
www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a620

Study on Fault-Tolerance for Serverless

Computing

FNU Aayoush Dhara Bhadani Siddhesh Gawde

Department of Computer Engineering and Computer Science

California State University, Long Beach, United States

Abstract—Serverless Computing, most often referred as

Functionas- a-Service (FaaS), has become popular in recent

years because of their operation such as ease-of-use,

autoscaling and pay-for-whatyou-use features. FaaS

infrastructure provides some fault tolerant measures like

automatic retry functions in case of function failure - whether

because of application error or infrastructure failure. This

retries mechanism ensures that functions are executed at-

least once. It encourages developers to write idempotent

program which ensures at-most once execution. Combining

retry-based atleast once execution and idempotent at-most

once execution is insufficient to guarantee exactly once

execution. To address this challenge, Vikram Sreekanti et al.

have introduced AFT, an atomic fault tolerance shim for

serverless applications. It interposes between a commodity

FaaS platform and storage engine and ensures atomic visibility

of updates by enforcing the read atomic isolation guarantee. In

this paper, we are discussing fault-tolerance measures for

Serverless Computing and how AFT guarantees read atomic

isolation and scales thousands of requests per second

smoothly. We also discussing alternative approach for fault

tolerance in FaaS based on Active-Standby failover.

Index Terms—Serverless Computing, Faas, Autoscaling, AFT,

Active- Standby failover approach

1. Introduction

For cloud solution architects and developers,
serverless computing is becoming increasingly
appealing. It’s advantages varies from simplicity to
deployment. Serverless computing most commonly
refers to Functions-as-a-Service in today’s public clouds
(FaaS). FaaS systems allow users to build applications
in high-level languages while restricting the functionality
of those apps. The requirement that programs be
stateless is one of the most significant limitations—
requests are not guaranteed to be sent to any particular
instance of a program, thus developers must plan
accordingly.Clients often re-issue requests after a
timeout, and FaaS platforms provide some amount of
fault tolerance by automatically retrying functions if they
fail. The use of retries ensures that functions are run at
least once. Combining retry-based at-least-once
execution with idempotent at- leastone execution
appears to provide exact once execution.We argue that
in a retry-based faulttolerance model, atomicity is
required to address these issues: either all

or none of an application’s updates should be
displayed.Serializable transactions are a straightforward
solution in this case. Because functions have well-
defined beginnings and finishes, a transactional
architecture is an obvious choice for ensuring atomicity
in FaaS platforms.Providing high availability for
deployed functions is one of the primary difficulties for
FaaS providers. Commercial FaaS solutions are
marketed as having high availability and built-in fault
tolerance.

1.1. Serverless computing

Serverless computing unlike its name do have
physical servers present and their services are based
on it but the user or developers do not need to worry
about them or be aware of it. Serverless computing is
fairly a new and booming concept that is growing
exponentially in the recent years. When it comes to
technology in serverless computing, the user is billed
only on the amount of usage.In other words serverless
computing is an as-used basis service. It is a provider
empowers a user to write/deploy a piece of code or
host an API without the pain of establishing, maintain
scale an underlying infrastructure. It can be
considered as a cloud computing execution model
where the service provider provides machine
resources and does not occupy resources in volatile
memory, however the processing is done with the
help of short busts with results continue steadily to
memory or storage

1.2. Advantages of serverless computing

Since Serverless computing is only billed based on
your usage and until the resource is used, it definitely
is an edge in cost effectiveness and is generally very
cost effective as compared to cloud providers who bill
user for idle resources as well, hence serverless
computing is more affordable. Secondly,it would
simplify scalability since the user does not need to
worry about good practices to scale the system and
policies governing scaling. Serverless computing
developers can create independent functions that
may perform only one purpose for instance an API
call hence offers simplified backend code. It is time
efficient and has quicker turnaround times as it does
not include a complex deploy process to roll out
bugs. Users or developers can

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a621

modify, add code characterized by non-systematic
fractional measures

1.3. Faas

Function As a Service is a cloud computing service
that gives user the freedom to execute program or code
without the hassle of complicated infrastructure with
regards to development and launching of applications
like microservices to host an application on the world
wide web three things are required the physical
hardware, virtual machine operating system, and web
server software management. Faas provides all of these
three things and is handled and provided by cloud
service provider so the user can only focus on individual
function that are present in your application code.

