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Abstract—Serverless Computing, most often referred as 

Functionas- a-Service (FaaS), has become popular in recent 

years because of their operation such as ease-of-use, 

autoscaling and pay-for-whatyou-use features. FaaS 

infrastructure provides some fault tolerant measures like 

automatic retry functions in case of function failure - whether 

because of application error or infrastructure failure. This 

retries mechanism ensures that functions are executed at-

least once. It encourages developers to write idempotent 

program which ensures at-most once execution. Combining 

retry-based atleast once execution and idempotent at-most 

once execution is insufficient to guarantee exactly once 

execution. To address this challenge, Vikram Sreekanti et al. 

have introduced AFT, an atomic fault tolerance shim for 

serverless applications. It interposes between a commodity 

FaaS platform and storage engine and ensures atomic visibility 

of updates by enforcing the read atomic isolation guarantee. In 

this paper, we are discussing fault-tolerance measures for 

Serverless Computing and how AFT guarantees read atomic 

isolation and scales thousands of requests per second 

smoothly. We also discussing alternative approach for fault 

tolerance in FaaS based on Active-Standby failover. 

Index Terms—Serverless Computing, Faas, Autoscaling, AFT, 

Active- Standby failover approach 

 
 

1. Introduction 

For cloud solution architects and developers, 
serverless computing is becoming increasingly 
appealing. It’s advantages varies from simplicity to 
deployment. Serverless computing most commonly 
refers to Functions-as-a-Service in today’s public clouds 
(FaaS). FaaS systems allow users to build applications 
in high-level languages while restricting the functionality 
of those apps. The requirement that programs be 
stateless is one of the most significant limitations— 
requests are not guaranteed to be sent to any particular 
instance of a program, thus developers must plan 
accordingly.Clients often re-issue requests after a 
timeout, and FaaS platforms provide some amount of 
fault tolerance by automatically retrying functions if they 
fail. The use of retries ensures that functions are run at 
least once. Combining retry-based at-least-once 
execution with idempotent at- leastone execution 
appears to provide exact once execution.We argue that 
in a retry-based faulttolerance model, atomicity is 
required to address these issues: either all 

or none of an application’s updates should be 
displayed.Serializable transactions are a straightforward 
solution in this case. Because functions have well-
defined beginnings and finishes, a transactional 
architecture is an obvious choice for ensuring atomicity 
in FaaS platforms.Providing high availability for 
deployed functions is one of the primary difficulties for 
FaaS providers. Commercial FaaS solutions are 
marketed as having high availability and built-in fault 
tolerance. 

 
1.1. Serverless computing 

Serverless computing unlike its name do have 
physical servers present and their services are based 
on it but the user or developers do not need to worry 
about them or be aware of it. Serverless computing is 
fairly a new and booming concept that is growing 
exponentially in the recent years. When it comes to 
technology in serverless computing, the user is billed 
only on the amount of usage.In other words serverless 
computing is an as-used basis service. It is a provider 
empowers a user to write/deploy a piece of code or 
host an API without the pain of establishing, maintain 
scale an underlying infrastructure. It can be 
considered as a cloud computing execution model 
where the service provider provides machine 
resources and does not occupy resources in volatile 
memory, however the processing is done with the 
help of short busts with results continue steadily to 
memory or storage 

 

1.2. Advantages of serverless computing 

Since Serverless computing is only billed based on 
your usage and until the resource is used, it definitely 
is an edge in cost effectiveness and is generally very 
cost effective as compared to cloud providers who bill 
user for idle resources as well, hence serverless 
computing is more affordable. Secondly,it would 
simplify scalability since the user does not need to 
worry about good practices to scale the system and 
policies governing scaling. Serverless computing 
developers can create independent functions that 
may perform only one purpose for instance an API 
call hence offers simplified backend code. It is time 
efficient and has quicker turnaround times as it does 
not include a complex deploy process to roll out 
bugs. Users or developers can 
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modify, add code characterized by non-systematic 
fractional measures 

1.3. Faas 

Function As a Service is a cloud computing service 
that gives user the freedom to execute program or code 
without the hassle of complicated infrastructure with 
regards to development and launching of applications 
like microservices to host an application on the world 
wide web three things are required the physical 
hardware, virtual machine operating system, and web 
server software management. Faas provides all of these 
three things and is handled and provided by cloud 
service provider so the user can only focus on individual 
function that are present in your application code. 

