ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Algebra of *α* - Fuzzy Subgroup and Lagrange's Theorem

R.K. Verma¹, Rakesh Tiwari², Pratik Singh Thakur³

¹Department of Mathematics, Govt. Chandulal Chandrakar Arts and Science College, Patan, Dist.- Durg (C.G.) India 491111, ^{2,3}Department of Mathematics, Govt. V.Y.T. PG Autonomous College, Durg (C.G.) India 491001.

Abstract

In this paper, we use the concept of α – fuzzy subgroup and introduces Lagrange's theorem for the α – fuzzy subgroup, order of an element in the α – fuzzy subgroup, and order of the α – fuzzy subgroup. Defined the intersection of α – fuzzy subgroups on different domain.

MSC(2020) : Primary 20N25; Secondary 03E72.

Keywords : fuzzy subgroup, fuzzy sets, $\alpha - fuzzy subgroup, fuzzy Lagrange's theorem.$

1 Introduction

L.A. Zadeh used the term fuzzy set in 1965[8]. He introduced basic set operations, namely the union of fuzzy sets, the intersection of fuzzy sets, and the complement of a fuzzy set. In 1971[6], Rosenfeld used the concept of the fuzzy set given by Zadeh to develop the theory of fuzzy group and basic properties of a fuzzy group. In 1979[2], Anthony and Sherwood redefined the concept given by Rosenfeld. In 1981[4], P.S. Das proposed level fuzzy subset and level fuzzy subgroup. In 1992[3], Bhakat and Das used the concept of fuzzy subgroup and defined fuzzy cosets. In 1994[5], J. Kim and D. Kim introduced the notion of fuzzy p * subgroups and defined the order of an element in a fuzzy subgroup. In 2009[1], Abraham and Sebastian fuzzify the famous theorems of Cayley and Lagrange in group theory differently. In 2013[7], Sharma defined the $\alpha -$ fuzzy subgroup.

We defined the order of the α – fuzzy subgroup by using the order of fuzzy subgroup given by J.kim in [5]. Lagrange's theorem for α – fuzzy subgroup is defined using concept of Abraham and Sebastian in [1].

2 Preliminaries

Definition 2.1 (fuzzy set) [8] Let X be any set, then a fuzzy set \tilde{A} of X is a set of ordered pairs:

 $\tilde{A} = \{(x, \mu_{\tilde{A}}(x) \colon x \in X\}$

here $\mu_{\tilde{A}}: X \longrightarrow [0,1]$ is called membership function.

Let \tilde{A} and \tilde{B} be two fuzzy subsets of a set X. Then the following expression are defined in

- 1. $\tilde{A} \subseteq \tilde{B}$ if and only if $\mu_{\tilde{A}}(x) \le \mu_{\tilde{A}}(x), \forall x \in X$
- 2. $\tilde{A} = \tilde{B}$ if and only if $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$
- 3. The complement of the fuzzy set \tilde{A} is \tilde{A}^c and is defined as $\mu_{\tilde{A}^c}(x) = 1 \mu_{\tilde{A}}(x)$
- 4. $\mu_{\tilde{A}\cap\tilde{B}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall x \in X$
- 5. $\mu_{\tilde{A}\cup\tilde{B}}(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall x \in X$

www.ijcrt.org

Definition 2.2 (fuzzy subgroup) [6] Let G be any group. \tilde{A} is a fuzzy set of G, then \tilde{A} is called fuzzy subgroup (FSG) of G if

1. $\mu_{\tilde{A}}(xy) \ge \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)\} \forall x, y \in G$ 2. $\mu_{\tilde{A}}(x^{-1}) \ge \mu_{\tilde{A}}(x) \forall x \in G$

2. $\mu_{\tilde{A}}(x^{-1}) \ge \mu_{\tilde{A}}(x), \forall x \in G$

Proposition 2.3 A fuzzy set \tilde{A} of a group G is a FSG if and only if $\mu_{\tilde{A}}(xy^{-1}) \ge min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(y)\}, \forall x, y \in G$

Proposition 2.4 If \tilde{A} is a FSG of group G, then

- 1. $\mu_{\tilde{A}}(x) \leq \mu_{\tilde{A}}(e), \forall x \in G$, where *e* is the identity element of group *G*
- 2. $\mu_{\tilde{A}}(xy^{-1}) = \mu_{\tilde{A}}(e) \Rightarrow \mu_{\tilde{A}}(x) = \mu_{\tilde{A}}(y), \forall x, y \in G$

Definition 2.5 (left fuzzy coset) [3] Let \tilde{A} is a FSG of group G. For any $x \in G$, the fuzzy set $x\tilde{A}$ defined by $\mu_{x\tilde{A}}(y) = \mu_{\tilde{A}}(x^{-1}y) \quad \forall y \in G$ is called a left fuzzy coset of \tilde{A} .

