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1. Introduction 

Normality is an important topological property and hence it is of significance both from intrinsic interest as well as from applications 

view point to obtain factorizations of normality in terms of weaker topological properties. In 1937, Stone [15] introduced the notion of 

regular open sets. In 1963, Levine [9] introduced the concept of semi-open sets. In 1965, Njastad [13] introduced the concept of -

open sets. In 1970, Levine [10] initiated the study of generalized closed (briefly g-closed) sets. In 1973, Carnahan [5] introduced the 

concept of R-map. In 1974, Arya and Gupta [1] introduced the notion of completely continuity. In 1978, Maheshwari and Prasad [11] 

introduced the notion of s-normal spaces and obtained their characterizations. In 1990, Arya and Nour [2] introduced the concept of 

gs-closed sets. In 1994, Maki et al. [12] introduced the notion of g-closed and g-closed sets. In 2009, Benchalli and Patil [3] 

introduced the contept of -normal spaces and obtained their characterizations. In 2019, Subbulakshmi, Sumathi and Indirani [16, 17, 

18] introduced and investigated the notion of -open and gη-closed sets. In 2019, Kumar, Singh and Kumar [7] introduced the 

concepts of *g-normal spaces and obtained properties of *g-normal spaces. In 2021, Kumar and Sharma [8] introduced the 

concepts of -separation axioms in topological spaces and obtained some properties of -separation axioms. 

2. Preliminaries 

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and f : 

(X,  )  (Y, σ) (or simply f : X  Y ) denotes a function f of a space (X,  ) into a space (Y, σ). Let A be a subset of a space X. The 

closure and the interior of A are denoted by cl(A) and int(A), respectively.  

2.1 Definition. A subset A of a space X is said to be:  

(1) regular open [15] if A = int(cl(A)). 

(2) regular closed [15] if A = cl(int(A)). 

(3) s-open [9] if A  cl(int(A)).  

(4) α-open [13] if A  int(cl(int(A))).  

(5) -open [16] if A  int(cl(int(A))) ∪ cl(int(A)).  
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The complement of a s-open (resp. -open, -open) set is called s-closed (resp. -closed, -closed).  

The intersection of all s-closed (resp. -closed, -closed) sets containing A is called the s-closure (resp. -closure, -closure) of A 

and is denoted by s-cl(A) (resp. -cl(A), -cl(A)). The -interior of A, denoted by -int(A) is defined to be the union of all -open  

sets contained in A. 

The family of all -open (resp. -closed, regular open, regular closed, s-open, s-closed, -open, -closed) sets of a space X is denoted 

by -O(X) (resp. -C(X), R-O(X), R-C(X), S-O(X), S-C(X), -O(X), -C(X)).  

2.2 Definition. A subset A of a space (X, ) is said to be  

(1) g-closed [10] if cl(A)  U whenever A  U and U ∈ . 

(2) gs-closed [2] if s-cl(A)  U whenever A  U and U  . 

(3) sg-closed [4] if s-cl(A)  U whenever A  U and U  S-O(X). 

(4) g-closed [12] if -cl(A)  U whenever A  U and U  . 

(5) g-closed [12] if -cl(A)  U whenever A  U and U  -O(X). 

(6) g-closed [17] if -cl(A)  U whenever A  U and U  . 

(7) g-closed if -cl(A)  U whenever A  U and U  -O(X). 

 

The complement of g-closed (resp. gs-closed, sg-closed, g-closed, g-closed, g-closed, g-closed) set is said to be g-open (resp. 

gs-open, sg-open, g-open, g-open, g-open, g-open).  

2.3 Remark. We have the following implications for the properties of subsets: 

                                                        closed                                             g-closed                                                    

                                                                                        

            -closed          g-closed             g-closed 

                                                                                                                                                                                                                                         

                                                      s-closed           sg-closed               gs-closed                                                                                                                                                                                               

                                                                                                                                        

                                                     -closed          g-closed            g-closed                                                         

Where none of the implications is reversible as can be seen from the following examples: 

2.4 Example. Let X = {a, b, c, d} and  = {, {b, d}, {a, b, d}, {b, c, d}, X}. Then  

(1) closed sets in (X, ) are , X, {a}, {c}, {a, c}.  

