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. Introduction

In this Chapter, we consider the following minimax fractional programming problem.

(p) minimize W(x) = Sup M
yev g (X, Y)

s.t h(X)<0 ,xeR"

where Y is a compact subset of R', f (,):R"xR' >R, g(,):R"xR' >R are twice
continuously differentiable on R"xR' and h (,):R" —>R™ is twice continuously differentiable

on R". It is assumed that for each (x, y) in R" xR, f. (X,y)=0and g, (X,y)=0.
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Since minimax fractional programming has wide applications, much attention has been paid
optimality conditions and duality theorems for minimax fractional programming problems. For the
case of convex differentiable minimax fractional programming, Yadav and Mukherjee [10]
formulated two dual models for (p) and derived duality theorems. Chandra and Kumar [3] pointed
out certain omissions in the dual formulation of Yadav and Mukherjee [9], they constructed two
modified dual problems for minimiax fractional programming problem and proved duality results.
Liu and Wu [5,6], and Yang and Hou [10] discussed optimality conditions and duality results for (p)

involving generalized convexity assumptions.

Mangasarian [7] introduced the notation of second order duality for nonlinear programs by
introducing an additional vector p e R". He has indicated a possible computational advantage of

the second order dual over the first order dual. Instead of imposing explicit condition on p, Mond [8]
included p in a second order type convexity. Bector et al [2] discussed second order duality results
for minimax programming problems under generalized B-Convexity. Later on, Liu [4] extended these
results involving second order generalized B-Convexity. Recently, Husain et al [3] have formulated
two types of second order dual models for minimax fractional programming problems, and derived

weak, strong and strict coverse duality theorems under binvex assumptions.

In this paper, two types of second order duality in minimax fractional programming are
formulated by introducing an additional vector r. The weak, strong and converse duality theorems
are proved for these programes under binvexity assumptions. Our result generalizes these existing
dual formulations which were discussed by the authors in but they not consider this in binvexity.
Hence in this Paper an attempt to made to full this gap in the aim of research by developing some

theorems and duality theorems in second order duality for minimax fractional programming.
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2. Preliminaries

let S= {XeR”: h(X)SO} denote the set of all feasible solutions of (p). For each

(x, y) e R"xR', we define
J)={jeM={L2 }: h(x)<0}

Y(X)={er: M:Sup—fi (X, Z)}

g (X’ y) zey G (X’ Z) ’

and k(X)= (5,t,§)eNxRXR":I<ss<n+1t=(t,,t,.....,t;)eR

....... Ve)i ¥ eY(),i=12,.........

I_H
wn
H_J

let f :R" — R be a twice differentiable function.

Definition (1):

Function f is said to be binvex at X € R", such that for all X, pe R", we have

ARG

g.(x) g(X) 2 > (X - X)t [Vf (X)+ Vv (X)p]

/\/\
vv

Definition (2) : Function f is said to be strictly binvex at x € R" such that for all X,peR", we have

fi(X)_fi(X) 1 Ty2

1 g i of0, e fi®)
0,09 9 2 g«

g; (X) of (x)

;p>(x %)'
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The following theorem will be needed in the proofs of strong duality theorems.
Theorem (1) (Necessary Conditions). Let x™ be a solution of (p) and let ng(x*), jed(xX) be

*
]

linearly independent. There exist (S t, 7*) ek(x), A"eR, and u" eR™ such that

V3 (£ 06,90) 20,9+ V 2k hy(x)=0

=1

(f, (<.9))-20, (< ¥)=0, i=12,......s
ZH; hj (x) =0,
j=1

3. First Duality Model

By utilizing the necessary optimality conditions of the previous section, we formulate the

following second order dual to (p) as follows.

(MD)

max sup A
(S’ t, Y)Ek(Z) (Z, K, AT p)eHl(S, t, Y)

where H, (s, t,y) denotes the setof all (z,u, A, 7, p)eR" xR xR, xR"xR"

satistying V Y1, (F, (2.Y,)) ~gi (2, ¥,) + V* iti (f, V) -0 (2,%,))p

i=1

+V > 1,0,(2) +V* Y ug,(2)p=0 (1)
=L j=1

IJCRT2201258 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c268


http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

S

Zti (fi (z.Y, ))—Xgi (z, yi)+(v iti (fi (z,y,)-Agi (2,Y, ))rj

i=1

1 > )
_EpTvzzti (fi (Zlyi)_}\‘gl (Z,yi))pZO (2)
i=1
m m 1 m
21i9;(2) +(VZMJ-91-(Z)Jr—apTszujgj(Z)p >0 (3)
= = j=1

