IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

A Review: Analytical method for determination of Elbasvir and Grazoprevir in bulk, pharmaceutical dosage form and biological fluid

Miss. Yojana Kunjir*¹, Mr. Rahul Godge², Mr. Sagar Magar³

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Pravaranagar, Tal-Rahata, Dist- Ahmednagar 413736 India.

ABSTRACT:

Elbasvir/Grazoprevir (Zepatier) is a combination product with an FDA-approved indication for the treatment of chronic HCV genotypes (GTs)1and 4 in adults. Elbasvir is an NSSA inhibitor, preventing hepatitis C viral RNA replication and vision assembly. Median EC50 values range from 0.2 to 3600 pmol/L,based on genotype. Grazoprevir is a protease inhibitor of HCV NS3/4A that prevents cleavage of the polyprotein necnecessary for replication. Median EC50 values range from 0.16 to 0.8pmol/L.Analytical method play an important role in the physicochemical properties description. This review includes most recent analytical methods such as various spectroscopic methods (Simultaneous estimation, Mass Spectroscopy)and chromatographic methods (RP-HPLC, stability indicating HPLC) for determination of Elbasvir and Grazoprevir in various pharmaceutical dosage forms and biological fluid matrix were reported.

KEYWORDS: Elbasvir, Grazoprevir, RP-HPLC, UV-Visible spectroscopy, Synchronous Fluorescence spectroscopy

INTRODUCTION:

Hepatitis C is an infection caused by the hepatitis C virus (HCV) that attacks the liver and leads to inflammation. The World Health Organization estimates that about 3% of the world's population has been infected with HCV and that there are more than 170 million chronic carriers who are at risk of developing liver cirrhosis and/or liver cancer. [1] For almost 25 years, Pegylated interferon and ribavirin have been the cornerstone of treatment for this disease until the revolutionary development of protease inhibitors. This class of direct-acting antiviral agents has led to all oral HCV treatment regimens that have changed the strategies of hepatitis C treatment. [2]

Zepatieris a novel combination of two new Food and Drug Administration (FDA) approved drugs elbasvir (EBV) and grazoprevir (GRV).[3] It combines two direct-acting antiviral agents with distinct mechanisms of action that target HCV at multiple steps in the viral lifecycle. EBV (Figure 1) is an inhibitor of HCV NS5A, which is essential for viral RNA replication and virion assembly. On the other hand, GRV (Fig. 2) is an inhibitor of the HCV NS3/4 A protease which is necessary for the proteolytic cleavage of the HCV encoded poly protein and is essential for viral replication. [4]

Elbasvir is a highly potent and selective NS5A inhibitor of the hepatitis C virus NS5A replication complex3. The chemical name of elbasvir is methyl N-[(2S)-1-[(2S)-2-[5-[(6S)-3-[2-[(2S)-1-[(2S)-2-(methoxycarbonylamino)-3-methylbutanoyl]pyrrolidin-2-yl]-1H-imidazol-5-yl]-6-phenyl-6Hindolo[1,2-c]benzoxazin-10-yl]-1H-imidazol-2-yl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]carbamate. [5] The molecular weight of elbasvir is 882.014 g/mol and molecular formula is C49H55N9O7. Chemical structure of Elbasvir is depicted in figure 1.

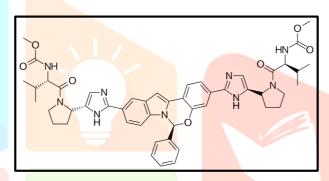


Figure No.1: Structure of Elbasvir

Grazoprevir is a second generation hepatitis C virus protease inhibitor acting at the NS3/4a protease targets4. NS3/4a protease is an integral part of viral replication and mediates the cleavage of virally encoded polyprotein to mature proteins (NS3, NS4A, NS4B, NS5A and NS5B). [6] The chemical name of Grazoprevir (1R,18R,20R,24S,27S)-N-{(1R,2S)-1-[(Cyclopropylsulfonyl)carbamoyl]-2is vinylcyclopropyl}-7-methoxy-24-(2-methyl-2-propanyl)-22,25-dioxo-2,21-dioxa-4,11,23,26tetraazapentacyclo-nonacosa-3,5,7,9,11-pentaen-27-carboxamide. The molecular weight of Grazoprevir is 766.911 g/mol and molecular formula is C38H50N6O9S. Chemical structure of Grazoprevir is depicted in figure 2.