 
 

Figure 1. Serverless architecture 

 
Faas and Serverless Computing are often confused 

with one another but actually Faas is nothing different 
from serverless computing and is a subset of 
serverless. serverless in itself is a bigger term that 
focuses on a variety of service category be it storage , 
database ,computing , API, gateways etc, where 
configuration management is hidden or invisible from 
the user. While in the case of Faas which is one of the 
most fundamental technology in serverless architecture 
focusing on events, and is event driven where 
application code and containers only run in case of 
requests. 

 
1.4. Advantages of FaaS 

The advantages of FaaS includes advantages of 
serverless computing that it allows user or developers to 
focus on writing application logic without the burden of 
deploying on servers hence faster development 
turnaround, hence Scalable. Developers don’t need to 
create contingencies for traffic, therefore, its cost 
effective. Since it is a subset of 

serverless computing, users are only billed on usage and 
there is no need to spend for extra cloud resources. 

 
2. Retry-based Fault Tolerance Mechanism 

Failures occur while communicating with 
components or services. The issues can be due to 
unavailability of the service/component, network 
failure, timeouts or overload. In such cases, if we call 
the process again, it may succeed. Such type of 
failures are called transient failures. In such cases, we 
can implement the retry mechanism to resolve the 
issue. 

1) Identify if the fault is transient 

2) Declare maximum retry count 

3) Retry the process and increment the retry counter 

4) If the process is successful, acknowledge the 
caller and return result 

5) If the fault persists, repeat step 3 until 
maximum retry counter is reached. 

6) If maximum retry count reached, inform the 
caller that the service is unavailable. 

Incomplete action/ process is similar to an 
undelivered event. When the exception or the error 
occurs, the retry mechanism analyzes it and identifies 
whether the process should be retried automatically 
or not. When the system decides to retry it, it moves 
the process on queue with some defined delay. 

 
 
 

Figure 2. CPE ACS Connection 
 
 

 
The CPE tries to send an event to ACS. When the 

ACS responds and a successful connection is 
established, the action is complete and the event is 
considered successful. The event is unsuccessful if 
the Inform RPC is not completed. After every 
successful inform RPC, the Retry Counter is set to 
zero. For an unsuccessful event, it is set to one. In 
this CPE model, there are two variables of 
RetryMinimumWaitInterval and 

RetryIntervalMultiplier. After an unsuccessful 
event, the CPE waits for some time within the interval of 
the two parameters which prevents number of CPE 
reconnection attempts at the same time. If it fails again, 
the counter is again incremented. This leads to 
exorbitantly high values of 
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waiting interval time calculated using the below 
formula- Previous Maximum 
Wait Interval to 

(RetryMinimumWaitInterval ∗  

(IntervalMultiplier)RetryCount) 

The old maximum range becomes the new minimum. 

The new maximum range now equals to the 
RetryMinimumWaitInterval multiplied by 
IntervalMultiplier (in seconds) to the power of 
RetryCount. 

 
2.1. Challenge in Retry-based Fault-Tolerance 

FaaS platform provides fault tolerance with retries. If 
function fails, it retries function until maximum retry 
counter is reached. It ensures that function executes at-
least once. FaaS platform providers enforce developers 
to write idempotent program as idempotence logically 
ensures atmost once execution [1]. Combination of 
retry-based atleast once execution and idempotent at-
most once execution is no sufficient to guarantee 
exactly-once execution. To see why, consider a function 
f write two keys, k and l to storage. If f fails after write of 
k, we have new version of k and old version of l so 
parallel read requests see partially updated data. 
Despite function f is idempotent, the application is 
exposed to fractional execution where some updates 
are visible and other are not. [1] propose that in retry-
based fault tolerance, atomicity is required to solve this 
problem: Either all the updates made by an application 
should be visible or none of them should. 