[v >4 (f 2.7) -0 (2.7 ))jr +(viu,—g,—(z)]r <0 (@)

i=1

if, for a triplet (S, t,y) € k(z), the set H, (s, t, ¥) = ¢, then we define the supremum over it to be

—00.,

Theorem1 (Weak Duality): Let x and (z, wA,S 1Y, r,p) be feasible solutions of (p) and (MD),

respectively. Assume that

(i) Zti (fi Y )—Xgi (-, V) is n-bonvex at z;
i1

(ii) Zujgj(-)is N-bonvex at z.
1

Then sup sz
ver G (X, Y)

Proof: by the feasibility of x for (p), 1 =0 and (3), we get

m m m 1 m
ZM,-QI,- (x)<0< Zujgj (2) +[VZM,-Q,- (Z)Jr _EpTVZZngj (2)p
= =] 1 m
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The above inequality together with hypothesis (ii) implies

(V_iu,-g,- (9+V"> 10,2 p} (x-2)'< (viujgj (z)}r

From (9.3.1), (9.3.4) and (9.3.5), we have

[V Zs:ti (fi (Z, yi)_}‘gi (Z’ yi ))j+[V2 Zslti (fi (Z, _i)_}\'gi (Z, yi ))pj (X_Z)t 2_[Vzmlujgj(z)jr

i=1 i=1

> (VEti (f, @) ~2gi (2, Vi))jr

i=1

which in view of hypothesis (i) and (2) fields

% Zt (f: (6 ¥))=2gi (x, ;) 2 Zt (f; @ y) g (2. 7))+
[V Zt (fi @) -2gi @y, ))rj

1 > _ _
-~ pTszZti (f(z.v,)-rh (2., ))jp >0
i=1
Therefore, there exists a certain i, such that

fi (X, Vi,) =201 (X, Y,,) =20

Hence sSup fi (x.y) > fi (x, Yio) >\
ver G (% Y) i (X, Vi)
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Theorem 2 (Strong Duality)

Assume that x" is an optimal solution of (p) and Vg, (X), je J(X") are linearly independent.
Then there exist (s',t7,y) ek(x") and (X", u, A", r' =0,p =0) e H,(s',t’, y) such that
(X*, WAL st Y, r=0,p = O) is a feasible solution of (MD) and the two objectives have the
same values. If, in addition, the assumptions of weak duality hold for all feasible solutions
(X, u, A, S ty,r, p) of (MD), then (X*, },L*, ALs V*, r' =0, p* =O) is an optimal solution of

(MD).

Proof: Since x" is an optimal solution of (p) and Vg, (x), jeJ(X') are linearly independent, then
by Theorem (1), thee exist (s, t,y)ek(x") and (X ,u,A,r =0,p =0)eH,(s,t,¥) such

that

(X, u, A, s, t, ¥, r =0,p =0) is a feasible solution of (MD) and the two objectives have the
same values. Optimality of (X*,u*,k*,s*,t*,y*,r*, p*:0) for (MD), thus follows weak duality

(Theorem 9.3.1).

Theorem 3 (Strict Converse Duality)

Let x” and (Z*, p*, AL,st, )7*, r, p*) be optimal solutions of (p) and (MD), respectively,

suppose that

(i) ng(x*), jeJ(X") are linearly independent,

(ii) Zt?(fi ¢, V) -\, V:))is strictly binvex at z*,

i=1
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m
(iii) Zu?gj (") is binvex at z*. Then z =X
1

Proof: Suppose to the contrary that z" X, and we will derive a contradiction. Since x* and

(z, ', A8, t,¥,r,p) be optimal solutions of (p) and (MD), respectively, and

Vg, (X)), jeJ(x")are linearly independent, therefore, by theorem (2), we have

sup M—X* (6)

yeY 0 (x,y) -

The feasibility of x” for (p), u* >0 and (3) imply
ZM?Q,— (X*) <0< ZH?Q,- (Z*) + [ZM?Q,- (Z*)) r-
-1 -1 =1

1 *T i * * *
->p V2 g, @)p,
2 )
Which along with hypothesis (iii) gives
(V D 9;(@)+ Vi) g, (z*)p] (X' -2)' < (V 29, (z*)j
=) -1 )
Therefore, inequality (9.3.1) along with (9.3.7) yields

v it?(f(zﬂ v))-1h(Z',v)+ (VZ S (f (2, 7) -0, v?))p] (x -2

i=1

> [V it?(fi ', y)-1g,(z, V?))j r,
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which by hypothesis (ii) and inequality (9. 3.2) gives
S * * * * * *

Y (¥ -2h(x, 7)) >0

i=1

For a certain iy, this implies

LYY L T

sup e
yer G (X,Y) g; (X', Vi)

which is a contradiction to (6). Hence z =X .
4. Second duality model
In this section, we formulate the following second order dual to (p) as follows.

