ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

THERAPEUTIC VALUE OF GYMNOSPERMS

Mohd. Adil Tahseen, Aakash Bhatnagar, Sabahat Khan, Sayyad Mujeeb Miyan

¹ PhD Research Scholar, Shobit University, Saharanpur, Uttar Pradesh

² B. Pharm, Mohammad Ali Jauhar University, Rampur, Uttar Pradesh

Abstract

Non-flowering plants, or gymnosperms, are useful for a variety of purposes in the economy since they can be used to make food, oil, lumber, medicines, decorative items, and industrial resources. Used as a staple meal is gymnosperm from species such as Pinus, Cycas, Chilgoza, Ginko, etc. Perfumes and culinary oils are made from the oil derived from gymnosperm seeds. Gymnosperms have extensive medicinal and wood values in addition to these. In addition to being extremely important to humans, gymnosperms offer food and shelter to wildlife. Gymnosperms are valuable economically for a variety of reasons, including oil production, medical use, and aesthetic appeal. Gymnosperms contain a variety of essential phytochemicals, including stilbenes, tannins, glycosides, polyphenols, alkaloids, and flavonoids. It is possible to use phytochemicals in the production of medications. Their application in contemporary medicine is predicated on phytochemicals. The bark, leaves, seeds, and reproductive cones are the sources of the phytochemicals. The plant extract can be prepared using several techniques, including Maceration, Percolation, Soxhlet extraction, and extraction with ultrasound assistance, among others. The Gymnosperm extract has anti-inflammatory, anti-arthritic, anti-bowel, anti-cancer, anti-heart, and anti-stroke properties. Medications made from leaf extract have the potential to increase blood flow.

Keywords: Gymnosperms, phytochemicals, Medications, plant extract

INTRODUCTION

The name 'Gymnosperm' was created by Theophrastus in his Historia Plantarum (350-287 BCE). However, Robert Brown (1827) coined the name to describe a distinct group of plants within the Spermatophyta that yield naked seeds. They are a primitive group of vascular seed plants dating back to the Devonian Paleozoic period. Gymnosperms are woody perennials that are usually evergreen, which are represented by roughly 1000 species that belong to 83 genera and 12 families and are found primarily in temperate parts of the world. There are 161 taxa (154 species, six variations, and one forma) in India, comprising 46 genera and 11 families. There are 76 indigenous taxa and 19 endemics among them. Gymnosperms are one of the most vulnerable plant families, with 40% of species facing extinction, nearly double the most current estimates for all plants. Apart from its ecological importance in conserving the pure temperate continental settings, this ancient group of plants provides people with a variety of commercial items such as lumber, resins, medicine, and foodstuffs. They have participated in

various therapeutic systems, including contemporary medicine, folk medicine, and traditional medicine. Various species studied have been proven to be medicinally effective in diseases such as asthma, cough, sore throat, diarrhea, hypertension, rheumatism, fever, aphrodisiac, ulcer, diuretic, diabetes, kidney stone issues, bronchitis, etc. Although just a few gymnosperms are utilized in TMS, their importance as a medication cannot be overstated. Apart from medicinal benefits, the trees are harvested for a variety of purposes, resulting in an alarming decline in the conservation status of these tree species. These trees appear to be the source of sustainable usage in the majority of natural ecosystems; and have a limited distribution. These drive the need to protect and develop these plants through in-situ and ex-situ conservation efforts, allowing us to fulfill the demand for raw pharmaceuticals. (1, 2)

Ginkgo biloba	Leaf	Disc-	Methanol extract showed the highest activity (zone of
		diffusion	inhibition of 15-21 mm) followed by ethanol (14-
		and broth-	19 mm), chloroform (15-20 mm), and hexane (14-
		dilution	19 mm) extracts at 250μ g/mL. A minimum inhibitory
	 	assays.	concentration (MIC) of $7.8 \mu \text{g/mL}$ was found for the
	(methanol extract against Agrobacterium tumefaciens,
			Baci <mark>llus subtilis, Escherich</mark> ia coli, Erwinia
		Ξ.	chrysanthemi, and Xanthomonas phaseoli ³
Pinu <mark>s cembra</mark>	Bark	Agar	Hydromethanolic extracts (4 mg/well) showed
	and	diffusion	antimicrobial effects against Staphylococcus aureus,
	Needle	method	Sarc <mark>ina lutea, Bacillus cereus, Escherichia</mark>
	s		coli, <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> ⁴
Ephedra gerardiana	Root	Pour Plate	Methanol crude extract <i>n</i> -hexane, chloroform, ethyl
	and	Method	acetate, and n-butanol, fractions showed antibacterial
	stem		activities against all tested microbial strains while
			aqueous fraction showed no activities against Bacillus
			subtilis, Kleibsiella pneumoniae, and Pseudomonas
			aeruginosa. ⁵
Taxus wallichiana	Needle	Disk	Hydromethanolic extracts exhibited activities against S.
		diffusion	<i>marcescens</i> (16.23 \pm 0.26 mm), <i>B. subtilis</i> (15.71 \pm 0.41
		method, and	mm), P. chlororaphis (12.92 \pm 0.34 mm) and P.
		minimum	<i>palleroniana</i> $(15.43 \pm 0.37 \text{ mm}).^{6}$
		inhibitory	
		concentrati	
		ons (MIC)	