Definition 2.6 (right fuzzy coset) [3] Let \tilde{A} is a FSG of group G. For any $x \in G$, the fuzzy set $\tilde{A}x$ defined by $\mu_{\tilde{A}x}(y) = \mu_{\tilde{A}}(yx^{-1}) \quad \forall y \in G$ is called a right fuzzy coset of \tilde{A} .

Definition 2.7 (fuzzy normal subgroup) [6] If \tilde{A} is a FSG of group G, then \tilde{A} is called a fuzzy normal subgroup (FNSG) of G if

$$\mu_{\tilde{A}}(xyx^{-1}) \ge \mu_{\tilde{A}}(y) \quad \forall \quad x, y \in G$$

Definition 2.8 (t- level subset) [4] Let \tilde{A} be a fuzzy set of a group G. For $t \in [0,1]$, the t-level subset of \tilde{A} is the set

$$t_{\tilde{A}} = \{ x \in G \colon \mu_{\tilde{A}}(x) \ge t \}.$$

Definition 2.9 (t- level subgroup) [4] Let \tilde{A} be a FSG of group G. For $t \in [0,1]$ with $t \leq \mu_{\tilde{A}}(e)$ the subgroup $t_{\tilde{A}}$ of G is called t - level subgroup of \tilde{A} .

Definition 2.10 (α – **Fuzzy Subset)** Let A be a fuzzy subset of a group G. Let $\alpha \in [0,1]$. Then the fuzzy set \tilde{A}^{α} of G is called the α – fuzzy subset of G (with respect to fuzzy set \tilde{A}) and is defined as $\mu_{\tilde{A}^{\alpha}}(x) = \min\{\mu_{\tilde{A}}(x), \alpha\}, \forall x \in G$

Definition 2.11 (α – **Fuzzy Subgroup)** If \tilde{A} is a α – fuzzy subset of group G. \tilde{A} is called α – fuzzy subgroup (α – FSG) of G if \tilde{A}^{α} is a fuzzy subgroup of G. i.e. if the following conditions hold

- 1. $\mu_{\tilde{A}^{\alpha}}(xy) \ge \min\{\mu_{\tilde{A}^{\alpha}}(x), \mu_{\tilde{A}^{\alpha}}(y)\}, \forall x, y \in G$
- 2. $\mu_{\tilde{A}^{\alpha}}(x^{-1}) = \mu_{\tilde{A}^{\alpha}}(x), \forall x \in G.$

Definition 2.12 (fuzzy order of an element) [5] Let \tilde{A} be a fuzzy subgroup of a group G. Given $x \in G$, the smallest positive integer n such that $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e)$ is called the fuzzy order of x with respect to \tilde{A} . If no such n exists, x is said to have infinite fuzzy order with respect to \tilde{A} . The fuzzy order of x with respect to \tilde{A} is denoted by $FO_{\tilde{A}}(x)$.

Definition 2.13 (order of a fuzzy subgroup) [5] Let \tilde{A} be a fuzzy subgroup of a group G. The least positive integer n such that $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e), \forall x \in G$, is called the order of \tilde{A} and denoted by $O(\tilde{A})$. If no such n exists, \tilde{A} is said to have an infinite order.

Theorem 2.14 (Lagrange's theorem for fuzzy subgroups) [1] Let H be a subgroup of a group G and let n be the order of a fuzzy subgroup \tilde{A} of G. then $O(\tilde{A}|_{H})|O(\tilde{A})$.

www.ijcrt.org

Proof. $O(\tilde{A}) = n$. Then $\mu_{\tilde{A}}(x^n) = \mu_{\tilde{A}}(e), \forall x \in G$. Now $\mu_{\tilde{A}|_H}(x) = \mu_{\tilde{A}}(x), \forall x \in H$ $\Rightarrow O(\tilde{A}|_H) \leq O(\tilde{A})$. If $O(\tilde{A}|_H) = n$, then $O(\tilde{A}|_H)|O(\tilde{A})$. If $O(\tilde{A}|_H) < n$, let $O(\tilde{A}|_H) = m$. Then $\mu_{\tilde{A}|_H}(x^m) = \mu_{\tilde{A}|_H}(e), \forall x \in H$ $\Rightarrow \mu_{\tilde{A}}(x^m) = \mu_{\tilde{A}}(e), \forall x \in H$ $\Rightarrow m|n, i. e. O(\mu_{\tilde{A}|_H})|O(\mu_{\tilde{A}})$.

