
www.ijcrt.org                                                     ©  2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882 

IJCRT2201258 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c265 
 

Second Order Dual Minimax Fractional 

Programming Under Binvexity 
 

DR.G.VARALAKSHMI 

In charge Dept.of Statistics, PRR & VS Government Coleege, Vidavaluru 

 

Abstract:  In this paper, we derive  some theorems and duality theorems on Second Order DualMinimax 

Fractional Programming under binvexity 

Keywords:  Binvex functions and second order Duality. 

. Introduction 

 In this Chapter, we consider the following minimax fractional programming problem. 

(p) minimize i

y Y i

f (x, y)
(x) Sup

g (x, y)

   

s.t nh(x) 0 , x R   

where Y is a compact subset of , ( , ) : ,   l n lR f R R R  ( , ) :   n lg R R R  are twice 

continuously differentiable on  n lR R  and n mh ( , ) : R R    is twice continuously differentiable 

on Rn. It is assumed that for each (x, y) in ,n lR R  
if (x, y) 0  and 

ig (x, y) 0 .  
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 Since minimax fractional programming has wide applications, much attention has been paid 

optimality conditions and duality theorems for minimax fractional programming problems. For the 

case of convex differentiable minimax fractional programming, Yadav and Mukherjee [10] 

formulated two dual models for (p) and derived duality theorems. Chandra and Kumar [3] pointed 

out certain omissions in the dual formulation of Yadav and Mukherjee [9], they constructed two 

modified dual problems for minimiax fractional programming problem and proved duality results. 

Liu and Wu [5,6], and Yang and Hou [10] discussed optimality conditions and duality results for (p) 

involving generalized convexity assumptions. 

 Mangasarian [7] introduced the notation of second order duality for nonlinear programs by 

introducing an additional vector np R .  He has indicated a possible computational advantage of 

the second order dual over the first order dual. Instead of imposing explicit condition on p, Mond [8] 

included p in a second order type convexity. Bector et al  [2]  discussed second order duality results 

for minimax programming problems under generalized B-Convexity. Later on, Liu [4] extended these 

results involving second order generalized B-Convexity. Recently, Husain et al [3] have formulated 

two types of second order dual models for minimax fractional programming problems, and derived 

weak, strong and strict coverse duality theorems under binvex assumptions. 

 In this paper, two types of second order duality in minimax fractional programming are 

formulated by introducing an additional vector r. The weak, strong and converse duality theorems 

are proved for these programes under binvexity assumptions. Our result generalizes these existing 

dual formulations which were discussed by the authors in but they not consider this in binvexity. 

Hence in this Paper an attempt to made to full this gap in the aim of research by developing some 

theorems and duality theorems in second order duality for minimax fractional programming.  
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2. Preliminaries 

 Let  nS x R : h(x) 0    denote the set of all feasible solutions of (p). For each 

( , ) , n lx y R R  we define 

  jJ(x) j M 1, 2, : h (x) 0      

i i

Z Yi i

f (x, y) f (x, z)
Y(x) y Y : Sup ,

g (x, y) g (x, z)

 
   
 

 

and    ls s

s 1 2 sk(x) s, t, y N R XR : l s n 1, t t , t , ..... , t R ,

         

 
s

i 1 2 s i

t 1

t 1, y y , y , ....... , y ; y Y(x) , i 1, 2, ......... s


     

let nf : R R  be a twice differentiable function.  

 

Definition (1):  

Function f is said to be binvex at nx R , such that for all nx, p R ,  we have 

 
T 2 t 2i i i

i i i

f (x) f (x) 1 f (x)
p p (x x) f (x) f (x)p

g (x) g (x) 2 g (x)
          

Definition (2) : Function f is said to be strictly binvex at nx R  such that for all nx, p R ,  we have 

T 2 t 2i i i i i

i i i i i

f (x) f (x) 1 f (x) f (x) f (x)
p p (x x) p

g (x) g (x) 2 g (x) g (x) g (x)
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The following theorem will be needed in the proofs of strong duality theorems.  