ANTIBACTERIAL ACTIVITY OF GYMNOSPERMS

Gnetum africanum	Leaf	Agar	Aqueous and ethanol extract at 50 g/100 mL showed
	and	diffusion	inhibitory effect against the fungal strains (<i>C. albicans</i>
	stem	method	and A. niger) but had no inhibition on the bacterial
			strains (S. aureus, S. typhi and E. coli) ⁷
Cedrus brevifolia	Needle	Minimum	Antibacterial activity was observed with the methanol
	s,	inhibitory	extract of branches presenting the strongest activity
	twigs,	concentrati	against <i>S. aureus</i> (MIC, 0.097 mg/mL and MBC, 0.195
	branch	on (MIC)	mg/mL). ⁸
	es, and	and	
	bark	minimum	
		bactericidal	
		concentrati	
		on (MBC)	
Picea abies	Essenti	Isothermal	The extracts inhibited the growth of <i>Escherichia coli</i> . ⁹
	al oils	calorimetry.	8
	extract		
	ed fro		
	m		
	wood		
	residue		
	s		
Lari <mark>x decidua</mark>	Bark	Microplate	Hydroalcoholic extract in the concentration range of 2–
		dilution	200 µg/mL showed antimicrobial activity against
		method	Staphylococcus aureus, Streptococcus pyogenes,
			Streptococcus pneumoniae, Klebsiella pneumoniae,
			Pseudomonas aeruginosa, and Haemophilus
			influenzae compared to that of grapefruit seed extract
			(GSE) ¹⁰
Thuja compacta	Leaves	Agar well	Acetone, chloroform, methanol, and petroleum ether
		diffusion	extracts showed significant activity against
		method	Bacillus cereus, Bacillus subtilis and Bacillus
			megaterium. Only Pseudomonas aeruginosa shows
			activity against chloroform extract. All the organisms
			are susceptible to Amoxicillin; Ciprofloxacin;
			Cotrimoxazole; Gentamicin and Tetracycline ¹¹
T :C			
Iorreya nucifera	Leaves	Minimum	The time-kill assay confirmed that Hydro-distilled
Iorreya nucifera	Leaves and	Minimum inhibitory	The time-kill assay confirmed that Hydro-distilled essential oils (TNEs) had a bactericidal effect on the

	branch	on (MIC)	corroborated by the results of the MIC and MBC
	es	was	assays. The MTT assay also revealed that it showed
		measured	almost no cytotoxicity against human skin cells even at
		by a	the concentration showing a bactericidal effect. ¹²
		modified	
		Broth	
		Microdiluti	
		on method	
		Time-kill	
		curve assay	
Encephalartos	Leaves	Disk agar	Methanol extract exhibited antifungal activity
laurentianus		diffusion	against C. albicans clinical isolates with MIC values
		method	that ranged from $32-256 \mu\text{g/mL}^{13}$
Pilgerodendron wiferum	heartw	Minimum	Essential oil light petroleum ether extract
1 ligerouenaron avijeram	ood	Inhibitory	dichloromethane extract Inhibit efflux in NorA numps
	000	Concentrati	in S auraus ¹⁴
		on (MIC)	in 5. aureus
		Ethidium	
		Ethidium	
		Bromide	
		Accumulati	
		on Assay	
Nageia wallichiana	Leaves	minimum	Leaf oil was active against Bacillus subtilis and
	and	inhibitory	Candida albicans with the MIC value of 50 μ g/mL with
	twigs	concentrati	Streptomycin, tetracycline and nystatin were used as
		on (MIC)	positive controls ¹⁵
Araucaria araucana	Wood	Agar-well	Lignans (secoisolariciresinol, pinoresinol, eudesmin,
		diffusion	lariciresinol, and lariciresinol-4-methyl ether) were
			isolated from an MeOH extract. secoisolariciresinol
			exhibited a significant antifungal activity on fungi of
			white rooting and wood staining and this compound
			completely inhibited the mycelial growth of T.
			Versicolor and C. pilifera at 300 and 400µg per disc,
			respectively, whereas pinoresinol showed a moderate
			inhibitory activity. On the other hand, the MeOH
			extract had the highest activity against rooting and
			staining and pathogenic fungi as well as T. versicolor.
			Fusarium and Trichophyton mentagrophytes.
			inhibiting completely the growth at 400ug per disc. ¹⁶

Taxodium ascendens	Green	MIC	Diterpenes from Taxodium ascendens such as
	fruit		demethylcryptojaponol, 6-hydroxysalvinolone,
			hydroxyferruginol, and hinokiol demonstrated potent
			activity against clinical isolates of methicillin-resistant
			Staphylococcus aureus (MRSA). ¹⁷
Agathis dammara	Leaves	Disc	Essential oil had significant antibacterial activities with
		diffusion	inhibition zones against Staphylococcus aureus and
		method and	Pseudomonas aeruginosa were 23.7 and 23 mm,
		micro-well	respectively, which demonstrated that the inhibition
		dilution	effects were greater than positive control (10 μ g/disc
		assay	streptomycin)
			The lowest MIC value was found against S. aureus
			(1.25 mg/mL) and Bacillus subtilis $(1.25 mg/mL)$. ¹⁸

ANTI-INFLAMMATORY ACTION OF GYMNOSPERMS

Torreya nucifera	Seeds		Lipopolysa	ccharide-	Ethyl ace	etate fraction	(Tn-EE-BF)) inhibits
			ac <mark>tivated</mark>		NO and	PGE ₂ produ	ction and als	o blocks
			RAW264.7	cells	mRNA	levels	of inducible	e NO
					synthase	(iNOS),	(TNF)-α,	and
					cyclooxy	genase (Co	OX)-2 in	a dose-
					dependen	it manner.	Tn-EE-BF	reduces
					nuclear le	evels of the	transcriptiona	al factors
					NF-кВ (р	o65) and AP	-1 (c-Jun and	IFRA-1.
					It also inh	nibits phosph	orylation leve	els of Src
					and Syk i	in the NF-κI	B pathway, as	s well as,
					IRAK1 at	t the protein	level, part of	f the AP-
					1 pathwa	y. By kinase	e assay, we c	onfirmed
					that Src,	Syk, and II	RAK1 are su	ppressed
					directly.	HPLC	analysis	indicates
					that arctig	genin, ament	toflavone,	
					and querc	cetin may b	e active cor	nponents
					with anti-	-inflammator	ry activities. ¹¹	9
Amentotaxus yunnanensis	Leaves	5	LPS-activa	ted	Amenyur	nnaosides A	A-C inhibit	ed NO
			RAW264.7	cells	productio	on in LPS-	activated RA	AW264.7
					cells with	h their IC ₅₀	values rangi	ing from
					11.05 to 4	44.07 µM, co	ompared to th	nat of the
					positive	contr	col co	mpound,
					dexameth	nasone, IC ₅₀	value of 16	.93 μM.

