. Stone, Applications of the theory of Boolean rings to general topology, *Trans. Amer. Math. Soc.* 41 (1937), 375-381.
- 11.Zaitsev V., On certain classes of topological spaces and their biocompactifications, *Dokl Akad Nauk SSSR* 178(1968), 778-779.