3 Lagrange's theorem for α – fuzzy subgroups

Definition 3.1 (α – fuzzy order of an element) Let \tilde{A} be a fuzzy subset of a group G. Let $\alpha \in [0,1]$ such that \tilde{A}^{α} is a α – FSG of G with respect to \tilde{A} . Given $x \in G$, the smallest positive integer n such that $\mu_{\tilde{A}^{\alpha}}(x^n) = \mu_{\tilde{A}^{\alpha}}(e)$ is called the α – fuzzy order of x with respect to \tilde{A} . if no such n exists, x is said to have infinite α – fuzzy order with respect to \tilde{A} . The α – fuzzy order of x with respect to \tilde{A} is denoted by $FO_{\tilde{A}^{\alpha}}(x)$.

Definition 3.2 (order of a α – **fuzzy subgroup)** Let \tilde{A} be a fuzzy subset of a group G. Let $\alpha \in [0,1]$ such that \tilde{A}^{α} is a α – FSG of G with respect to \tilde{A} . The least positive integer n such that $\mu_{\tilde{A}^{\alpha}}(x^{n}) = \mu_{\tilde{A}^{\alpha}}(e), \forall x \in G$, is called the order of \tilde{A}^{α} with respect to \tilde{A} and denoted by $O(\tilde{A}^{\alpha})$. If no such n exists, \tilde{A}^{α} is said to have an infinite order.

Some Results :

- 1. If \tilde{A} be a α FSG of a group G and H be a subgroup of G, then $\tilde{A}|_{H}$ is a
- α FSG of *H*.
- 2. If \tilde{A} is a FSG of a group G, then \tilde{A} is also a α FSG of G.
- 3. Intersection of two α FSG's of a group G is also α FSG of G.
- 4. If \tilde{A} and \tilde{B} be two fuzzy subset of X. Then

 $(\tilde{A} \cap \tilde{B})^{\alpha} = \tilde{A}^{\alpha} \cap \tilde{B}^{\alpha}$

Theorem 3.3 Let *H* be a subgroup of a group *G* and let *n* be the order of a α – fuzzy subgroup \tilde{A} of *G*. then $O(\tilde{A}^{\alpha}|_{H})|O(\tilde{A}^{\alpha})$.

Proof. $O(\tilde{A}^{\alpha}) = n$. Then $\mu_{\tilde{A}^{\alpha}}(x^{n}) = \mu_{\tilde{A}^{\alpha}}(e), \forall x \in G$. Now $\mu_{\tilde{A}^{\alpha}|_{H}}(x) = \mu_{\tilde{A}^{\alpha}}(x), \forall x \in H$ $\Rightarrow O(\tilde{A}^{\alpha}|_{H}) \leq O(\tilde{A}^{\alpha})$. If $O(\tilde{A}^{\alpha}|_{H}) = n$, then $O(\tilde{A}^{\alpha}|_{H})|O(\tilde{A})$. If $O(\tilde{A}^{\alpha}|_{H}) < n$, let $O(\tilde{A}^{\alpha}|_{H}) = m$. Then $\mu_{\tilde{A}^{\alpha}|_{H}}(x^{m}) = \mu_{\tilde{A}^{\alpha}|_{H}}(e), \forall x \in H$ $\Rightarrow \mu_{\tilde{A}^{\alpha}}(x^{m}) = \mu_{\tilde{A}^{\alpha}}(e), \forall x \in H$ $\Rightarrow m|n, i. e. O(\mu_{\tilde{A}^{\alpha}|_{H}})|O(\mu_{\tilde{A}^{\alpha}}).$

4 some results on α fuzzy subgroup

Theorem 4.1 Let \tilde{A} be a FSG of a group G. For $\alpha \in [0,1]$ with $\mu_{\tilde{A}}(e) \leq \alpha$, $\tilde{A}^{\alpha} = \tilde{A}$

Proof. For $\alpha \in [0,1]$ and $\mu_{\tilde{A}}(e) \leq \alpha$. Since \tilde{A} is a FSG, therefore $\mu_{\tilde{A}}(xy) \geq \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(y)\}$ and $\mu_{\tilde{A}}(x^{-1}) \geq \mu_{\tilde{A}}(x)$ for all $x, y \in G$. Now for any $x \in G$ $\mu_{\tilde{A}}(xx^{-1}) \geq \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{A}}(x^{-1})\}$ $\Rightarrow \mu_{\tilde{A}}(e) \geq \mu_{\tilde{A}}(x)$ Thus

Thus

(4)