			Additionally, amenyunnaoside A dose-
			dependently reduced the production of IL-6
			and COX-2 but did not affect that of TNF- α
			at concentrations of 0.8, 4, and 20 $\mu M.^{20}$
Taxus baccata	Bark	Carrageenan-	95% ethanol extract exhibits potent anti-
		induced paw edema	inflammatory activity at 200mg/kg four
		method in the rat.	hours after administration in comparison
			with ether extract, as well as reference
			standard, Aspirin. The percentage inhibition
			of edema was 44.44% at a dose of 200
			mg/kg of 95% ethanol extract which is
			comparable to that of Aspirin ²¹
Cupressus torulosa	Needles	Egg albumin	25% aqueous methanol (AM) demonstrated
		denaturation assay	promising in vitro anti-inflammatory
		while carrageenan-	activity (IC50 160.01 µg/mL) compared to
		induced paw edema	standard diclofenac sodium (IC ₅₀ 73.94
		and formalin-	μ g/mL) in egg albumin denaturation assay.
		induced paw edema	In carrageenan-induced paw edema and
		models	formalin-induced paw edema tests the
			extract showed significant anti-
			inflammatory activity (57.28% and 51.04%
			inhibition of paw edema, respectively) at
			the dose of 400 mg/kg p.o. after 4 h in
			comparison to the standard diclofenac
			sodium which displayed 61.39% and
			52.90% inhibition, respectively, at the dose
			of 10 mg/kg p.o. after 4 h in these models.
			Two compounds namely monotropein
			(iridoid glycoside), (±)12-HETE
			(eicosanoid), and fraxin (coumarin
			glycoside) were reported to have anti-
			inflammatory effects. ²²
Chamaecyparis obtusa	Leaf	NF-κB-induced	Western blot analysis revealed the essential
		inflammation in	oil inhibition of inducible nitric oxide
		WI38 fibroblast	synthase, activation of cyclooxygenase-2,
		cells	and the degradation of cytosolic p65 and
			inhibitor of NF- κ B- α in the LPS-stimulated
			group. Additionally, confocal imaging of

Thuja occidentalis	Fresh, young, non woody branches with leaves	Cell viability assays on Caco-2 colon cells and ultrastructural analysis of the intestinal mucosa, measurement of reduced glutathione, lipid peroxidation, and gene expression of the inflammation markers in the intestine after oral administration to an experimental mouse model of colon inflammation (colitis) developed by intrarectal administration of 2,4,6- trinitro benzene sulfonic	nuclei revealed the translocation of phosphorylated p65, which was recovered in the cytosol in the phytoncide essential oil pre-treated group. Histopathological observation revealed that the alveolar capacity was enhanced in the essential oil olfactory administered rat group, compared with that in the normal rat group. ²³ Administration of 25 or 50 mg <i>T</i> . <i>occidentalis</i> mother tincture (MT) by gavage for 7 days succeeded in inhibiting the inflammatory process induced by TNBS in the intestine, most probably because of its rich contents of flavonoids and phenolic compounds. ²⁴
Callitris columellaris	Leaf	acıd (TNBS). Rat paw edema	Essential Oil causes a significant reduction
			in inflammation i.e., 60% (1000 μ g/kg p.o.) compared to standard anti-inflammatory drug indomethacin i.e., 40% (25 mg/kg) ²⁵
Araucaria bidwillii	Leaf	Hot Plate Method	The leaf hydroalcoholic extract at 300 and 200 mg/kg showed a significant reduction in acetic acid-induced writhings in mice

		Acetic Acid-	with a maximum effect of 65.1% reduction
		Induced Writhing	at 300 mg/kg dose. In the hot plate method,
		Test.	the percentage of pain inhibition was found
		Carrageenan	to be 81.69% and 66.1% with both the
		Induced Rat Paw	tested doses of the leaf extract respectively.
		Oedema.	The effect produced by the alcoholic extract
		Serotonin Induced	at the highest dose was comparable to that
		Rat Paw Oedema.	of acetylsalicylic acid at 100 mg/kg
			(91.52%). The alcoholic extracts also
			showed significant inhibition in
			carrageenan (18.61%, 32.12%, and
			45.64%) and serotonin (32.81%, 38.68%,
			and 40.75%) induced hind paw edema in
			rats at 100, 200, and 300 mg/kg of the ABH
			extract respectively. The anti-inflammatory
			effects showed by the extract were
			comparable to that of standard
			indomethacin 5 mg/kg (68.51% and
			63.28%) ²⁶
Podocarpus	Twigs and	LPS-Induced HT-29	nagilactone B and 16-hydroxy-4β-
macroph <mark>yllus</mark>	leaves	and RAW 264.7	carboxy- <i>O</i> -β-D-glucopyranosyl-19-nor-
		Cells	totarol diterpenoids from P. macrophyllus
			exhibited a potent anti-inflammatory effect
			against NO production on RAW 264.7 cells.
			Western blot analysis revealed that
			nagilactone B significantly decreased the
			expression of LPS-stimulated protein,
			inducible nitric oxide synthase (iNOS),
			cyclooxygenase (COX)-2, and
			phosphorylated extracellular regulated
			kinase (pERK)1/2. It also downregulated
			tumor necrosis factor (TNF)-α, interleukin
			(IL)-6, and IL-8 levels in LPS-induced
			macrophages and colonic epithelial cells ²⁷
			inderophages and coronic epithenal cens.
Pinus roxburghii	Leaves	Acetic acid-induced	The alcoholic extract of <i>Pinus</i>
Pinus roxburghii	Leaves	Acetic acid-induced writhing and tail	Thealcoholicextractof PinusroxburghiiSarg.atdoses100,300,and
Pinus roxburghii	Leaves	Acetic acid-induced writhing and tail immersion tests in	The alcoholic extract of <i>Pinus</i> <i>roxburghii</i> Sarg. at doses 100, 300, and 500 mg/kg showed significant inhibition of
Pinus roxburghii	Leaves	Acetic acid-induced writhing and tail immersion tests in Swiss albino mice	The alcoholic extract of <i>Pinus</i> <i>roxburghii</i> Sarg. at doses 100, 300, and 500 mg/kg showed significant inhibition of