 
3. A Fault-Tolerance Shim 

AFT, an Atomic Fault Tolerance shim provides fault 
tolerance for FaaS application by interposing between a 
FaaS platform (e.g. AWS Lambda, Azure Functions etc.) 
and a cloud storage engine (e.g. AWS S3, Google 
Cloud BigTable etc.). It enforces read atomic isolation 
guarantee, ensuring that transaction never see partial 
side effects. All updates to storage are buffered by AFT 
and committed to storage at the end of request 
automatically. 

1) The design of AFT, a low-overhead, transparent 
fault tolerance shim for serverless applications 
that is flexible enough to work with many 
combinations of commodity compute platforms 
and storage engines 

2) A new set of protocols to guarantee read 
atomic isolation for shared, replicated storage 
systems. 

3) A garbage collection scheme for our protocols 
that significantly reduces the storage overheads 
of read atomic isolation 

4) A detailed evaluation of AFT, demonstrating 
that it imposes low latency penalties and scales 
smoothly to hundreds of clients and thousands 
of requests per second. 

In sections 3.1–3.2, we present how AFT achieves 
atomic reads and writes at a single node. Next, we 
discuss how AFT achieves the same in distributed 
environment in section 4. 

3.1. Architecture and API 

Figure 3 shows a high-level overview of the AFT 
architecture. Each AFT node has a transaction 
manager, an 

 

 
 

Figure 3. A high level overview of AFT shim 
 

 

atomic write buffer and a local metadata cache. A 
transaction manager is responsible for read atomicity. 
It keeps a track of key versions read by each 
transaction. The atomic write buffer stores each 
transaction’s write set and is responsible for 
atomically persisting them at commit time. AFT 
maintains a Transaction Commit Set storage, which 
holds the ID of each committed transaction and its 
corresponding write set. AFT caches the IDs of 
recently committed transactions and locally maintains 
an index that maps from each key to the recently 
created versions of that key. When an AFT node 
starts (e.g., after recovering from failure), it reads the 
latest records in the Transaction Commit Set to warm 
its metadata cache. In addition to a metadata cache, 
AFT has a data cache, which stores values for a 
subset of the key versions in the metadata cache and 
improves performance by avoiding storage lookups 
for frequently accessed versions. 

 

API Explanation 

StartTransaction()→txid This API begins a new transaction 

and returns a transaction ID. 

Get(txid, key)→value This API retrieves key in the context 

of the transaction keyed by txid. 

Put(txid, key, value) This API performs an update 

for transaction txid. 

AbortTransaction(txid) This API aborts transaction txid 

and discards any updates made 

by it. 
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CommitTransaction(txid) This API commits transcation txid 

and persists its updates; only 

acknowledges after all data and 

metadata has been persisted. 

TABLE 1. AFT 
APIS 

 

 

Table 1 lists transactional key-value store API 
offered by AFT. Each logical request, which might 
span multiple FaaS functions, is referred as a 
transaction. When a client calls StartTransaction, AFT 
starts a new transation and a globallyunique UUID is 
assigned to a transaction. Clients uses Get(txid, key) 
and Put(txid, key, value) to read and write keyvalue 
respectively. When a client calls CommitTransaction, 
AFT assigns a commit timestamp to transaction, 
persists all of the transaction’s updates, and only 
acknowledges the request once the updates are 
durable. If a client calls AbortTransaction, none of its 
updates are made visible, and the data is deleted 
from atomic write buffer. 

 
3.2. Read Atomic Isolation 

The read atomic isolation guarantee, introduced by 
Bailis et al. in [2], ensure that transactions do not view 
partial effects of other transactions. A system provides 
Read Atomic isolation (RA) if it prevents fractured reads 
anomalies and also prevents transactions from reading 
uncommitted, aborted, or intermediate data. 
“uncommitted, aborted, or intermediate” data is referred 
as dirty reads. A fractured read happens when 
transaction Ti writes two key versions xm and yn, and Tj 

[later] reads version xm and yk and k < n. 