(2) g-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}. 

(3) s-closed sets in (X, ) are , X, {a}, {c}, {a, c}.  

(4) gs-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}. 

(5) sg-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}. 

(6) -closed sets in (X, ) are , X, {a}, {c}, {a, c}.  

(7) g-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}.  

(8) g-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}. 

(9) -closed sets in (X, ) are , X, {a}, {c}, {a, c}.  

(10) g-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.  

(11) g-closed sets in (X, ) are , X, {a}, {c}, {a, c}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. 

 

2.5 Example. Let X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, {a, c}, {a, b, c}, X}. Then  

(1) closed sets in (X, ) are , X, {d}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  

(2) g-closed sets in (X, ) are , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.  

(3) s-closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  

(4) gs-closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.  

(5) sg-closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  

(6) -closed sets in (X, ) are , X, {c}, {d}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  

(7) g-closed sets in (X, ) are , X, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.  

(8) g-closed sets in (X, ) are , X, {c}, {d}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  
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(9) -closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.  

(10) g-closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.  

(11) g-closed sets in (X, ) are , X, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}. 

  

 

 

3. -normal Spaces 

 

3.1 Definition. A space X is said to be -normal if for any pair of disjoint closed sets A and B, there exist disjoint -open sets U and 

V such that A  U and B  V. 

 

3.2 Definition. A space X is said to be -normal [3] (resp. s-normal [11], *g-normal [11]) if for any pair of disjoint closed sets A 

and B, there exist disjoint -open (resp. s-open, *g-open) sets U and V such that A  U and B  V.  

 

3.3 Remark. The following diagram holds for a topological space (X, ): 

  

                 normal           *g-normal         -normal         s-normal       -normal 

 

 None of these implications is reversible as shown by the following examples.  

 

3.4 Example. Let X = {a, b, c} and  = {, {a}, {b, c}, X}. Then the space (X, ) is normal as well as -normal.  

 

3.5 Example. Let X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}. Let A = {c} and B = {d} be disjoint closed 

sets, there exist disjoint s-open sets U = {a, c} and V = {b, d} such that A  U and B  V. Then the space (X, ) is s-normal as well 

as -normal, since every s-open set is -open. But it is neither normal nor -normal, because U and V are neither open nor -open 

sets.  

 

3.6 Example. Let X = {a, b, c, d} and  = {, {a}, {c}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, d}, {b, c, d}, X}. Let A = {a} and B = {c} 

be disjoint closed sets, there exist disjoint open sets U = {a} and V = {c} such that A  U and B  V. Then the space (X, ) is normal 

as well as -normal, s-normal, -normal, since every open set is -open, s-open and -open.  

 

3.7 Example. Let X = {a, b, c, d} and  = {, {a}, {c], {a, c}, {b, c, d}, X}. Then the space (X, ) is normal as well as -normal, s-

normal, -normal, since every open set is -open, s-open and -open.  

 

3.8 Theorem. For a space X the following are equivalent:  

(1) X is -normal,  

(2) For every pair of open sets U and V whose union is X, there exist -closed sets A and B such that A  U, B  V and A ∪ B = X,  

(3) For every closed set H and every open set K containing H, there exists an -open set U such that H  U  -cl(U)  K.  

 

Proof. (1)  (2) : Let U and V be a pair of open sets in an -normal space X such that X = U ∪ V . Then X − U, X − V are disjoint 

closed sets. Since X is -normal, there exist disjoint -open sets U1 and V1 such that X − U  U1 and X − V  V1. Let A = X − U1, B 

= X − V1. Then A and B are -closed sets such that A  U, B  V and A ∪ B = X.  