Figure 1. Serverless architecture

Faas and Serverless Computing are often confused

with one another but actually Faas is nothing different
from serverless computing and is a subset of
serverless. serverless in itself is a bigger term that
focuses on a variety of service category be it storage ,
database ,computing , API, gateways etc, where
configuration management is hidden or invisible from
the user. While in the case of Faas which is one of the
most fundamental technology in serverless architecture
focusing on events, and is event driven where
application code and containers only run in case of
requests.

1.4. Advantages of FaaS

The advantages of FaaS includes advantages of
serverless computing that it allows user or developers to
focus on writing application logic without the burden of
deploying on servers hence faster development
turnaround, hence Scalable. Developers don’t need to
create contingencies for traffic, therefore, its cost
effective. Since it is a subset of

serverless computing, users are only billed on usage and
there is no need to spend for extra cloud resources.

2. Retry-based Fault Tolerance Mechanism

Failures occur while communicating with
components or services. The issues can be due to
unavailability of the service/component, network
failure, timeouts or overload. In such cases, if we call
the process again, it may succeed. Such type of
failures are called transient failures. In such cases, we
can implement the retry mechanism to resolve the
issue.

1) Identify if the fault is transient

2) Declare maximum retry count

3) Retry the process and increment the retry counter

4) If the process is successful, acknowledge the
caller and return result

5) If the fault persists, repeat step 3 until
maximum retry counter is reached.

6) If maximum retry count reached, inform the
caller that the service is unavailable.

Incomplete action/ process is similar to an
undelivered event. When the exception or the error
occurs, the retry mechanism analyzes it and identifies
whether the process should be retried automatically
or not. When the system decides to retry it, it moves
the process on queue with some defined delay.

Figure 2. CPE ACS Connection

The CPE tries to send an event to ACS. When the

ACS responds and a successful connection is
established, the action is complete and the event is
considered successful. The event is unsuccessful if
the Inform RPC is not completed. After every
successful inform RPC, the Retry Counter is set to
zero. For an unsuccessful event, it is set to one. In
this CPE model, there are two variables of
RetryMinimumWaitInterval and

RetryIntervalMultiplier. After an unsuccessful
event, the CPE waits for some time within the interval of
the two parameters which prevents number of CPE
reconnection attempts at the same time. If it fails again,
the counter is again incremented. This leads to
exorbitantly high values of

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a622

waiting interval time calculated using the below
formula- Previous Maximum
Wait Interval to

(RetryMinimumWaitInterval ∗

(IntervalMultiplier)RetryCount)

The old maximum range becomes the new minimum.

The new maximum range now equals to the
RetryMinimumWaitInterval multiplied by
IntervalMultiplier (in seconds) to the power of
RetryCount.

2.1. Challenge in Retry-based Fault-Tolerance

FaaS platform provides fault tolerance with retries. If
function fails, it retries function until maximum retry
counter is reached. It ensures that function executes at-
least once. FaaS platform providers enforce developers
to write idempotent program as idempotence logically
ensures atmost once execution [1]. Combination of
retry-based atleast once execution and idempotent at-
most once execution is no sufficient to guarantee
exactly-once execution. To see why, consider a function
f write two keys, k and l to storage. If f fails after write of
k, we have new version of k and old version of l so
parallel read requests see partially updated data.
Despite function f is idempotent, the application is
exposed to fractional execution where some updates
are visible and other are not. [1] propose that in retry-
based fault tolerance, atomicity is required to solve this
problem: Either all the updates made by an application
should be visible or none of them should.

3. A Fault-Tolerance Shim

AFT, an Atomic Fault Tolerance shim provides fault
tolerance for FaaS application by interposing between a
FaaS platform (e.g. AWS Lambda, Azure Functions etc.)
and a cloud storage engine (e.g. AWS S3, Google
Cloud BigTable etc.). It enforces read atomic isolation
guarantee, ensuring that transaction never see partial
side effects. All updates to storage are buffered by AFT
and committed to storage at the end of request
automatically.