To prevent dirty reads, AFT guarantees that if 

transaction Ti reads key version kj written by transaction 
Tj, Tj must have successfully committed. As described in 
section 3.1 Atomic Write Buffer sequesters all the 
updates for each transaction. Below steps shows how 
AFT implements atomic updates via a simple write-
ordering protocol: 

1) AFT writes the transaction’s updates to storage 
When CommitTransaction is invoked. 

2) AFT updates Transaction Commit Set in storage 

by 

adding transaction’s write set, timestamp, and 

UUID. 

3) AFT acknowledges the transaction as 
committed to the client and make the 
transaction’s data visible to other requests only 
after the Commit Set is updated 
4) If a client calls AbortTransaction, its updates 
are simply deleted from the Atomic Write Buffer, 
and no state is persisted in the storage engine. 

This simple write-ordering protocol ensures that 
transactions never read dirty data. 

To avoid fractured reads, each transaction’s read set 
must form an Atomic Readset defined below: Definition 
1 (Atomic 

Readset). Let R be a set of key versions. R is an Atomic 

Readset if ∀ki ∈  R,∀ li ∈ki.cowritten,lj ∈  R ⇒ j ≥ i. 
AFT implements atomic read protocol which guarantees 
that after every consecutive read, the set of key 
versions read forms an Atomic Readset. It uses local 
committed transaction metadata and recent versions of 
keys. 

In addition to read atomicity, AFT also ensures two 
other properties: read-your-writes and repeatable read. 

4. Scaling AFT 

One of the key requirements of serverless 
computing is scalability. In section 3, we have 
discussed how AFT ensures read atomicity for single 
node. In this section, we discuss how AFT ensures 
the same in distributed environment. 

Coordination-based techniques are mostly used in 
distributed environment to scale to hundreds or 
thousands of parallel requests. But it has issues with 
performance and scalability. AFT nodes do not 
coordinate with each other while serving requests. 
The write protocol described in 

3.2 allows each transaction to write to separate 
storage locations, ensuring that different nodes do not 
accidentally overwrite each others’ updates. Each 
AFT nodes is allowed to commit transaction without 
coordination which improves performance. Hence it 
requires that each nodes are aware of transactions 
committed by others. A background thread that 
periodically broadcasts all transactions committed 
recently to others and listens for messages from other 
replicas. When it receives a new commit set, it adds all 
those transactions to its local Commit Set Cache and 
updates its key version index. 

In a distributed setting, we might be processing 
thousands of transactions a second. So transaction 
commit metadata can grow monotonically. To avoid 
communicating unnecessary metadata, there is a 
process 
which proactively prune the set of transactions that 
each node multicasts. Any transaction that is locally 
superseded does not need to be broadcast. A 

transaction Ti is locally superseded if, ∀ki ∈Ti.writeset, 
∃ kj|j > i - that is, for every key written by Ti, there are 
committed versions of those keys written by 
transactions newer than Ti. Each node’s background 
multicast protocol checks whether a recently 
committed transaction is superseded before sending it 
to other replicas. If the transaction is superseded, it is 
omitted entirely from the multicast message. Similarly, 
for each transaction received via multicast, the 
receiving node checks to see if it is superseded by 
transactions stored locally; if it is not merged into the 
local metadata cache. 

 
4.1. Fault Tolerance 

Distributed deployments of AFT have a fault 
manager (see Figure 3) that lives outside of the 
request critical path. The fault manager receives 
every node’s committed transaction set without our 
pruning optimization. It 
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periodically scans the Transaction Commit Set in 
storage and checks for persisted commit records that 
it has not received via broadcast. It notifies all AFT 
nodes of any such transactions, ensuring that data is 
never lost once it has been committed. The fault 
manager is itself stateless and faulttolerant: If it fails, it 
can simply scan the Commit Set again. 