	Carrageenan	paw edema at the third hour as compared to
	induced paw edema	indomethacin
	and cotton pellet	The alcoholic bark extract exhibited a
	granuloma in Wistar	significant and dose-related inhibition of
	albino rats.	the dried weight of the cotton pellet
		granuloma comparable to Diclofenac
		sodium.
		The dose of 500 mg/kg significantly
		reduced the number of abdominal
		constrictions induced in mice by a solution
		of acetic acid 1%.
		After 90 minutes the extract in doses of
		300 mg/kg and 500 mg/kg body weight
		showed a significant elongation of reaction
		time in the Tail Immersion Test in Rats. ²⁸
ANTIDIADETI	C FFFF CTS OF CVN	MACDEDMC

Cycas edentata	Leaf	Alloxan-induced	At doses between 250 and 1000 mg/kg body weight,
		diabetic ICR mice	the aqueous extract showed an antihyperglycemic
			effect and significantly lowered cholesterol
			comparable to Glimepiride. ²⁹
Ginkgo <mark>biloba</mark>	Leaf	Randomized,	The extract significantly decreased blood HbA1c
		placebo-controlled,	(7.7%±1.2% vs baseline 8.6%±1.6%, P<0.001),
		double-blinded,	fasting serum glucose (154.7±36.1 mg/dL vs
		and multicenter	baseline 194.4±66.1 mg/dL) and insulin (13.4±7.8
		clinical trial	μ U/mL vs baseline 18.5±8.9 μ U/mL, BMI
			$(31.6\pm 5.1 \text{ kg/m}^2 \text{ vs baseline } 34.0\pm 6.0 \text{ kg/m}^2)$, waist
			WC (102.6±10.5 cm vs baseline 106.0±10.9 cm),
			and VAI (158.9±67.2 vs baseline 192.0±86.2). ³⁰
Encephalartos ferox	Leaves	Haemoglobin	The crude extract exhibited the antidiabetic
		glycation	potential as it significantly inhibited α -glucosidase
		α-Glucosidase	and pancreatic lipase in a dose dependent fashion.
		inhibitory activity	The extract also effectively reduced intestinal
		Pancreatic lipase	glucose absorption. The extract showed antioxidant
		inhibitory activity	activity by efficiently scavenging ABTS and DPPH
			radicals with IC ₅₀ values of 68.3 μ g/ml and 308
			μ g/ml, respectively. ³¹
	1		

EFFECTS OF GININUSPERMS

Ephedra foeminea	Aerial	Streptozotocin-	In comparison to metformin (100 mg/Kg), induced
	parts	Induced Diabetic	diabetic rats treated with Ephedra
		Rats	foeminea aqueous extract showed significant
			improvement in blood glucose levels, lipid profile,
			liver, and kidney functions. Interleukin 1 and
			glutathione peroxidase levels in the spleen,
			pancreas, kidney, and liver of induced diabetic rats
			treated with extract were significantly lower than in
			untreated diabetic rats. ³²
Cedrus deodara	Stem	Streptozotocin	Ethanolic extract at dose levels of 250 mg/kg and
	bark	induced diabetes in	500 mg/kg exhibited significant antihyperglycemic
		mice	activity and also lowers the biochemical parameters
			like SGPT, SGOT, cholesterol and triglycerides.
			almost near to the effect of 10 mg/kg
			glibenclamide. ³³
Pinus halepensis	Bar <mark>k</mark>	Enzymatic	The anti-oxidation activity tests revealed a
		inhibition tests	significant reducing power towards the radicals
		$(\alpha$ -amylase and α -	tested. It also inhibited the enzymes involved in
		glucosidase)	diabetes (α -amylase and α -glucosidase) at very low
			concentrations comparable to Acarbose. These
			effects were verified in the in vivo approach, in
			particular by using the starch tolerance test. ³⁴
Picea glauca	Needle,	In vitro paradigms	Fractions were well-tolerated by PC12 neuronal
	Bark,	of diabetic	precursors under normoglucose conditions. LD50
	and	neuropathy	concentrations of needle extracts exceeded 100
	Cone	(glucotoxicity and	μ g/mL, whereas the LD ₅₀ of bark and cone extracts
		glucose	was 40 and 36.4 μ g/mL respectively. Needle
		deprivation) in	extracts protected PC12 cells from both
		PC12 cells.	glucotoxicity and glucose deprivation. Bark
			extracts had negligible activity. Cone extracts
			further impaired PC12 cell glucose tolerance. ³⁵
Abies pindrow	Aerial	Starch iodine test	The methanol extract showed huge antidiabetic
	Parts	via α-amylase	action whereas the chloroform extract exhibited a
		enzyme inhibition	mild profile of antidiabetic potential ³⁶
Araucaria columnaris	Leaf	Alloxan induced	The total phenolic content of benzene, ethyl acetate,
		diabetes	methanolic, and aqueous extract were 5.18±0.91,
			8.97±0.17, 63.22±0.48 and 38.24±0.63 GAE mg/g,
			respectively. The IC ₅₀ value of the DPPH