Figure No.2: structure of Grazoprevir

PHARMACOLOGY:

Elbasvir is an inhibitor of the HCV non-structural protein 5A. While the precise role of this protein is unknown, it is essential to viral replication and virion assembly. Synthesis Potential modes of action of NS5A inhibitors like elbasvir include blocking signaling interactions, redistribution of NS5A from the endoplasmic reticulum to the surface of lipid droplets, and modification of the HCV replication complex. [7]Computational target-based in silico research suggests that elbasvir may carry activity at several proteins required for replication of SARS-CoV-2 - namely RNA-dependent RNA polymerase, helicase, and papain-like proteinase. [8]

Elbasvir reaches peak plasma concentration 3-6 hours after administration and has an absolute bioavailability of 32%. Elbasvir has an estimated apparent volume of distribution of 680 liters. Elbasvir is more than 99.9% bound to plasma proteins. It binds both human serum albumin and α1-acid glycoprotein. The geometric mean apparent terminal half-life for elbasvir is 24 hours in HCV-infected subjects. [9]

Grazoprevir is a second generation NS3/4a protease inhibitor used to inhibit viral HCV replication. NS3/4a protease is an integral part of viral replication and mediates the cleavage the virally encoded polyprotein to mature proteins (NS3, NS4A, NS4B, NS5A and NS5B) Label. Grazoprevir inhibits the NS3/4protease enzymes of HCV genotype 1a, 1B, and 4 with IC50 values of 7pM, 4pM, and 62pM, respectively. [10]

Grazoprevir reaches peak plasma concentration 0.5-3 hours after administration. Grazoprevir has an absolute bioavailability of 27%. Grazoprevir has an estimated apparent volume of distribution of 1250 liters. The geometric mean apparent terminal half-life for Grazoprevir is 31 hours in HCV-infected subjects^[11].

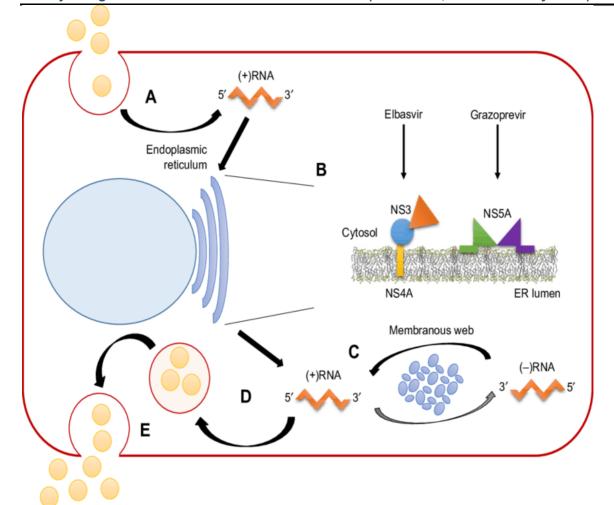


fig:no:1. pharmacology of elbasvir is an inhibitor of the hcv non-structural protein 5a

ANALYTICAL METHOD:

This all methods which are used for the determination of Elbasyir and Grazoprevir drug combination in Bulk, pharmaceutical dosage form and also in biological fluid like human plasma. [12] This all analytical method which are seen during the literature survey are reported. This article describes the review on the reported analytical method with specific conditions^[14].

1. Chromatographic Method:

Various chromatographic methods are used for the determination and quantification of the Elbasvir and Grazoprevir drug combination in marketed formulation and in biological fluid. Chromatographic methods like High performance liquid chromatography (HPLC), Reverse phase High performance liquid chromatography (RP-HPLC), Liquid chromatography with tandem mass spectroscopy (LC-MS/MS) are used for determination of Elbasvir and Grazoprevir^[15]. Below table describe the summary of the various chromatographic methods with the method description^[16].