(5)

$$\begin{split} & \mu_{\tilde{A}}(x) \leq \mu_{\tilde{A}}(e) \ \forall \ x \in G \\ \Rightarrow & \mu_{\tilde{A}}(x) \leq \alpha \ \forall \ x \in G \\ \text{Now for any } x \in G \\ & \mu_{\tilde{A}^{\alpha}}(x) = \min\{\mu_{\tilde{A}}(x), \alpha\} \\ \Rightarrow & \mu_{\tilde{A}^{\alpha}}(x) = \mu_{\tilde{A}}(x) \\ \text{therefore } & \mu_{\tilde{A}^{\alpha}}(x) = \mu_{\tilde{A}}(x) \ \forall \ x \in G. \text{ Thus} \\ & \tilde{A}^{\alpha} = \tilde{A} \end{split}$$
(3)

Corollary 4.2 Let \tilde{A} be a FSG of a group G. For $\alpha \in [0,1]$ with $\mu_{\tilde{A}}(e) \leq \alpha$, $O(\tilde{A}^{\alpha}) = O(\tilde{A})$.

Corollary 4.3 Let \tilde{A} be a FSG of a group G. For any $x \in G$ and $\alpha \in [0,1]$ with $\mu_{\tilde{A}}(e) \leq \alpha$, $FO_{\tilde{A}^{\alpha}}(x) = FO_{\tilde{A}}(x)$.

5 α – fuzzy subgroup on different domain

Definition 5.1 Let \tilde{A} and \tilde{B} are fuzzy set of any set X and Y respectively. If $X \cap Y \neq \phi$, then $\tilde{A} \cap \tilde{B}$ is a fuzzy set of $X \cap Y$.

Here $\mu_{\tilde{A}\cap\tilde{B}}(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}, \forall x \in X \cap Y$

Theorem 5.2 Let G be any group. H and K are subgroups of G such that $H \cap K \neq 0$. If for $\alpha \in [0,1]$, \tilde{A} and \tilde{B} are the α – fuzzy subgroup of H and K respectively, then $\tilde{A} \cap \tilde{B}$ is a α – fuzzy subgroup of $X \cap Y$.

Proof. For any $x, y \in X \cap Y$

 $\mu_{(\tilde{A}\cap\tilde{B})^{\alpha}}(xy) \geq \min\{\mu_{(\tilde{A}\cap\tilde{B})^{\alpha}}(x), \mu_{(\tilde{A}\cap\tilde{B})^{\alpha}}(y)\}$

and

 $\mu_{(\tilde{A}\cap\tilde{B})^{\alpha}}(x^{-1}) \geq \mu_{(\tilde{A}\cap\tilde{B})^{\alpha}}(x)$

Hence $\tilde{A} \cap \tilde{B}$ is a α – FSG of $H \cap K$.

6 Conclusion

In this paper, we have introduced the concept of order of the α -fuzzy subgroup, and Lagrange's theorem for α – fuzzy subgroup. Concept of the intersection of two α – fuzzy subgroup defined on different domain is discussed.

Further work is based on the intersection of α – fuzzy set in different domain.

References

[1] Thampy Abraham and Souriar Sebastian. Fuzzification of cayley's and lagrange's theorems. *Journal of Computer and Mathematical Sciences*, 1(1):41–46, 2009. http://compmath-journal.org/dnload/Thampy-Abraham-and-Souriar-Sebastian/CMJV01I01P0041.pdf

[2] J.M Anthony and H Sherwood. Fuzzy groups redefined. *Journal of Mathematical Analysis and Applications*, 69(1):124–130, 1979. https://doi.org/10.1016/0022-247X(79)90182-3

[3] S.K. Bhakat and P. Das. On the definition of a fuzzy subgroup. *Fuzzy Sets and Systems*, 51(2):235–241, 1992. https://doi.org/10.1016/0165-0114(92)90196-B

[4] P.Sivaramakrishna Das. Fuzzy groups and level subgroups. *Journal of Math- ematical Analysis and Applications*, 84(1):264–269, 1981. https://doi.org/10.1016/0022-247X(81)90164-5

[5] Jae-Gyeom Kim and Han-Doo Kim. A characterization of fuzzy subgroups of some abelian groups. *Information Sciences*, 80(3):243–252, 1994. https://doi.org/10.1016/0020-0255(94)90078-7

[6] Azriel Rosenfeld. Fuzzy groups. *Journal of Mathematical Analysis and Applications*, 35(3):512–517, 1971. https://doi.org/10.1016/0022-247X(71)90199-5

[7] P.K. Sharma. α - fuzzy subgroups. *International Journal of Fuzzy Mathematics and Systems*, 3(1):47–59, 2013. https://www.ripublication.com/ijfms/ijfmsv3n1_05.pdf

[8] L.A. Zadeh. Fuzzy sets. *Information and Control*, 8(3):338–353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X