1) The design of AFT, a low-overhead, transparent
fault tolerance shim for serverless applications
that is flexible enough to work with many
combinations of commodity compute platforms
and storage engines

2) A new set of protocols to guarantee read
atomic isolation for shared, replicated storage
systems.

3) A garbage collection scheme for our protocols
that significantly reduces the storage overheads
of read atomic isolation

4) A detailed evaluation of AFT, demonstrating
that it imposes low latency penalties and scales
smoothly to hundreds of clients and thousands
of requests per second.

In sections 3.1–3.2, we present how AFT achieves
atomic reads and writes at a single node. Next, we
discuss how AFT achieves the same in distributed
environment in section 4.

3.1. Architecture and API

Figure 3 shows a high-level overview of the AFT
architecture. Each AFT node has a transaction
manager, an

Figure 3. A high level overview of AFT shim

atomic write buffer and a local metadata cache. A
transaction manager is responsible for read atomicity.
It keeps a track of key versions read by each
transaction. The atomic write buffer stores each
transaction’s write set and is responsible for
atomically persisting them at commit time. AFT
maintains a Transaction Commit Set storage, which
holds the ID of each committed transaction and its
corresponding write set. AFT caches the IDs of
recently committed transactions and locally maintains
an index that maps from each key to the recently
created versions of that key. When an AFT node
starts (e.g., after recovering from failure), it reads the
latest records in the Transaction Commit Set to warm
its metadata cache. In addition to a metadata cache,
AFT has a data cache, which stores values for a
subset of the key versions in the metadata cache and
improves performance by avoiding storage lookups
for frequently accessed versions.

API Explanation

StartTransaction()→txid This API begins a new transaction

and returns a transaction ID.

Get(txid, key)→value This API retrieves key in the context

of the transaction keyed by txid.

Put(txid, key, value) This API performs an update

for transaction txid.

AbortTransaction(txid) This API aborts transaction txid

and discards any updates made

by it.

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a623

CommitTransaction(txid) This API commits transcation txid

and persists its updates; only

acknowledges after all data and

metadata has been persisted.

TABLE 1. AFT
APIS

Table 1 lists transactional key-value store API
offered by AFT. Each logical request, which might
span multiple FaaS functions, is referred as a
transaction. When a client calls StartTransaction, AFT
starts a new transation and a globallyunique UUID is
assigned to a transaction. Clients uses Get(txid, key)
and Put(txid, key, value) to read and write keyvalue
respectively. When a client calls CommitTransaction,
AFT assigns a commit timestamp to transaction,
persists all of the transaction’s updates, and only
acknowledges the request once the updates are
durable. If a client calls AbortTransaction, none of its
updates are made visible, and the data is deleted
from atomic write buffer.

3.2. Read Atomic Isolation

The read atomic isolation guarantee, introduced by
Bailis et al. in [2], ensure that transactions do not view
partial effects of other transactions. A system provides
Read Atomic isolation (RA) if it prevents fractured reads
anomalies and also prevents transactions from reading
uncommitted, aborted, or intermediate data.
“uncommitted, aborted, or intermediate” data is referred
as dirty reads. A fractured read happens when
transaction Ti writes two key versions xm and yn, and Tj

[later] reads version xm and yk and k < n.

To prevent dirty reads, AFT guarantees that if

transaction Ti reads key version kj written by transaction
Tj, Tj must have successfully committed. As described in
section 3.1 Atomic Write Buffer sequesters all the
updates for each transaction. Below steps shows how
AFT implements atomic updates via a simple write-
ordering protocol:

1) AFT writes the transaction’s updates to storage
When CommitTransaction is invoked.

2) AFT updates Transaction Commit Set in storage

by

adding transaction’s write set, timestamp, and

UUID.

3) AFT acknowledges the transaction as
committed to the client and make the
transaction’s data visible to other requests only
after the Commit Set is updated
4) If a client calls AbortTransaction, its updates
are simply deleted from the Atomic Write Buffer,
and no state is persisted in the storage engine.

This simple write-ordering protocol ensures that
transactions never read dirty data.