Table No.1: Summary of chromachromatographic method of Elbasvir and Grazoprevir

Title	Method	Mobile	Stationary	Wavelengt	Detecti	Re
		phase	phase	h	on	f.
					(M/Z)	
Simultaneous	HPLC	Acetonitril	BDS	253 nm		14
determination of	method	e	Hypersil			
Elbasvir and		:Methanol	C18			
Grazoprevir in their		(50:50	column		-	
pharmaceutical		v/v)				
preparation using						
HPLC method.						
Rapid and precise	RP-HPLC	Methanol:	Zorbax	255 nm		15
RP-HPLC method	method	phosphate	C18			
has been developed		buffer PH	column		-	
for the validated of		3.9 (55:45				
Elbasvir and		v/v)				
Grazoprevir in it's						
pure form as well as		7				1
in tablet dosage						
forms.						
The aim of study is to	Isocratic RP-	Methanol:	C18	260 nm	0.1	16
develop and validate	HPLC	water	column			
a simple, accurate,	method	(80:20		12.		
precise RP-HPLC		v/v)				
method for						
Simultaneous					-	
determination of						
Elbasvir and						
Grazoprevir in bulk						
and tablet						
formulation.						
Picogram level	LC-MS/MS	Ammoniu	AgilentTC		767.3/5	17
quantification of	method	m	-		53.2 for	
Grazoprevir and		acetate:ace	C18,4.6×7		Grazop	
Elbasvir with		tonitrile	5mm,3.5		revir	
deuterated Internal		(20:80v/v)	μm,80 A		and	
standard in human			column	-	883.4/6	

plasma samples by					56.3 for	
LC-ESI- MS/MS.					Elbasvi	
					r	
RP-HPLC method	RP-HPLC	0.01n	Kromosil	260 nm		18
development and	method	kh2po4	(250 mm,			
validation for the		buffer and	4.6mm,5µ)			
Simultaneous		acetonitril				
estimation of		e and			-	
Grazoprevir and		Methanol				
Elbasvir in bulk and		(44:55v/v)				
pharmaceutical						
dosage form .						

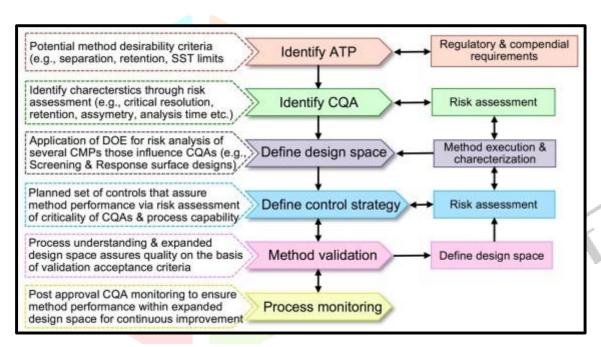


Fig:No:2. chromachromatographic method of Elbasvir and Grazoprevir

2. Spectroscopic Method:

Spectrophotometric method is economical and versatile particularly for developing countries. Spectrophotometric method has some advantages such as being easy, less time and less expensive consuming compared with most of the other methods^[17]. A simple, precise and economical spectrophotometric method for the Simultaneous estimation of the Elbasvir and Grazoprevir in pharmaceutical bulk and tablet dosage form was developed and validated. Various method like Simultaneous estimation, dual wavelength, UV spectrophotometry, synchronous fluorescence spectroscopic method and derivative method are used for determination of Elbasvir and Grazoprevir drug combination in marketed formulation. Following table describe the different spectroscopic method with the method description and condition which are reported on review literature^[18].