			scavenging potential for benzene and ethyl acetate
			was found to be more than $250\mu g/mL$ whereas for
			methanol and aqueous extracts was found to be
			136.6 and 200.2 µg/mL respectively. The aqueous
			extract was able to lower the blood glucose more in
			comparison to the methanolic extract comparable to
			glibenclamide. ³⁷
Cupressus sempervirens	Fruits	α-amylase	The fruits and seeds contained total free phenolic
	and	digestion enzyme.	content of 1.96 and 2.25 mg/g GAE, respectively.
	Seeds		The saponin content determined with vanillin
			reagent shows a good yield of 119.85 and 131.46
			mg/g DE in ethyl acetate and butanolic extracts,
			respectively. In addition, phenolic and saponins
			extracts were found to inhibit the enzymatic activity
			of α -amylase under in vitro starch digestion
			bioassay and the values of the IC ₅₀ constants have
		Y Y	been determined for both seeds and cones extracts.
			The values ranged from 0.49 to 1.12 mg/ml. ³⁸
Thuia occidentalis	Aerial	Alloxan	The hydroalcoholic extract at the dose of 100 mg/kg
5	parts	monohvdrate-	showed decreased levels of serum glucose, HOMA-
		induced diabetic	IR, total cholesterol, triglycerides, low-density lipid
		model in rats	cholesterol, very low-density lipid, alanine amino
			transaminase, aspartate amino transaminase, lactate
			dehydrogenase alkaline phosphatase acid
			phosphatase albumin creatinine urea and uric acid
			and increased levels of serum insulin HOMA-B
			high-density lipid cholesterol total protein and
			impairment in paparentia 8 cell functioning as
			impairment in pancreatic p-cen functioning as
	T C	D (compared to Gilbenciamide (0.5 mg/kg, 1.p.).
Chamaecyparis	Lear	Rats with	Hot water extracts
obtusa formosana		nyperglycemia	of C. obtusa var. formosana leaves showed
		induced by high-fat	improved glucose metabolism in oral glucose
		diets and	tolerance and postprandial blood glucose tests. A
		streptozotocin	decrease in HOMA-IR, leptin,
			and adiponectin levels of the HCO group revealed
			relieved insulin and leptin resistance. Obesity and
			accumulation of visceral fats induced by STZ and
			HFD could be mitigated in extract-treated groups.

			These anti-diabetic effects might be attributed to
			inhibition of intestinal digested enzymes
			and protein tyrosine phosphatases (PTPases). ⁴⁰
Juniperus oxycedrus	Berries	Streptozotocin-	Through in vivo bioactivity-guided fractionation
oxycedrus		induced diabetic	processes, shikimic acid, 4-O-β-D-glucopyranosyl
		rats	ferulic acid, and oleuropeic acid-8-O-β-d-
			glucopyranoside were isolated from the n-butanol
			sub extract of Water extract by silica gel and reverse
			phase column chromatography as the main active
			ingredient of the active subfraction. After 8 days of
			administration of the major compound shikimic
			acid, blood glucose levels (24%), malondialdehyde
			levels in kidney tissues (63-64%), and liver
			enzymes (AST, ALT, ALP) of diabetic rats were
			decreased. ⁴¹
Cephalotaxus sinensis	Leaf	STZ-induced	The extract showed significantly decreased fasting
		diabetic r <mark>ats</mark>	blood glucose and increased serum insulin level
			compared with the untreated diabetic control.
			Histopathology analysis showed that the pancreas
			of diabetic rats treated with the extract was more
			intact than that of untreated ones. The SOD
			activities in STZ-induced diabetic rats treated with
			the extract were significantly higher than that in
			untreated diabetic ones. At the same time, the
			corresponding MDA levels were much lower in the
			extract-treated diabetic animals.42

ANTITUMOR EFFECTS OF GYMNOSPERMS

Torreya grandis	Aril	H22 mice	The n-butanol fraction showed antitumor
		models of	activity without obvious liver damage through
		liver cancer	potentiating immunologic function and
			antioxidant activity of tumor-bearing mice
			comparable to cyclophosphamide ⁴³
Taxus cuspidata	Needles and	MTT assay or	The extract reached inhibition rates of 70-90%
	twigs	ATP assay.	in different human cancer cell lines (HL-60,
		H & E, PI,	BGC-823, KB, Bel7402, and HeLa) but only 5-
		TUNEL	7% in normal mouse T/B lymphocytes,
		staining, as	demonstrating the broad-spectrum anticancer

		well as	activity and low toxicity to normal cells of TC
		Annexin	extract in vitro. It inhibited cancer cell growth
		V/PI assay.	by inducing apoptosis and G2/M cell cycle
		Flow	arrest. extract and 5-FU, combined as a cocktail,
		cytometry.	synergistically inhibited the growth of cancer
			cells in vitro, with Combination Index values
			(CI) ranging from 0.90 to 0.26 at different effect
			levels from IC50 to IC90 in MCF-7 cells, CI
			ranging from 0.93 to 0.13 for IC_{40} to IC_{90} in PC-
			3M-1E8 cells, and $CI < 1$ in A549 cells. also
			extract did not affect the pharmacokinetics of 5-
			FU in rats. ⁴⁴
Taxus yunnanensis	Barks and	A549	In vivo, A549 growth is significantly inhibited
	le <mark>aves</mark>	Xenograft	by $86.1 \pm 12.94\%$ at 600 mg/kg of paclitaxel-
		Mice	containing extract (HDS-1) and $65.7 \pm 38.71\%$
		MTT Assay	at 200 mg/kg. HDS-1-derived flavonoids (HDS-
		W <mark>estern</mark>	2) and lignoids (HDS-3) significantly reduce the
		Blotting	efflux ratio of paclitaxel to 2.33 and 3.70,
		Flow	respectively, in Caco-2 permeability experiment
		Cytometry	and reduce paclitaxel reflux in MDCK-MDR1
		Analysis with	experiment. Furthermore, HDS-2 and HDS-3
		Annexin	potentiated paclitaxel-induced cytotoxicity by
		V/PI Staining	19.1–22.45% and 10.52–18.03%, respectively,
			inhibited the expression of cyclinB1, Bcl-2, and
			pMCL-1, and increased the percentage of
			necrosis cell in the condition of paclitaxel
			exposure. ⁴⁵
Calocedrus formosana	Leaves	Cell viability	n-hexane fraction of methanolic extract
		assay	exhibited the highest cytotoxicity potential
		Annexin	against two non-small-cell lung cancer
		V-FITC	(NSCLC) cell lines, namely A549 and CL1-5.
		binding assay	Yatein, isolated from the n-hexane fraction,
		Western blot	exhibited the highest cytotoxicity in the A549
		analysis	and CL1-5 cells. Flow cytometry results
		Reactive	revealed that yatein induced apoptosis in the cell
		oxygen	lines. Furthermore, expression of regulatory
		species	proteins related to apoptosis, such as caspase 3,
		(ROS) assay	caspase 8, caspase 9, and poly (ADP-ribose)