 

(2)  (3) : Let H be a closed set and K be an open set containing H. Then X − H and K are open sets whose union is X. Then by (2), 

there exist -closed sets M1 and M2 such that M1  X − H and M2  K and M1 ∪ M2 = X. Then H  X −  M1, X −  K  X − M2 and 

(X − M1) ∩ (X − M2) = . Let U = X − M1 and V = X − M2. Then U and V are disjoint -open sets such that H  U  X − V  K. As 

X − V is -closed set, we have -cl(U)  X − V and H  U  -cl(U)  K.  

 

(3)  (1) : Let H1 and H2 be any two disjoint closed sets of X. Put K = X − H2, then H2 ∩ K = . H1  K, where K is an open set. 

Then by (3), there exists an -open set U of X such that H1  U  -cl(U)  K. It follows that H2  X − -cl(U) = V , say, then V is 

-open and U ∩ V = . Hence H1 and H2 are separated by -open sets U and V. Therefore X is -normal.  

 

 

4. -normal Spaces with Some Related Functions 

 

4.1 Definition . A function f : X  Y is called  

(1) R-map [5] if f −1(V) is regular open in X for every regular open set V of Y ,  

(2) completely continuous [1] if f −1(V) is regular open in X for every open set V of Y ,  

(3) rc-continuous [6] if for each regular closed set F in Y, f −1(F) is regular closed in X.  
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4.2 Definition . A function f : X  Y is called  

(1) strongly -open if f(U)  -O(Y) for each U  -O(X),  

(2) strongly -closed if f(U)  -C(Y) for each U  -C(X),  

(3) almost -irresolute if for each x in X and each -neighbourhood V of f(x), -cl(f −1(V)) is a -neighbourhood of x.  

 

4.3 Theorem . A function f : X  Y is strongly -closed if and only if for each subset A in Y and for each -open set U in X 

containing f −1(A), there exists an -open set V containing A such that f −1(V)  U. 

 Proof. () : Suppose that f is strongly -closed. Let A be a subset of Y and U  -O(X) containing f −1(A). Put V = Y − f(X − U), 

then V is an -open set of Y such that A  V and f −1(V)  U. 

 

() : Let K be any -closed set of X. Then f −1(Y − f(K)) ⊂ X − K and X − K  -O(X). There exists an -open set V of Y such that 

Y − f(K)  V and f −1(V)  X − K. Therefore, we have f(K)  Y − V and K  f −1(Y − V). Hence, we obtain f(K) = Y − V and f(K) is 

-closed in Y . This shows that f is strongly -closed.  

 

4.4 Lemma. For a function f : X  Y , the following are equivalent:  

(1) f is almost -irresolute,  

(2) f −1(V)  -int(-cl(f −1 (V))) for every V  -O(Y).  

 

4.5 Theorem. A function f : X  Y is almost -irresolute if and only if f(-cl(U))  -cl(f(U)) for every U  -O(X).  

 

Proof. () : Let U ∈ -O(X). Suppose y  -cl(f(U)). Then there exists V ∈ -O(Y) such that V ∩ f(U) = . Hence, f −1(V) ∩ U = . 

Since U  -O(X), we have -int(-cl(f −1(V))) ∩ -cl(U) = . Then by Lemma 4.4, f −1 (V) ∩ -cl(U) =  and hence V ∩ f(-cl(U)) 

= . This implies that y  f(-cl(U)).  

 

() : If V  -O(Y), then M = X − -cl(f −1(V))  -O(X). By hypothesis, f(-cl(M)) ⊂ -cl(f(M)) and hence X −  -int(-cl(f 
−1(V))) = -cl(M)  f −1(-cl(f(M)))  f −1(-cl(f(X − f −1(V))))  f −1(-cl(Y − V)) = f −1 (Y − V) = X − f −1(V). Therefore, f −1(V)  

-int(-cl(f −1(V))). By Lemma 4.4, f is almost -irresolute.  

 

4.6 Theorem. If f : X  Y is a strongly -open continuous almost -irresolute function from a -normal space X onto a space Y, 

then Y is -normal.  