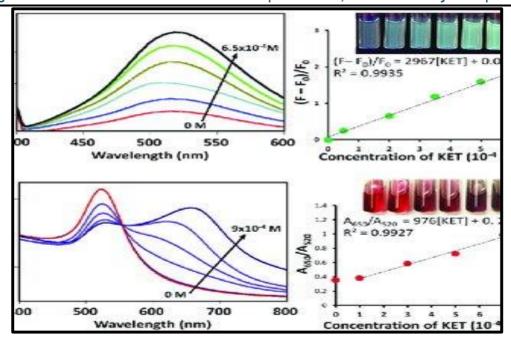


Fig:No:3. spectroscopic methods of Elbasvir and Grazoprevir

Table. No.2: Summary of spectroscopic methods of Elbasvir and Grazoprevir

Method	Wavelength	Wavelength	Ref.
	for Elbasvir	for	
Ŧ		Grazoprevir	
Ultraviolet	351and 315 nm	375 and	19
spectroscopic		334.5 nm	
method			
		C	
		130	
Sancitiva	312 nm	300 and 372 nm	20
	312 1111	390 and 372 mm	20
accurate			
synchronous			
fluorescence			
spectroscopic			
method			
Simultaneous	369 nm	253 nm	21
equation			
method			
Simultaneous	308 nm	389 nm	22
determination			
	Ultraviolet spectroscopic method Sensitive, selective and accurate synchronous fluorescence spectroscopic method Simultaneous equation method Simultaneous	Illtraviolet spectroscopic method Sensitive, selective and accurate synchronous fluorescence spectroscopic method Simultaneous af 9 nm equation method Simultaneous 308 nm	for Elbasvir Ultraviolet spectroscopic method Sensitive, selective and accurate synchronous fluorescence spectroscopic method Simultaneous 369 nm equation method Simultaneous 308 nm 389 nm

www.ijcrt.org		© 2022 IJ	CRT Volume 10, Is	ssue 1 January 202	22 ISSN: 2	320-2882
derivative s	synchronous					
fluorescence sp	pectroscopic					
method for Si	imultaneous					
determination of I	Elbasvir and					
Grazoprevir in pha	rmaceutical					
nreparation and hu	man nlacma					

3. Stability Indicating Method:

Stability indicating method is used to check out the stability of drug in different conditions like in acidic, basic, oxidative, photolytic and thermal degradation. Following table describes the various stability indicating method with the method description and condition which are reported on review literature^[19,20,21].

Table No.3: Summary of stability indicating methods for Elbasvir and Grazoprevir^[22,23,24,25]

Title	Method	Mobile	Stationary	Wavelength	Ref
		phase	phase		•
A new validated	Stability indicating	0.1%	BDS C18	260 nm	23
stability indicating	RP-HPLC method	orthophos	column		
RP-HPLC method		phoric			,
for Simultaneous		acid:acet			
estimation of		onitrile			
Grazoprevir and		(44:55		0	
Elbasvir in tablet		v/v)		(C)	
dosage forms				13	
To develop	Stability		Luna C18	258 nm	24
accurate, precise	indicating method	OPA	column		
stability indicating		buffer(0.			
method for		1%)and			
Simultaneous		Acetonitr			
estimationof		ile			
Elbasvir and		(50:50			
Grazoprevir in		v/v)			
bulkandpharmaceuti					
cal dosage form					
HPLC-MS/MS	HPLC-MS/MS	0.1%	C18 column		25
method	method	formic	Ascentis	-	
development and		acid:meth	Express		
validation for		anol			

www.ijcrt.org	© 2022 IJCRT Volume 10, Issue 1 January 2022 ISSN: 23	320-2882
---------------	---	----------

determining	(25:75	(50mm×4.6		
stability of Elbasvir	v/v)	mm,		
in human plasma		2.7µm)		
samples				

DISCUSSION:

The presented review highlights on various analytical methods reported for determination of Elbasvir and Grazoprevir in bulk, pharmaceutical dosage form and biological fluid like human plasma. UV, RP-HPLC and Stability indicating RP-HPLC method were found to be most commonly used methods. These methods are found to be rapid, accurate, sensitive, economical and reproducible for determination of Elbasvir and Grazoprevir.

CONCLUSION:

So, from all above information it should be concluded that various analytical methods such as chromatographic methods and spectroscopic methods were used for determination of Elbasvir and Grazoprevir; which has been successfully used on a routine basis and allows the quantification of the drug in various bulk, pharmaceutical dosage form and in biological fluid. All these methods are simple, fast, accurate, sensitive, selective, reproducible and possess excellent linearity and precision characteristic.