			polymerase (PARP), increased in the A549 and
			CL1-5 cells after yatein treatment. ⁴⁶
Calocedrus decurrens	Heartwood	MTT assay	The hexane extract and libocedroquinone
			displayed excellent cytotoxic effects against the
			human lung adenocarcinoma (A549) cell
			line. Moreover, libocedroquinone exhibited
			less toxicity with normal lung fibroblast cell line
			WI-38. ⁴⁷
Juniperus procera	Leaves	Flow-	Methanolic extract suppresses cancer cells in
		Cytometry	the colon (HCT ₁₁₆), liver (HepG2), breast
			(MCF-7), and erythroid (JK-1) cell lines.
			Out of the 12 bioactive compounds reported by
			GC/MS analysis, the active ingredient 2-imino-
			6-nitro-2 <i>H</i> -1-benzopyran-3-carbothiamide
			proved to be the best-docked chemical with the
			chosen proteins impacted by DNA
			conformational changes, cell membrane
			integrity, and proliferation in molecular docking
			studies. It was also found that the plant extract
			induced apoptosis and inhibited cell growth in
			the HCT ₁₁₆ cell line. ⁴⁸
Juniperu <mark>s communis</mark>	Fruits	Cell viability	J. communis extract (JCo extract) inhibited the
		assay.	growth of human HCC cells by inducing cell
		Cell cycle	cycle arrest at the G_0/G_1 phase, extensive
		analysis	apoptosis, and suppressing metastatic protein
		TUNEL	expressions in HCC cells. Moreover, the
		assay	combinational treatment of JCo and VP-16 was
		Immunoblott	found to enhance the anticancer effect. In in
		ing analysis	vivo study, JCo extract significantly suppressed
			HCC tumor growth and extended the lifespan
			with no or low systemic and pathological
			toxicity. The extract significantly up-regulated
			the expression of pro-apoptotic proteins and
			tumor suppressor p53, suppressed
			VEGF/VEGFR autocrine signaling, down-
			regulated cell cycles regulatory proteins and
			MMP2/MMP9 proteins. ⁴⁹

Cupressus sempervirens	Leaf	Trypan blue	The essential oil was able to reduce the DPPH
		assay.	reaching 50% reduction with IC_{50} value =
		Mean	290.09 7g mL ⁻¹ . It also exerted the highest
		survival days	cytotoxic activity with an LC $_{50}$ of 333.79 μg
		(MST)	mL ⁻¹ against NB4 followed by HL-60 and
			EACC cell lines (LC50 of 365.41, and 372.43
			μ g mL ⁻¹ , respectively). Regarding the in vivo
			anticancer study, pre-initiation treatment with
			the essential oil was more effective than
			initiation and post-initiation treatments
			respectively on the tumor (EACC) transplanted
			female mice (increased lifespan (%), decreased
			total EACC number and increased dead cells).
			In the toxicity study, serum urea, transaminases,
			and lactate dehydrogenase were increased.50
Chamaecyparis lawsoniana	Leaf	MTT assay	The leaf essential oil showed activity against
			human breast (MCF-7), colon (HCT-116), lung
			(A-549), and hepatocellular (HepG-2)
			carcinoma cells, with significant selectivity
			indices. It also showed weak antioxidant
			activity according to the DPPH, ABTS, and
			FRAP assays. In silico docking of these
			constituents against the epidermal growth factor
			receptor (EGFR), the myeloid cell leukemia-1
			(Mcl-1) and caspase-8 using Molecular
			Operating Environment (MOE) software
			demonstrated good binding affinities of the
			components with the active site of these
	1		
			targets. ⁵¹

Chamaecyparis obtusa	Leaf	MTT assay.	EtOH extracts at the dose of 100 mg/kg
		Immunoblotti	inhibited the tyrosine phosphorylation of pY-
		ng Wound	STAT3 in MDA-MB-231 breast cancer cells at
		healing assay	a concentration of 25 and 50 µg/mL. It also
		and trans well	inhibited not only endogenous pY-STAT3 levels
		migration	but also IL-6-induced STAT3 breast cancer
		assay	cells. The metastatic potential is inhibited by
		IncuCyte An	downregulating the expression of N-
		nexin V Red	cadherin, fibronectin, TWIST, MMP2, and
		staining	MMP9 in MDA-MB-231 breast cancer cells. It
			also induced apoptotic cell death by increasing
			cleaved caspase-3 and decreasing anti-apoptotic
			proteins Bcl-2 and Bcl-xL. ⁵²
		MTT assay	The methanol extract of CO leaves, at a
			concentration of 1.25 ug/mL, exhibited anti-
			proliferative activity against HCT116 cells.
			while displaying no cytotoxicity against Chang
			liver cells. Comparative global metabolite
			profiling was performed using gas
			chromatography-mass spectrometry coupled
100 C			with multivariate statistical analysis and it was
			revealed that anthricin was the major compound
			contributing to the anti-proliferative activity
			The activation of c lun V terminal kinases
			played a key role in the apontotic effect ⁵³
Cunninghamia langgolata yar	Haartwood	Coll viability	The oil possessed autotoxic activity against
Cunningnamia tanceotata var.	nealtwood		human huma liner and and among alls. The
KONISHII		assay	numan lung, liver, and oral cancer cells. The
	D.		observed activity was probably due to cedrol.
Cedrus deodara	Pine	MTTassays	The total flavonoids from the pine needles
	needles		of Cedrus deodara (TFPNCD) inhibited the
			growth of HepG2 cells in a dose-dependent
			manner, with IC ₅₀ values of 114.12 μ g/mL. It
			was able to increase the population of HepG2
			cells in the G_0 / G_1 phase and increase the
			percentage of apoptotic HepG2 cells. ⁵⁵
Cedrus libani	Wood	Cell survival	2-himachalen7-ol (7-HC) isolated from the
		assay	hexane extracted oil demonstrated potent
			cytotoxic activity against the brain (SF-268,