To avoid fractured reads, each transaction’s read set
must form an Atomic Readset defined below: Definition
1 (Atomic

Readset). Let R be a set of key versions. R is an Atomic

Readset if ∀ki ∈ R,∀ li ∈ki.cowritten,lj ∈ R ⇒ j ≥ i.
AFT implements atomic read protocol which guarantees
that after every consecutive read, the set of key
versions read forms an Atomic Readset. It uses local
committed transaction metadata and recent versions of
keys.

In addition to read atomicity, AFT also ensures two
other properties: read-your-writes and repeatable read.

4. Scaling AFT

One of the key requirements of serverless
computing is scalability. In section 3, we have
discussed how AFT ensures read atomicity for single
node. In this section, we discuss how AFT ensures
the same in distributed environment.

Coordination-based techniques are mostly used in
distributed environment to scale to hundreds or
thousands of parallel requests. But it has issues with
performance and scalability. AFT nodes do not
coordinate with each other while serving requests.
The write protocol described in

3.2 allows each transaction to write to separate
storage locations, ensuring that different nodes do not
accidentally overwrite each others’ updates. Each
AFT nodes is allowed to commit transaction without
coordination which improves performance. Hence it
requires that each nodes are aware of transactions
committed by others. A background thread that
periodically broadcasts all transactions committed
recently to others and listens for messages from other
replicas. When it receives a new commit set, it adds all
those transactions to its local Commit Set Cache and
updates its key version index.

In a distributed setting, we might be processing
thousands of transactions a second. So transaction
commit metadata can grow monotonically. To avoid
communicating unnecessary metadata, there is a
process
which proactively prune the set of transactions that
each node multicasts. Any transaction that is locally
superseded does not need to be broadcast. A

transaction Ti is locally superseded if, ∀ki ∈Ti.writeset,
∃ kj|j > i - that is, for every key written by Ti, there are
committed versions of those keys written by
transactions newer than Ti. Each node’s background
multicast protocol checks whether a recently
committed transaction is superseded before sending it
to other replicas. If the transaction is superseded, it is
omitted entirely from the multicast message. Similarly,
for each transaction received via multicast, the
receiving node checks to see if it is superseded by
transactions stored locally; if it is not merged into the
local metadata cache.

4.1. Fault Tolerance

Distributed deployments of AFT have a fault
manager (see Figure 3) that lives outside of the
request critical path. The fault manager receives
every node’s committed transaction set without our
pruning optimization. It

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a624

periodically scans the Transaction Commit Set in
storage and checks for persisted commit records that
it has not received via broadcast. It notifies all AFT
nodes of any such transactions, ensuring that data is
never lost once it has been committed. The fault
manager is itself stateless and faulttolerant: If it fails, it
can simply scan the Commit Set again.

4.2. Garbage Collection

There are two kinds of data that would grow
monotonically if left unchecked: transaction commit
metadata and set of key versions. Each transaction’s
updates are written to unique keys in the storage engine
and are never overwritten. In 4.2.1, we describe how
each node clears its local metadata cache, and in 4.2.2,
we describe how we reduce storage overheads by
deleting old data globally

4.2.1. Local Metadata Garbage Collection.

There is a background garbage collection (GC)
process, periodically sweeps through all committed
transactions in the metadata cache. It checks if it is
superseded and ensures that no currently-executing
transactions have read from that transaction’s write set.
If both conditions are met, it removes that transaction
from the Commit Set Cache and evict any cached data
from that transaction. But it cannot make decisions
about whether to delete key versions because a
transaction running at another node might read the
superseded transaction’s writes. In next section, we
describe a global protocol that communicates with all
replicas to garbage collect key versions.

4.2.2. Global Data Garbage Collection.

The fault manager discussed in 4.1 also serves as a
global garbage collector (GC). The fault manager
already receives commit broadcasts from AFT nodes.
This process is combined to reduce communication
costs. Each individual replica maintains a list of all
locally deleted transaction metadata. If all nodes have
deleted a transaction’s metadata, we can be assured
that no running transactions will attempt to read the
deleted items. The global GC process asks all nodes to
send list of locally deleted transactions. When the GC
process receives acknowledgements from all nodes, it
deletes the corresponding transaction’s writes and
commit metadata. Separate cores are allocated for the
data deletion process, which allows us to batch
expensive delete operations separate from the GC
process.