REFERENCES:

- 1. ZepatierTM,(Elbasvir and Grazoprevir)Tablets for oral use, Merck and Co.whitehouse station, NJ, USA, 2016.
- 2. G.M.Keating, "Elbasvir/Grazoprevir, First global approval", Drugs, Vol.76,no.5 PP.617-624,2016
- 3. Allison M. Bell, Jamie L. Wagner, [...], and Kayla R. Stover, Elbasvir/Grazoprevir: A Review of the Latest Agent in the Fight against Hepatitis C,Int J Hepatol.2016;2016:3852126.
- 4. Goossens, N., Hoshida, Y.; Hepatitis C virus-induced hepatocellular carcinoma; Clinical and Molecular Hepatology, (2015); 21: 105–114.
- 5. Sulejmani, N., Jafri, S.M., Gordon, S.C.; Pharmacodynamics and pharmacokinetics of elbasvir and grazoprevir in the treatment of hepatitis C; Expert Opinion on Drug Metabolism & Toxicology, (2016); 12: 353–361.
- 6. Food U, Administration D. FDA approves Zepatier for treatment of chronic hepatitis C genotypes 1 and 4. Press release. January 28, (2016).
- 7. El Kassas, M., Elba., T., Abd El Latif, Y., Esmat, G.; Elbasvir and grazoprevir for chronic hepatitis C genotypes 1 and 4; Expert Review of Clinical Pharmacology, (2016); 9: 1413–1421.
- 8. Papudesu, C., Kottilil, S., Bagchi, S.; Elbasvir/grazoprevir for treatment of chronic hepatitis C virus infection; Hepatology International, (2017); 11: 152–160.

- 9. Coburn CA, Meinke PT, Chang W, Fandozzi CM, Graham DJ, Hu B, Huang Q, Kargman S, Kozlowski J, Liu R, McCauley JA, Nomeir AA, Soll RM, Vacca JP, Wang D, Wu H, Zhong B, Olsen DB, Ludmerer SW: Discovery of MK-8742: an HCV NS5A inhibitor with broad genotype activity. ChemMedChem. 2013 Dec;8(12):1930-40. doi: 10.1002/cmdc.201300343. Epub 2013 Oct 14.
- 10. Bagaglio S, Uberti-Foppa C, Morsica G: Resistance Mechanisms in Hepatitis C Virus: implications for Direct-Acting Antiviral Use. Drugs. 2017 May 12. doi: 10.1007/s40265-017-0753-x.
- 11. Zepatier FDA label [Link]
- 12. Harper S, McCauley JA, Rudd MT, Ferrara M, DiFilippo M, Crescenzi B, Koch U, Petrocchi A, Holloway MK, Butcher JW, Romano JJ, Bush KJ, Gilbert KF, McIntyre CJ, Nguyen KT, Nizi E, Carroll SS, Ludmerer SW, Burlein C, DiMuzio JM, Graham DJ, McHale CM, Stahlhut MW, Olsen DB, Monteagudo E, Cianetti S, Giuliano C, Pucci V, Trainor N, Fandozzi CM, Rowley M, Coleman PJ, Vacca JP, Summa V, Liverton NJ: Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor. ACS Med Chem Lett. 2012 Mar 2;3(4):332-6. doi: 10.1021/ml300017p. eCollection 2012 Apr 12.
- 13. Gentile I, Buonomo AR, Borgia F, Zappulo E, Castaldo G, Borgia G: MK-5172: a secondgeneration protease inhibitor for the treatment of hepatitis C virus infection. Expert Opin Investig Drugs. 2014 May;23(5):719-28. doi: 10.1517/13543784.2014.902049. Epub 2014 Mar 26.
- 14. Khalid A M Attia, Nasr M El-Abasawi, Ahmed El-Olemy, Ahmed H Abdelazim, Mohammed El-Dosoky: Simultaneous Determination of Elbasvir and Grazoprevir in Their Pharmaceutical High-Performance Liquid Chromatographic Using Method, Journal Chromatographic Science, Volume 56, Issue 8, September 2018, Pages 731–737.
- 15. B. Manoja*, V. Abhishiktha, B. Madhavi Latha, Dr. D. Satyavati, T. Lalitha, Development and Validation of a Rp-Hplc Method for Simultaneous Determination of Elbasvir And Grazoprevir In Pure and Pharmaceutical Dosage Form, Journal of Scientific Research in Pharmacy, Aug-2018.
- 16. Sumalatha Nallagundla*1, Nallagundla H S Reddy2, Vishal Vemula1, Bharath Kumar1, Analytical Method Development and Validation of Elbasvir and Grazoprevir in Bulk and Tablet Formulations by Rp- HPLC, International Journal of Pharmaceutical Science Invention, www.ijpsi.org Volume 6 Issue 8 | August 2017 | PP. 01-05.
- 17. Haritha Potluri, Sreenivasa Rao Battula, Sunandamma Yeturu: Picogram level quantification of Grazoprevir and Elbasvir with deuterated internal standards in human plasma samples by LC-ESI-MS/MS,ijper|Vol 50|issue 4| Oct-Dec,2016.
- 18. Sakinala padmavathi, Pandeti durga bhavani, G.Saisrilakshmi, T.Naga varalakshmi, T.Vani, RP-HPLC method development and validation for the Simultaneous estimation of Grazoprevir and Elbasvir in bulk and pharmaceutical dosage form, varalakshmi, T. Vani Department of Pharmaceutical Aanalysis, Nirmala College of pharmacy, Atmakuru village, Mangalagiri mandal, July 2018.