Theorem (1) (Necessary Conditions).  Let x* be a solution of (p)  and let * *

jg (x ), j J(x )   be 

linearly independent. There exist  * * * *s , t , y k(x ),  * * mR and R      such that  

 
*s m

* * * * * * * *

i i i i i j j

i 1 j 1

t f (x , y ) g (x , y ) h (x ) 0
 

       

 * * * * * *

i i i i , sf (x , y ) g (x , y ) 0, i 1,2, ......     

m
* *

j j

j 1

h (x ) 0,


   

*s
* * * * *

i i i

i 1

t 0, t 1, y y(x ) , i 1,2,...... , s


     

3. First Duality Model 

 By utilizing the necessary optimality conditions of the previous section, we formulate the 

following second order dual to (p) as follows.  

1(z, , , r, p) H (s, t, y)(s, t, y) k(z)
(MD) max sup

  
  

where 
1H (s, t, y)  denotes the set of all n m n n(z, , , , p) R R R R R          

Satisfying    
s s

2

i i i i i i i i

i 1 i 1

t f (z, y ) gi (z, y ) t f (z, y ) gi (z, y ) p
 

      

m m
2

j j j j

j 1 j 1

g (z) g (z)p 0
 

           (1) 
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s s

i i i i i i i i

i 1 i 1

t f (z, y ) gi (z, y ) t f (z, y ) gi (z, y ) r
 

 
     

 
   

  
s

T 2

i i i i

i 1

1
p t f (z, y ) gi (z, y ) p 0

2 

       (2) 

m m m
T 2

j j j j j j

j 1 j 1 j 1

1
g (z) g (z) r p g (z)p 0

2  

 
        

 
     (3) 

 
s m

i i i i j j

i 1 j 1

t f (z, y ) gi (z, y ) r g (z) r 0
 

  
       
   
    (4) 

if, for a triplet (s, t, y) k(z),  the set 
1H (s, t, y) ,   then we define the supremum over it to be 

 . 

Theorem1 (Weak Duality): Let x and  z, , , s, t, y, r,p   be feasible solutions of (p) and (MD), 

respectively. Assume that  

(i)  
s

i i i i

i 1

t f , y gi ( , y )


   is -bonvex at z;  

(ii) 
m

j j

j 1

g ( )


  is -bonvex at z. 

Then i

y Y i

f (x, y)
sup

g (x, y)

   

Proof: by the feasibility of x for (p), 0   and (3), we get  

m m m m
T 2

j j j j j j j j

j 1 j 1 j 1 j 1

1
g (x) 0 g (z) g (z) r p g (z)p

2   
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The above inequality together with hypothesis (ii) implies  

m m m
2 t

j j j j j j

j 1 j 1 j 1

g (x) g (z) p (x z) g (z) r
  

   
          
   
    

From (9.3.1), (9.3.4) and (9.3.5), we have  

   
s s m

2 t

i i i i i i i i j j

i 1 i 1 j 1

t f (z, y ) gi (z, y ) t f (z, y ) gi (z, y ) p (x z) g (z) r
  

    
             
     
    

 
s

i i i i

i 1

t f (z, y ) gi (z, y ) r


 
   
 
  

which in view of hypothesis (i) and (2) fields  

   
s s

i i i i i i i i

i 1 i 1

t f (x, y ) gi (x, y ) t f (z, y ) gi (z, y )
 

       

 
s

i i i i

i 1

t f (z, y ) gi (z, y ) r


 
  
 
  

 
s

T 2

i i i

i 1

1
p t f (z, y ) h (z, y ) p 0

2 

 
    

 
  

Therefore, there exists a certain io such that 

i io iof (x, y ) gi (x, y ) 0   

Hence i i io

y Y i i io

f (x, y) f (x, y )
sup

g (x, y) g (x, y )
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Theorem 2 (Strong Duality) 

 Assume that x* is an optimal solution of (p) and * *

ig (x ), j J(x )   are linearly independent. 