5. Active-Standby based mechanism

In active standby, the redundancy is introduced in
the fission mechanism by creating two instances of the
same function service namely the first instance called
as the active

instance and secondly the standby instance. One
instance stays active and the other on standby. This is
accomplished by marking first instance as ready and
second instance as not- ready. To implement this
approach, a popular open source framework, namely
Fission, is used due to its ease of deployment and
flexibility.

5.1. Fission Architecture

Fission is a well-known open source architecture
used in retry based mechanism. Fission is built atop
of Kubernetes’ basic abstractions like deployments,
pods, and services. Fission makes it simple to build
HTTP services on Kubernetes using functions. It
abstracts away container pictures at the source level.
It also shortens the learning curve for Kubernetes by
allowing you to create usable services without
understanding much about the platform. Deployments
are declarative objects that describe an application
that has been deployed. Pods are groups of
application containers that share a similar execution
environment. Services are groups of policies for
gaining access to specific pods, including load
balancing, naming, and discovery. To utilize Fission,
we need to create functions and add them via a
command line interface. Functions can be linked to
HTTP routes, Kubernetes events, and other triggers.
Fission currently supports NodeJS and Python. When
their trigger fires, functions are called, and they only
use CPU and memory while they’re running. Idle
functions use no resources other than storage.

Fission is made up of two primary parts: an
Executor and a Router. The Executor is in charge of
managing the lifespan of function pods. Also, it creates
and controls the lifecycle of the function pods.

PoolManager and NewDeploy are the two sorts of

Executors. PoolManager keeps a pool of generic
warm containers to let functions start faster when they
are cold. Autoscaling is not supported by this executor
type.

NewDeploy is built on top of Kubernetes
deployments, services, and a Horizontal Pod Autoscaler
that allows autoscaling function pods.

When a function call is made, the Router sends it to
the appropriate function pod and retries if it fails. The
NewDeploy executor is used to create two replicas of
the service function pod. The state of the function pods
is managed by the Kubernetes Readiness Probe. The
probe helps to mark the state of the active pod. The
active pod is marked in ready state and is therefore
ready to receive and serve traffic. The passive pod is
marked in not-ready state hence does not receive any
traffic. The DNS Server of Kubernetes ’CoreDNS’ is
used to retrieve the IP address of active instance. In
case of failure,

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a625

then the new pods created and NewDeploy executor
ensures that always the two replicas of the functions are
running.

The implemented Active-Standby mechanism in

Fission works as follows (see Figure 7).The
Kubernetes CoreDNS receives function call and
returns IP address. Later, the user forwards his
request to active pod. At the same time, the active
and passive pods send heartbeats continuously to
each other to perform health check. The heartbeats
are created by the Kubernetes readiness probes
which are performed every second. When active pod
is up and running perfectly, the passive pod fails
readiness probe and stays does not stay in ready
state. If the active pod is down, the passive pod gets
ready and becomes active. One replica of the pod is
created which would serve as passive pod later. If
passive pod is down, replica of the active pod is
created and keep in not-ready state.

5.2. Experiment

In this section, we evaluate the effectiveness of
the active-standby approach and comparing it with
retry mechanism used in fission based on experiment
performed in [3].

5.3.1. Test Environment.

Grid’5000 testbed, Five nodes to deploy
Kubernetes, Fission AS, Fission Vanilla 1.5.0, two
CPU’s Intel Xeon E52620 v4, 8 cores/CPU and 64 GB
memory, two additional nodes for invoking functions
and the other one for inserting faults.

5.3.2. Test Scenario.

Two failure scenarios are defined.

1) Application failure due to pod failure:
PowerfulSeal tool is used in this case for
inserting faults between 30 sec to 60 sec of
workload execution.

2) Application failure due to node failure: A script
is used to cause failure in this case at 30
seconds after the beginning of workload
execution.

5.3.3. Applications.

Two HTTP-Triggered functions were used. The first
is Fibonacci, which is a CPU-intensive function for
computing the Fibonacci sequence. The second
application is the Guestbook, which consists of two
functions, GET and ADD, for reading and writing text
messages in a Redis database.

5.3.4. Evaluation.

Evaluation is based on Performance,
Availability and Resource Consumption.