- 19. Khalid A.M Attia, Nasr M.EI-Abasawi, Ahmed EI-Olemy, Ahmed H.Abdelazim: Simultaneous spectrophotometric determination of Elbasvir and Grazoprevir in a pharmaceutical preparation, Journal of AOAC INTERNATIONAL, Volume 101, Issue 2, 1 March 2018, Pages 394–400.
- 20. Khalid A.M Attia, Rady F. Abdel-Kareem: Simultaneous determination of Elbasvir and Grazoprevir in their pharmaceutical formulation by synchronous fluorescence spectroscopy coupled to dual wavelength method, Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy, volume 248,5 March 2021,119157.
- 21. Khalid A.M Attia, Ahmed H.Abdelazim: Application of different spectrophotometric methods for Simultaneous determination of Elbasvir and Grazoprevir in pharmaceutical preparation, Spectrochimica Acta Part A: Molecular and Biomolecular spectroscopy, Volume 189,15 Jan 2018, Pages 154-160.
- 22. Khalid A. M. Attia, Ahmed El-Olemy, Sherif Ramzy, Ahmed H. Abdelazim, Mohamed A.Hasan, Tahany F.Mohamed, Zeinab A.Nasr, Ghada F.Mohamed, Mohamed Sahin: Development and validation of a highly sensitive second derivative synchronous fluorescence spectroscopic method for the Simultaneous determination of Elbasvir and Grazoprevir in pharmaceutical preparation and human plasma, New J.Chem., 2020, 44, 18679-18685.
- 23. D.V.Kumar and J.V.L.N.S.Rao: A new validated stability indicating RP-HPLC method for Simultaneous estimation of Grazoprevir and Elbasvir in tablet dosage forms, 10.13040/IJPSR.0975-8232.11(4).1653-59.
- 24. Venkateswara Rao * 1, A. Lakshmana Rao 2 and S. V. U. M Prasad 3, A Novel Stability Indicating Rp-Hplc Method for Simultaneous Estimation of Anti-Viral Class Of Elbasvir And Grazoprevir In Bulk And Pharmaceutical Dosage Form, International Journal of Pharmaceutical Sciences and Research, IJPSR, 2019; Vol. 10(2): 655-660.
- 25. Sreelakshmi, M., R.L. C. Sasidhar and Raviteja, B:HPLC-MS/MS method development and validation for determining stability of Elbasvir in human plasma samples, Acta Ciencia India, Vol.XLIV C,No.2,41(2018).