			IC_{50} 8.1µg/mL) and colon (HT-29, IC_{50}
			10.1 μ g/mL; Caco-2, IC ₅₀ 9.9 μ g/mL) with
			ovarian (SkOV-3, IC50>50µg/mL) cells being
			the most resistant. However, while HT-29
			displayed resistance to Cisplatin, 7-HC was 8-
			10 folds more potent. Co-treatment with 7-HC
			and Cisplatin showed a synergistic anti-
			proliferative effect 7-HC also exhibited a
			significant anti-inflammatory effect in formalin-
			induced paw edema in rats. Western blot
			analysis revealed that 7-HC displayed dose-
			dependent inhibition of LPS-induced COX-2
			protein expression in isolated rat monocytes. ⁵⁶
Gnetum gnemon	Seed	Human and	Seed extract (MSE) and its active ingredient
		murine tumor	gnetin C (GC), at clinically achievable
		models in	concentrations significantly inhibited the
	()	vitro and in a	proliferation of pancreatic, prostate, breast, and
		colon-26	colon cancer cell types without affecting normal
		tumor-	cells. Interestingly, GC exerts enhanced
		bearing	antitumor activity than that of tRV. It also
		mouse model	significantly induced apoptosis in all the cancer
		in vivo	cells, indicating that MSE and GC inhibit tumor
			cell growth by inducing apoptosis. Oral
			administration of MSE at 50 and 100 mg/kg per
			day significantly inhibited tumor growth, intra-
			tumoral angiogenesis, and liver metastases in
			BALB/c mice bearing colon-26 tumors. ⁵⁷
		MTT assay	Seed extract collected using the ion exchange
			DEAE matrix showed cytotoxic activity against
			cervical cancer (HeLa) and breast cancer (4T1)
			cell lines. The IC ₅₀ value was found to be 361,1
			$\mu g/mL$ and 939,723 $\mu g/mL$ against 4T1 and
			HeLa cells, respectively. ⁵⁸
Ginkgo biloba	Fresh male	MTT assay	Amentoflavone-7"-O-β-d-glucopyranoside,
	flowers		amentoflavone, bilobetin, isoginkgetin,
			sciadopitysin were isolated from Ginkgo.
			Among them, Bilobetin and isoginkgetin
			exhibited anti-proliferative activities on cancer

			lines. Their effects were found to be cell-
			specific and in a dose and time-dependent
			manner for the most sensitive HeLa cells. They
			were capable of arresting the G2/M phase of the
			cell cycle, inducing the apoptosis of HeLa cells
			dose-dependently, and activating the
			proapoptotic protein Bax and the executor
			caspase-3. Bilobetin could also inhibit the
			antiapoptotic protein Bcl-2.59
	Fruit	LLC solid	Ginkgo biloba exocarp extracts (GBEE) at a
		tumor model	dose of 50-200 mg/kg inhibited the growth of
		in C57BL/6J	LLC transplanted tumors with a dose-effect
		mice.	relationship. It inhibited the proliferation of
			LLC cells in vitro with the IC ₅₀ value of
			162.43 μ g/mL, while it had no significant
			inhibitory effects on the primary cultured mouse
			lung cells. the apoptosis rate was increased and
			the MTP was decreased. The ratio of Bax/Bcl-2
			was increased in the cells. Meanwhile, it also
			promoted the translocation of Bax/Bcl-2 in the
			mitochondrial membrane and the release of Cyt
			C from mitochondria to cytosol. In addition, it
			up-regulated the cleaved-Caspase-3 protein
			expression. The mRNA levels of Fas and the
			protein levels of Fas, FasL, and p-p38 in the
			cells were both increased. The levels of p-
			ERK1/2 and p-JNK1/2 protein was down-
			regulated but the p38, ERK1/2, and JNK1/2
			were not significantly changed. ⁶⁰
Ephedra foeminea	Scale	U2OS	Ethyl acetate, ethanol, and water crude extracts
	minute	Doubling	significantly reduce human osteosarcoma
	leaves and	Time	U2OS percentage viability in a dose- and time-
	stem	MTT Cell	dependent manner, with varying potencies. The
		Viability	IC ₅₀ was observed in the water extract after 48
		Assay.	h incubation (30:761 \pm 1:4 µg/mL) followed by
		Scratch	the ethyl acetate extract after 72 h incubation
		Wound	(80:35 \pm 1:233 µg/mL) and finally the ethanol
			extract after 48 h incubation (97:499 \pm 1:188

© 2023 IJCRT | Volume 11, Issue 11 November 2023 | ISSN: 2320-2882

Healing	μ g/mL). The ethanol extract significantly
Assay.	reduced U2OS percentage wound closure. Also,
Reverse	both ethanol and water extract considerably
Transcription	reduced the steady-state mRNA expression of
Polymerase	beta-catenin, promoting both cell proliferation
Chain	and migration in osteosarcoma by regulating
Reaction	target genes. It also showed no hemolytic
	activity. ⁶¹