5.3. Experimental Results

[3] performed three different sets of experiments: (1)
Experiments without failures; (2) Experiments with pod
failures; (3) Experiments with node failures.

5.4.1. Experiments without failures.

Figure 8 and Figure 9 present the throughput and
average response time of the Fibonacci and Guestbook
applications deployed with both Fission AS and Fission
vanilla without failures. Throughput is similar for both
functions in their versions. Both show a capacity of 11
seconds processing per request. Both functions,
Fibonacci and Guestbook, have lower response time
with Fission AS.

5.4.2. Experiments with pod failures.

Figure 10 and Figure 11 show the throughput and
average response times of the Fibonacci and
Guestbook applications with Fission AS and vanilla,
with pod failures. Vanilla retries the function execution
numerous times until the maximum number of
attempts is reached, after which it deletes the function
instance from the cache and recreates a new one.
This wastes time and resources because it effectively
re-executes a request that will most likely fail in the
end. Active-Standby method allows for speedier
recovery than the vanilla retry system.

5.4.3. Experiments with node failure.

Figure 12 and Figure 13 show the throughput and
average response times of Fibonacci and Guestbook
applications with Fission AS and vanilla, with node
failures. In terms of availability, we can easily observe
that AS outperforms vanilla. Another observation is
that vanilla tolerates shortterm failures better than
long-term failures like node breakdowns.

6. Conclusion

In this paper, we have presented how Atomic Fault
Tolerance shim (AFT) achieves fault tolerance by
guaranteeing read atomic isolation. It adds minimum
overhead to prevailing architectures and gauges
linearly with the size of the cluster in just one
execution. We have also discussed how the high
availability is achieved using ActiveStandby approach
where system makes sure that there are

http://www.ijcrt.org/

www.ijcrt.org © 2022 IJCRT | Volume 10, Issue 1 January 2022 | ISSN: 2320-2882

IJCRT2201080 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a626

two replicas of same function services. In case one
become nonoperational, the other one is there to back it
up by handling the service requests which provide fault
tolerance. If we want to achieve atomicity in serverless
computing, we can use AFT with function retries
mechanism for fault tolerance. But if the requirement is
high availability, then Active-Standby approach is better
for fault tolerance.

References

[1] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph

E. Gonzalez, Joseph M. Hellerstein, Jose M. Faleiro, “A fault-

tolerance shim for serverless computing,” in the Fifteenth

European Conference on Computer Systems (EuroSys ’20), Apr.

2020, pp. 1–7.

[2] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, Ion

Stoica, “Scalable atomic visibility with ramp transactions,” in

2014 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’14, New York, NY, USA, Jan. 2014, p. 27–38.

[3] Yasmina Bouizem, Djawida Dib, Nikos Parlavantzas, Christine

Morin, “Active-standby for highavailability in faas,” in WoSC6

2020 Sixth International Workshop on Serverless Computing,

Delft, Netherlands, Dec. 2020, pp. 1–6. [4] Serverless Functions

for Kubernetes - Fission. [Online]. Available: https://fission.io/

[5] Bruce Wu. (2019, Jun.) Fission: A Deep Dive Into Serverless

Kubernetes Frameworks. Alibaba Cloud. [Online]. Available:

https://www.alibabacloud.com/blog/594902

[6] Soam Vasani. (2017, Jan.)

Fission: Serverless Functions as a Service for

Kubernetes. Kubernetes

 Blog. [Online].

 Available:

https://kubernetes.io/blog/2017/01/fission-
serverlessfunctionsas- service-for-kubernetes/

[7] What is serverless computing? — serverless definition.

Cloudflare. [Online].

Available:

https://www.cloudflare.com/learning/serverless/what-is-serverless/

[8] What is Serverless Computing? IBM Cloud Education. [Online].

Available: https://www.ibm.com/cloud/learn/serverless

[9] Function as a service. Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Function as a service [10]

Serverless computing. Wikipedia. [Online].

Available: https://en.wikipedia.org/wiki/Serverless computing

http://www.ijcrt.org/
http://www.alibabacloud.com/blog/594902
http://www.cloudflare.com/learning/serverless/what-is-serverless/
http://www.ibm.com/cloud/learn/serverless