4.2. Garbage Collection 

There are two kinds of data that would grow 
monotonically if left unchecked: transaction commit 
metadata and set of key versions. Each transaction’s 
updates are written to unique keys in the storage engine 
and are never overwritten. In 4.2.1, we describe how 
each node clears its local metadata cache, and in 4.2.2, 
we describe how we reduce storage overheads by 
deleting old data globally 

 

4.2.1. Local Metadata Garbage Collection. 
 

There is a background garbage collection (GC) 
process, periodically sweeps through all committed 
transactions in the metadata cache. It checks if it is 
superseded and ensures that no currently-executing 
transactions have read from that transaction’s write set. 
If both conditions are met, it removes that transaction 
from the Commit Set Cache and evict any cached data 
from that transaction. But it cannot make decisions 
about whether to delete key versions because a 
transaction running at another node might read the 
superseded transaction’s writes. In next section, we 
describe a global protocol that communicates with all 
replicas to garbage collect key versions. 

 

4.2.2. Global Data Garbage Collection. 
 

The fault manager discussed in 4.1 also serves as a 
global garbage collector (GC). The fault manager 
already receives commit broadcasts from AFT nodes. 
This process is combined to reduce communication 
costs. Each individual replica maintains a list of all 
locally deleted transaction metadata. If all nodes have 
deleted a transaction’s metadata, we can be assured 
that no running transactions will attempt to read the 
deleted items. The global GC process asks all nodes to 
send list of locally deleted transactions. When the GC 
process receives acknowledgements from all nodes, it 
deletes the corresponding transaction’s writes and 
commit metadata. Separate cores are allocated for the 
data deletion process, which allows us to batch 
expensive delete operations separate from the GC 
process. 

 

5. Active-Standby based mechanism 

In active standby, the redundancy is introduced in 
the fission mechanism by creating two instances of the 
same function service namely the first instance called 
as the active 

instance and secondly the standby instance. One 
instance stays active and the other on standby. This is 
accomplished by marking first instance as ready and 
second instance as not- ready. To implement this 
approach, a popular open source framework, namely 
Fission, is used due to its ease of deployment and 
flexibility. 

5.1. Fission Architecture 

Fission is a well-known open source architecture 
used in retry based mechanism. Fission is built atop 
of Kubernetes’ basic abstractions like deployments, 
pods, and services. Fission makes it simple to build 
HTTP services on Kubernetes using functions. It 
abstracts away container pictures at the source level. 
It also shortens the learning curve for Kubernetes by 
allowing you to create usable services without 
understanding much about the platform. Deployments 
are declarative objects that describe an application 
that has been deployed. Pods are groups of 
application containers that share a similar execution 
environment. Services are groups of policies for 
gaining access to specific pods, including load 
balancing, naming, and discovery. To utilize Fission, 
we need to create functions and add them via a 
command line interface. Functions can be linked to 
HTTP routes, Kubernetes events, and other triggers. 
Fission currently supports NodeJS and Python. When 
their trigger fires, functions are called, and they only 
use CPU and memory while they’re running. Idle 
functions use no resources other than storage. 

Fission is made up of two primary parts: an 
Executor and a Router. The Executor is in charge of 
managing the lifespan of function pods. Also, it creates 
and controls the lifecycle of the function pods. 

 

 
PoolManager and NewDeploy are the two sorts of 

Executors. PoolManager keeps a pool of generic 
warm containers to let functions start faster when they 
are cold. Autoscaling is not supported by this executor 
type. 

 
 

NewDeploy is built on top of Kubernetes 
deployments, services, and a Horizontal Pod Autoscaler 
that allows autoscaling function pods. 

When a function call is made, the Router sends it to 
the appropriate function pod and retries if it fails. The 
NewDeploy executor is used to create two replicas of 
the service function pod. The state of the function pods 
is managed by the Kubernetes Readiness Probe. The 
probe helps to mark the state of the active pod. The 
active pod is marked in ready state and is therefore 
ready to receive and serve traffic. The passive pod is 
marked in not-ready state hence does not receive any 
traffic. The DNS Server of Kubernetes ’CoreDNS’ is 
used to retrieve the IP address of active instance. In 
case of failure, 
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then the new pods created and NewDeploy executor 
ensures that always the two replicas of the functions are 
running. 