 

Proof. Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f −1(A) is closed and f −1 (B) is an 

open set of X such that f −1(A)  f −1(B). As X is -normal, there exists an -open set U in X such that f −1(A)  U  -cl(U)  f 
−1(B) by Theorem 3.8. Then, f(f −1(A))  f(U)  f(-cl(U))  f(f −1(B)). Since f is strongly -open almost -irresolute surjection, we 

obtain A  f(U)  -cl(f(U))  B. Then again by Theorem 3.8, the space Y is -normal.  

 

4.7 Theorem. If f : X  Y is an strongly -closed continuous function from an -normal space X onto a space Y , then Y is -

normal.  

 

Proof. Let M1 and M2 be disjoint closed sets. Then f −1(M1) and f −1(M2) are closed sets. Since X is -normal, then there exist disjoint 

-open sets U and V such that f −1(M1)  U and f −1(M2)  V. By Theorem 4.3, there exist -open sets A and B such that M1  A, M2 

 B, f −1(A)  U and f −1(B)  V. Also, A and B are disjoint. Thus, Y is -normal.  

 

5. -generalized Closed Functions 

 

5.1 Definition. A function f : X  Y is said to be  

(1) -closed [8] if f(A) is -closed in Y for each closed set A of X,  

(2) g-closed if f(A) is g-closed in Y for each closed set A of X,  

(3) g-closed [18] if f(A) is g-closed in Y for each closed set A of X.  

 

5.2 Definition. A function f : X  Y is said to be  

(1) quasi -closed if f(A) is closed in Y for each A  -C(X),  

(2) -g-closed if f(A) is g-closed in Y for each A  -C(X),  

(3) -g-closed if f(A) is g-closed in Y for each A  -C(X),  

(4) almost g-closed if f(A) is g-closed in Y for each A  R-C(X).  

 

5.3 Definition. A function f : X  Y is said to be -g-continuous if f −1(K) is g-closed in X for every K  -C(Y).  

 

5.4 Definition. A function f : X  Y is said to be -irresolute [8] if f −1(V)  -O(X) for every V  -O(Y).  

 

5.5 Theorem. Let f : X  Y and g : Y  Z be functions. Then  
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(1) the composition gof : X  Z is -g-closed if f is -g-closed and g is continuous -g-closed.  

(2) the composition gof : X  Z is -g-closed if f is strongly -closed and g is -g-closed.  

(3) the composition gof : X  Z is -g-closed if f is quasi -closed and g is g-closed. 

 

5.6 Theorem. Let f : X  Y and g : Y  Z be functions and let the composition gof : X  Z be -g-closed. If f is a -irresolute 

surjection, then g is -g-closed.  

 

Proof. Let K  -C(Y). Since f is -irresolute and surjective, f −1(K)  -C(X) and (gof)( f −1(K)) = g(K). Hence, g(K) is g-closed 

in Z and hence g is -g-closed.  

 

5.7 Lemma. A function f : X  Y is -g-closed if and only if for each subset B of Y and each U  -O(X) containing f −1(B), there 

exists a g-open set V of Y such that B  V and f −1(V)  U. 

 

Proof. () : Suppose that f is -g-closed. Let B be a subset of Y and U  -O(X) containing f −1(B). Put V = Y − f(X − U), then V 

is a g-open set of Y such that B  V and f −1(V)  U.  

 

() : Let K be any -closed set of X. Then f −1(Y − f(K))  X − K and X − K  -O(X). There exists a g-open set V of Y such that 

Y − f(K)  V and f −1(V )  X − K. Therefore, we have f(K)  Y − V and K  f −1(Y − V). Hence, we obtain f(K) = Y − V and f(K) 

is g-closed in Y . This shows that f is -g-closed.  

 

5.8 Theorem. If f : X  Y is continuous -g-closed, then f(H) is g-closed in Y for each g-closed set H of X.  

 

Proof. Let H be any g-closed set of X and V an open set of Y containing f(H). Since f −1(V) is an open set of X containing H, -

cl(H)  f −1(V) and hence f(-cl(H))  V . Since f is -g-closed and -cl(H)  -C(X), we have -cl(f(H))  -cl(f(-cl(H)))  V . 