(GMD) A

max sup
(S, t.¥)ek(2) (2,1, 1,1, p)eH, (5,1, Y)

where H, (s, t,¥) denotes the setof all (z, u, A, r,p)eR" xR xR, xR"xR"

Satisfying

v Zt (f; @ V) -1gi (2, ¥;) +V? Zt (f @ ¥) - (z.¥))p
+ Vi“jgj(z)wz i‘,ujgj(Z)P:O (4.1)

itifi (z,¥:)-19;(z, V) + Zujgj (2) + (vitifi (z,¥;)-29;(z, V) + Zlvljgj(z)jr

iedo o

_%DTVZ iti Lfi (z,¥:)-29,(z,y,) + Z“jgj (Z)j p=0 (4.2)

iedo
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2 ngj(2)+[z ujgj(Z)Jr—%pTvzz 1,9;@ZP=0, =12, .1

jedy, jed, jed,,

(4.3)

[Vzti (fi (z,¥:) -7 (z. Y, ))"‘ (Vzm ngj(z)jjr <0 (4.4)

=)

k

where J, <M, a=0,12,...,k with UJ =M and J_ NJg =¢, if a=p. If, for a triplet
a=0

(s, t,¥) ek(z), the set H, (s, t, ¥) = ¢, then we define the supremum over it to be —0.

Theorem 4.1 (Weak Duality): let x and (z, u, A, S, t, Y, I, p) be feasible solutions of (p) and (GMD),

respectively. Assume that

(i) iti (f ¢, 9) =291 (. ¥))+ Dm0, () is binvex at 7

iedo

(ii) z;,tigj (), a=L2,....r binvex at z.

jedy

Then sup MZK
yev G (X, Y)

Proof: By the feasibility of x for (p), L =0 and (9.4.3), we get

1
> wg;(x) SOSZpigj(z)+£Vzuigj(z)jr—EpTVZZMigj(Z)p, a=12.r
i€da j€dy j€d,,

jelq
(4.5)

The above inequality (4.5) with hypothesis (ii) implies
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[Vijgj (2) +V22pjgj(z)pJ (x —2)" s(vzmgj(z)] ro=12,..r

jed, jedy, jedy,

which together with (4.1), (4.4) yields

VI (f @) -2 @ Y) + VS8 (@5 - 2g, 2. 9))p

i=1

+ V2 9@+ (VZ D 19 (Z)pj (x-2)

i< o

>V Zt (f, @ 9,))-10i 2.,) +(Zu,-gi (z)er

i€do

In view of hypothesis (i) and the above inequality implies

iti (f (% 9)) = 2gi (%, ;) + > ;9 (%)

Jedo

>3 (f, 2.9)) -2, (z,vi)+2u,—gj(z)+(viti (f@y))-19 7‘)+Z“"g"(z)}

jedg i=1 jedo

—%pT vaiti (f. (2. 9)-%g (2.9, ))+ZH191(Z)JF’

i€do

By u>0, g(x) <0 and (4.2) it follows that

iti (fi (X, ¥:)—2g; (X, ¥, )) >0

Therefore, there exists a certain i, such that
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fi ()(’ S7h)) - ;&gyi ()(’ S7h)) >0

sup f. (X, y) > f, (X, Yy,)

> =0 > A
yev G (X, Y) gi (X, ¥io)

The proof of the following theorem is similar to that of Theorem (9.3.2) and hence, is
omitted.
Theorem 4.2 Strong Duality: Assume that x* is an optimal solution of (p) and Vg, (X)), jed(X)) are
linearly independent. Then there exist (s,t,y¥)ek(x) and (X,u,A,r =0p =0)

eH, (s, t°,y") such that

(X*, u*, A st y*,r* =0, p* =0) is a feasible solution of (GMD) and the two objectives have the
same values. If, in addition, the assumptions of weak duality hold for all feasible solutions
(X, 1, A, 8,1, Y,1,p) of (GMD), then (X', u’, A", s,t",y,r =0,p =0) is an optimal solution of

(GMD).
Theorem 4.3 (Strict Converse Duality)

Let x" and (Z*, st 37*,r*, p*) be optimal solutions of (p) and (GMD), respectively, suppose

that

(i) Vg, (X)), je J(X") are linearly independent.

(ii) Zs:tT (fi ¢,.¥)-7g; (, 7?)) + ZH?gj () is strictly binvex at z".
i1

iedo

(iii) Z“;gj (), a=L12,....K binvexatz".

jeda
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Thenz" =x".

Proof: It can be proved similarly to Theorem (3.3.).
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