 
The implemented Active-Standby mechanism in 

Fission works as follows (see Figure 7).The 
Kubernetes CoreDNS receives function call and 
returns IP address. Later, the user forwards his 
request to active pod. At the same time, the active 
and passive pods send heartbeats continuously to 
each other to perform health check. The heartbeats 
are created by the Kubernetes readiness probes 
which are performed every second. When active pod 
is up and running perfectly, the passive pod fails 
readiness probe and stays does not stay in ready 
state. If the active pod is down, the passive pod gets 
ready and becomes active. One replica of the pod is 
created which would serve as passive pod later. If 
passive pod is down, replica of the active pod is 
created and keep in not-ready state. 

 
5.2. Experiment 

 

In this section, we evaluate the effectiveness of 
the active-standby approach and comparing it with 
retry mechanism used in fission based on experiment 
performed in [3]. 

 
5.3.1. Test Environment. 

 

Grid’5000 testbed, Five nodes to deploy 
Kubernetes, Fission AS, Fission Vanilla 1.5.0, two 
CPU’s Intel Xeon E52620 v4, 8 cores/CPU and 64 GB 
memory, two additional nodes for invoking functions 
and the other one for inserting faults. 

 
5.3.2. Test Scenario. 

 

Two failure scenarios are defined. 

1) Application failure due to pod failure: 
PowerfulSeal tool is used in this case for 
inserting faults between 30 sec to 60 sec of 
workload execution. 

2) Application failure due to node failure: A script 
is used to cause failure in this case at 30 
seconds after the beginning of workload 
execution. 

 
5.3.3. Applications. 

 

Two HTTP-Triggered functions were used. The first 
is Fibonacci, which is a CPU-intensive function for 
computing the Fibonacci sequence. The second 
application is the Guestbook, which consists of two 
functions, GET and ADD, for reading and writing text 
messages in a Redis database. 

 

5.3.4. Evaluation. 

Evaluation is based on Performance, 
Availability and Resource Consumption. 

 
 
 
 

5.3. Experimental Results 
 

[3] performed three different sets of experiments: (1) 
Experiments without failures; (2) Experiments with pod 
failures; (3) Experiments with node failures. 

 
5.4.1. Experiments without failures. 

 

Figure 8 and Figure 9 present the throughput and 
average response time of the Fibonacci and Guestbook 
applications deployed with both Fission AS and Fission 
vanilla without failures. Throughput is similar for both 
functions in their versions. Both show a capacity of 11 
seconds processing per request. Both functions, 
Fibonacci and Guestbook, have lower response time 
with Fission AS. 

 

5.4.2. Experiments with pod failures. 
 

Figure 10 and Figure 11 show the throughput and 
average response times of the Fibonacci and 
Guestbook applications with Fission AS and vanilla, 
with pod failures. Vanilla retries the function execution 
numerous times until the maximum number of 
attempts is reached, after which it deletes the function 
instance from the cache and recreates a new one. 
This wastes time and resources because it effectively 
re-executes a request that will most likely fail in the 
end. Active-Standby method allows for speedier 
recovery than the vanilla retry system. 

 

5.4.3. Experiments with node failure. 
 

Figure 12 and Figure 13 show the throughput and 
average response times of Fibonacci and Guestbook 
applications with Fission AS and vanilla, with node 
failures. In terms of availability, we can easily observe 
that AS outperforms vanilla. Another observation is 
that vanilla tolerates shortterm failures better than 
long-term failures like node breakdowns. 

 

6. Conclusion 

In this paper, we have presented how Atomic Fault 
Tolerance shim (AFT) achieves fault tolerance by 
guaranteeing read atomic isolation. It adds minimum 
overhead to prevailing architectures and gauges 
linearly with the size of the cluster in just one 
execution. We have also discussed how the high 
availability is achieved using ActiveStandby approach 
where system makes sure that there are 
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two replicas of same function services. In case one 
become nonoperational, the other one is there to back it 
up by handling the service requests which provide fault 
tolerance. If we want to achieve atomicity in serverless 
computing, we can use AFT with function retries 
mechanism for fault tolerance. But if the requirement is 
high availability, then Active-Standby approach is better 
for fault tolerance. 
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