Then there exist * * * *(s , t , y ) k(x )  and * * * * * * * *

1(x , , , r 0, p 0) H (s , t , y )      such that 

 * * * * * * * *x , , , s , t , y , r 0, p 0     is a feasible solution of (MD) and the two objectives have the 

same values. If, in addition, the assumptions of weak duality hold for all feasible solutions 

 x, , , s, t, y, r, p   of (MD), then  * * * * * * * *x , , , s , t , y , r 0, p 0     is an optimal solution of 

(MD).  

Proof:  Since x*  is an optimal solution of (p) and * *

ig (x ), j J(x )   are linearly independent, then 

by Theorem (1), thee exist * * * *(s , t , y ) k(x )  and * * * * * * * *

1(x , , , r 0, p 0) H (s , t , y )      such 

that  

* * * * * * * *(x , , , s , t , y , r 0, p 0)     is a feasible solution of (MD) and the two objectives have the 

same values. Optimality of * * * * * * * *(x , , , s , t , y ,r , p 0)    for (MD), thus follows weak duality 

(Theorem 9.3.1).  

Theorem 3 (Strict Converse Duality) 

 Let x* and * * * * * * * *(z , , , s , t , y , r , p )   be optimal solutions of (p) and (MD), respectively, 

suppose that  

(i) * *

jg (x ), j J(x )   are linearly independent,  

(ii)  
s

* * * *

i i i i

i 1

t f ( , y ) gi ( , y )


    is strictly binvex at z*,  
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(iii) 
m

*

j j

j 1

g ( )


  is binvex at z*. Then * *z x . 

Proof: Suppose to the contrary that * *z x , and we will derive a contradiction. Since x* and 

* * * * * * * *(z , , , s , t , y , r , p )   be optimal solutions of (p) and (MD), respectively, and 

* *

jg (x ), j J(x )  are linearly independent, therefore, by theorem (2), we have 

 
* *

*i

* *
y* Y i

f (x , y )
sup

g (x , y )

        (6) 

 The feasibility of x* for (p), * 0   and (3) imply  

m m m
* * * * * * *

j j j j j j

j 1 j 1 j 1

g (x ) 0 g (z ) g (z ) r
  

 
      

 
   - 

T
m

* 2 * * *

j j

j 1

1
p g (z ) p ,

2 

    

Which along with hypothesis (iii) gives 

m m m
* * 2 * * * * t * *

j j j j j j

i 1 j 1 i 1

g (z ) g (z )p (x z ) g (z )
  

   
          

  
    

Therefore, inequality (9.3.1) along with (9.3.7) yields 

   
s s

* * * * * * 2 * * * * * * * t

i i i i i i i i

i 1 i 1

t f (z , y ) h (z , y ) t f (z , y ) g (z , y ) p (x z )
 

 
      

 
   

 
s

* * * * * * *

i i i i i

i 1

t f (z , y ) g (z , y ) r ,
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which by hypothesis (ii) and inequality (9. 3.2) gives  

 
s

* * * * * *

i i i

i 1

t f (x , y ) h(x , y ) 0


   

For a certain io, this implies 

*

* * * *
*i i io

* * * *
y Y i i io

f (x , y ) f (x , y )
sup ,

g (x , y ) g (x , y )

    

which is a contradiction to (6). Hence * *z x .  

4. Second duality model 

 In this section, we formulate the following second order dual to (p) as follows. 

2(z, , , r, p) H (s, t, y)(s, t, y) k(z)
(GMD) max sup

  
  

where 
2H (s, t, y)  denotes the set of all n m n n(z, , , r, p) R R R R R          

Satisfying 

   
s s

2

i i i i i i i i

i 1 i 1

t f (z, y ) gi (z, y ) t f (z, y ) h (z, y ) p
 

      

 
m m

2

j j j j

j 1 j 1

g (z) g (z)p 0
 

           (4.1) 

0 0

s s

i i i i i j j i i i i i j j

i 1 i 1j J j J

t f (z, y ) g (z, y ) g (z) t f (z, y ) g (z, y ) g (z) r
  

 
          

 
     

0

s
T 2

i i i i i j j

i 1 j J

1
p t f (z, y ) g (z, y ) g (z) p 0

2  

 
       

 
    (4.2) 
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T 2

j j j j j j

j J j J j J

1
g (z) g (z) r p g (z)p 0, 1, 2, .... r

2
    

 
          

 
    

          (4.3) 

  m

i i i i i j j

j 1j J

t f (z, y ) g (z, y ) g (z) r 0




  
        

  
    (4.4) 

where J M, 0,1, 2, .... , k     with 
k

0

J M


  and J J ,    if .    If, for a triplet 

(s, t, y) k(z),  the set 
1H (s, t, y) ,   then we define the supremum over it to be  . 