Therefore, f(H) is g-closed in Y .  

 

5.9 Remark. Every -irresolute function is -g-continuous but not conversely.  

 

5.10 Theorem. A function f : X  Y is -g-continuous if and only if f −1(V) is g-open in X for every V  -O(Y).  

 

5.11 Theorem. If f : X  Y is closed -g-continuous, then f −1(K) is g-closed in X for each g-closed set K of Y .  

 

Proof. Let K be a g-closed set of Y and U an open set of X containing f −1(K). Put V = Y − f(X − U), then V is open in Y, K  V , 

and f −1(V)  U. Therefore, we have -cl(K)  V and hence f −1(K)  f −1(-cl(K))  f −1(V)  U. Since f is -g-continuous, f −1(-

cl(K)) is g-closed in X and hence -cl(f −1(K))  -cl(f −1(-cl(K)))  U. This shows that f −1(K) is g-closed in X.  

 

5.12 Corollary. If f : X  Y is closed -irresolute, then f −1(K) is g-closed in X for each g-closed set K of Y .  

 

5.13 Theorem. If f : X  Y is an open -g-continuous bijection, then f −1(K) is g-closed in X for every g-closed set K of Y .  

 

Proof. Let K be a g-closed set of Y and U an open set of X containing f −1(K). Since f is an open surjective, K = f(f −1 (K))  f(U) 

and f(U) is open. Therefore, -cl(K)  f(U). Since f is injective, f −1(K)  f −1(-cl(K))  f −1(f(U)) = U. Since f is -g-continuous, f 
−1(-cl(K)) is g-closed in X and hence -cl(f −1(K))  -cl(f −1(-cl(K)))  U. This shows that f −1(K) is g-closed in X.  

 

5.14 Theorem. Let f : X  Y and g : Y  Z be functions and let the composition gof : X  Z be -g-closed. If g is an open -g-

continuous bijection, then f is -g-closed.  

 

Proof. Let H  -C(X). Then (gof)(H) is g-closed in Z and g −1((gof)(H)) = f(H). By Theorem 5.13, f(H) is g-closed in Y and 

hence f is -g-closed.  

 

5.15 Theorem. Let f : X  Y and g : Y  Z be functions and let the composition gof : X  Z be -g-closed. If g is a closed -g-

continuous injection, then f is -g-closed.  

 

Proof. Let H  -C(X). Then (gof)(H) is g-closed in Z and g −1((gof)(H)) = f(H). By Theorem 5.11, f(H) is g-closed in Y and 

hence f is -g-closed.  
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6. Characterizations of -normal Spaces and Some Preservation Theorems  

 

6.1 Theorem. For a topological space X, the following are equivalent :  

(a) X is -normal,  

(b) for any pair of disjoint closed sets A and B of X, there exist disjoint g-open sets U and V of X such that A  U and B  V ,  

(c) for each closed set A and each open set B containing A, there exists a g-open set U such that cl(A)  U  -cl(U)  B,  

(d) for each closed A and each g-open set B containing A, there exists an -open set U such that A  U  -cl(U)  int(B),  

(e) for each closed A and each g-open set B containing A, there exists a g-open set G such that A  G  -cl(G)  int(B),  

(f ) for each g-closed set A and each open set B containing A, there exists an -open set U such that cl(A)  U  -cl(U)  B,  

(g) for each g-closed set A and each open set B containing A, there exists a g-open set G such that cl(A)  G  -cl(G)  B.  

 

Proof. (a)  (b)  (c) : Since every -open set is g-open, it is obvious.  

 

(d)  (e)  (c) and (f)  (g)  (c) : Since every closed (resp. open) set is g-closed (resp. g-open), it is obvious.  

 

(c)  (e) : Let A be a closed subset of X and B be a g-open set such that A  B. Since B is g-open and A is closed, A  int(A). Then, 

there exists a g-open set U such that A  U  -cl(U)  int(B).  