Theorem 4.1 (Weak Duality):  let x and (z, , , s, t, y, r, p)   be feasible solutions of (p) and (GMD), 

respectively. Assume that 

(i)  
0

s

i i i i i j

i 1 j J

t f ( , y ) gi ( , y ) g ( )
 

         is binvex at z;  

(ii) i j

j J

g ( ), 1, 2, ..... r



     binvex at z.  

Then i

y Y i

f (x, y)
sup

g (x, y)

   

Proof: By the feasibility of x for (p), 0   and (9.4.3), we get  

T 2

i j i j i j i j

j J j J j J j J

1
g (x) 0 g (z) g (z) r p g (z)p , 1, 2, .... r

2
      

 
             

 
     

          (4.5)  

 The above inequality (4.5) with hypothesis (ii) implies 
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2 t

j j j j j j

j J j J j J

g (z) g (z)p (x z) g (z) r, 1,2, ....r

    

   
               
   
    

which together with (4.1), (4.4) yields  

   
s s

2

i i i i i i i i i

i 1 i 1

t f (z, y ) gi (z, y ) t f (z, y ) g (z, y ) p
 

      

0 0

2 t

j j j j

j J j J

g (z) g (z)p (x z)
 

 
        

 
   

 
0

s

i i i i j i

i 1 j J

t f (z, y ) gi (z, y ) g (z)p r
 

 
     

 
   

In view of hypothesis (i) and the above inequality implies  

 
0

s

i i i i j i

i 1 j J

t f (x, y ) gi (x, y ) g (x)
 

     

   
0 0

s s

i i i i i j j i i i i i j j

i 1 i 1j J j J

t f (z, y ) g (z, y ) g (z) t f (z, y ) g (z, y ) g (z) r
  

 
          

 
     

 
0

s
T 2

i i i i i j j

i 1 j J

1
p t f (z, y ) g (z, y ) g (z) p

2  

 
      

 
   

By 0, g(x) 0    and (4.2) it follows that  

 
s

i i i i i

i 1

t f (x, y ) g (x, y ) 0


   

Therefore, there exists a certain io such that  
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i io i iof (x, y ) g (x, y ) 0   

i i io

y Y i i io

f (x, y) f (x, y )
sup

g (x, y) g (x, y )

    

 The proof of the following theorem is similar to that of Theorem (9.3.2) and hence, is 

omitted.  

Theorem 4.2 Strong Duality: Assume that x* is an optimal solution of (p) and * *

jg (x ), j J(x )   are 

linearly independent. Then there exist * * * *(s , t , y ) k(x )  and * * * * *(x , , , r 0, p 0)   

* * *

1H (s , t , y )  such that  

* * * * * * * *(x , , , s , t , y ,r 0, p 0)     is a feasible solution of (GMD) and the two objectives have the 

same values. If, in addition, the assumptions of weak duality hold for all feasible solutions 

(x, , , s, t, y,r, p)   of (GMD), then * * * * * * * *(x , , , s , t , y ,r 0, p 0)     is an optimal solution of 

(GMD).  

Theorem 4.3 (Strict Converse Duality) 

 Let x* and * * * * * *(z , s , t , y ,r , p )  be optimal solutions of (p) and (GMD), respectively, suppose 

that  

(i) * *

jg (x ), j J(x )   are linearly independent.  

(ii)  
0

s
* * * * *

i i i i i j j

i 1 j J

t f ( , y ) g ( , y ) g ( )
 

         is strictly binvex at z*.   

(iii) *

j j

j J

g ( ), 1, 2, ..... k



     binvex at z*.  
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Then z* = x*.  

Proof: It can be proved similarly to Theorem (3.3.).  
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