 

(e)  (d) : Let A be any closed subset of X and B be a g-open set containing A. Then there exists a g-open set G such that A ⊂ G ⊂ 

-cl(G) ⊂ int(B). Since G is g-open, A ⊂ -int(G). Put U = -int(G), then U is -open and A ⊂ U ⊂ -cl(U) ⊂ int(B).  

 

(c)  (g) : Let A be any g-closed subset of X and B be an open set such that A  B. Then cl(A)  B. Therefore, there exists a g-

open set U such that cl(A)  U  -cl(U)  B.  

 

(g)  (f) : Let A be any g-closed subset of X and B be an open set containing A. Then there exists a g-open set G such that cl(A)  

G  -cl(G)  B. Since G is g-open and cl(A)  G, we have cl(A)  -int(G), put U = -int(G), then U is -open and cl(A)  U  

-cl(U)  B.  

 

6.2 Theorem. If f : X  Y is a continuous quasi -closed surjection and X is -normal, then Y is normal.  

 

Proof. Let M1 and M2 be any disjoint closed sets of Y. Since f is continuous, f −1(M1) and f −1(M2) are disjoint closed sets of X. Since 

X is -normal, there exist disjoint U1, U2  -O(X) such that f −1(Mi)  Ui for i = 1, 2. Put Vi = Y − f(X − Ui), then Vi is open in Y, 

Mi  Vi and f −1(Vi)  Ui for i = 1, 2. Since U1 ∩ U2 =  and f  is surjective; we have V1 ∩ V2 = . This shows that Y is normal.  

 

6.3 Lemma [17]. A subset A of a space X is g-open if and only if F  -int(A) whenever F is closed and F  A.  

 

6.4 Theorem. Let f : X  Y be a closed -g-continuous injection. If Y is -normal, then X is -normal.  

 

Proof. Let N1 and N2 be disjoint closed sets of X, Since f is a closed injection, f(N1) and f(N2) are disjoint closed sets of Y. By the -

normality of Y, there exist disjoint V1, V2  -O(Y ) such that f(Ni)  Vi for i = 1, 2. Since f is -g-continuous, f −1(V1) and f −1(V2) 

are disjoint g-open sets of X and Ni  f −1(Vi) for i = 1, 2. Now, put Ui = -int(f −1(Vi)) for i = 1, 2. Then, Ui  -O(X), Ni  Ui and 

U1 ∩ U2 = . This shows that X is -normal.  

 

6.5 Corollary. If f : X  Y is a closed -irresolute injection and Y is -normal, then X is -normal.  

Proof. This is an immediate consequence since every -irresolute function is -g-continuous.  

 

6.6 Lemma. A function f : X → Y is almost g-closed if and only if for each subset B of Y and each U  R-O(X) containing f −1(B), 

there exists a g-open set V of Y such that B  V and f −1(V)  U.  

 

6.7 Lemma. If f : X  Y is almost g-closed, then for each closed set M of Y and each U  R-O(X) containing f −1(M), there exists 

V  -O(Y) such that M  V and f −1(V)  U.  

 

6.8 Theorem. Let f : X  Y be a continuous almost g-closed surjection. If X is normal, then Y is -normal.  

Proof. Let M1 and M2 be any disjoint, closed sets of Y. Since f  is continuous, f −1(M1) and f −1(M2) are disjoint closed sets of X. By 

the normality of X, there exist disjoint open sets U1 and U2 such that f −1(Mi)  Ui , where i = 1, 2. Now, put Gi = int(cl(Ui)) for i = 1, 

2, then Gi  R-O(X), f −1(Mi)  Ui  Gi and G1 ∩ G2 = . By Lemma 6.7, there exists Vi  -O(Y) such that Mi  Vi and f −1(Vi)  

Gi , where i = 1, 2. Since G1 ∩ G2 =  and f is surjective, we have V1 ∩ V2 = . This shows that Y is -normal.  

 

6.9 Corollary. If f : X  Y is a continuous -closed surjection and X is normal, then Y is -normal.  
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