ANTIOXIDANT ACTIVITY OF GYMNOSPERMS

	1		
1. Abies pindrow	Leaves	Total phenolics	The total phenolic, flavonoid and flavonol
		Total flavonoids	content of acetone extract was found to be the
		DPPH radical	highest among the tested extracts
		scavenging assay	Methanol extract demonstrated highest
		ABTS radical	activity (IC ₅₀ 0.163 ± 0.006 mg/ml) as
		scavenging assay	compared to acetone extract (IC ₅₀
		Superoxide radical	0.194±0.013 mg/ml) and dichloromethane
		scavenging assay	extract (IC ₅₀ 3.41±0.331 mg/ml). However,
		Ferric reducing	these activities were less than that of standard
		antioxidant power	trolox.
		(FRAP)	The acetone extract was most active in
		Metal ion chelating	scavenging superoxide radicals with
		activity	68.383±2.529 % inhibition, while
			dichloromethane and methanol extracts
			showed 51.794±5.183 % and 43.729±0.417 %
			inhibition respectively at 0.5 mg/ml.
			All the extracts exhibited chelating activity by
			interfering ferrous-ferrozine complex in a
			dose-dependent manner. Among the extracts.
			methanol extract was the most potent (ICso
			$0.183+0.008 \text{ mg/ml})^{-62}$
2 Cycas beddomei	Male cone	Total Phenolic	Aqueous extract reported Total Phenolic
2. Cycas beddomer		Content (TPC) Total	Content (TPC Gallic Acid Equivalent)
		Elavoroid Content	135.60 ± 1.53 mg/g: Total Elevanoid Content
		(TEC) Total	$(TEC 211.30 \pm 6.00 \text{ mg/g})$ Outprotein
		Flavonola (TE) Tatal	Equivalent): Total Elevenada 145 58:0.75 ma
		riavonois (1F), Iotal	Equivalent); Iotal Flavanois 145.38 ± 9.75 mg
		Proanthocyanidins	/g (IF, Catechin Equivalent); Total

		(TPA), DPPH assay,	Proanthocyanidines 48.66±1.80 mg/g (TPA,
		TAC and ABTS	Catechin Equivalent)
		assay.	The lowest DPPH activity was exerted at
			25μ g/ml concentration (13.00±1.00) and the
			highest activity was exerted at 250µg/ml
			(86.00 ± 2.00) . The TAC also increased with an
			increase in the extract concentration. The
			lowest TAC was observed at 25µg/ml
			concentration (12.00 ± 1.00) and the highest
			TAC was observed at 250µg/ml (81.67±1.53).
			The lowest ABTS activity was exerted at
			25μ g/ml concentration (16.67±0.58) and the
			highest activity was exerted at 250µg/ml
			(42.00±2.65). The lowest DPPH activity has
			exerted at 25µg/ml concentration
			(21.00 ± 1.00) and the highest activity was
			exerted at 250μ g/ml (98.67±0.58). The lowest
			TAC was observed at 25µg/ml concentration
			(16.67±0.58) and the highest TAC was
			observed at $250 \mu \text{g/ml} (92.67 \pm 0.58)^{63}$
3. G <mark>inkg</mark> o biloba	Leaves	DPPH	The best activity was determined by the free
		Molybdenum-	radical scavenging activity (DPPH) (1.545 mg
		reducing antioxidant	Trolox equivalent antioxidant capacity
		power	(TEAC)/g fresh matter (FM)) as well as the
		The total	molybdenum-reducing antioxidant power
		polyphenols and	(35.485 mg TEAC/g FM) methods. The
		flavonoids	highest content of total polyphenols (2.803 mg
			gallic acid equivalent (GAE)/g FM) and
			flavonoids (4.649 µg quercetin equivalent
			(QE)/g FM) was also detected. ⁶⁴
4. Gnetum gnemon	Leaf, bark,	Total phenolic	Bark from hot water extract showed the
	twig, and	content	highest total phenolic at 10.71 ± 0.01 mg
	twig, and seeds	content DPPH and FRAP	highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform
	twig, and seeds	content DPPH and FRAP assays	highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15 ± 0.01 mg GAE/ FDW.
	twig, and seeds	content DPPH and FRAP assays	highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15 ± 0.01 mg GAE/ FDW. The DPPH results showed that all plant
	twig, and seeds	content DPPH and FRAP assays	highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15 ± 0.01 mg GAE/ FDW. The DPPH results showed that all plant extracts demonstrated weak free radical
	twig, and seeds	content DPPH and FRAP assays	highest total phenolic at 10.71 ± 0.01 mg GAE/ FDW, while the lowest was chloroform extract of seed at 2.15 ± 0.01 mg GAE/ FDW. The DPPH results showed that all plant extracts demonstrated weak free radical scavenging activity tested at the final

			methanolic twig extract showed strong
			reducing power activity (FRAP) at
			$83.55 \pm 1.05\%$, while the hot water seed
			extract showed the least activity at
			$41.86 \pm 4.22\%$ tested at the final concentration
			of 300 µg/ml. ⁶⁵
5. Ephedra alata	Female	DPPH free-radical	the methanolic extract has the best content of
	Cones	scavenging test	polyphenols (158.34±2.71mg GAE/g
		Hemolysis test	Extract), and the best values of flavonoids
		Reducing power test	(88.50±1.12mg QE/g Extract). The results of
		Determination of	the test scavenging the free-radical DPPH
		phenolic and	show the tannins extract had the best
		flavonoid contents	scavenging activity capacity than the other
			extracts (IC ₅₀ : 14.94 \pm 1.34µg/mL). However,
			in the hemolysis test, all the extracts were in
			proximity except for the aqueous extract that
			was shown protected by the erythrocytes
			(50±0.5% of hemolysis percentage). Finally,
			in the reducing power assay, its results showed
			that the tannins extract has the best-reducing
100 B			power of 27.16±0.25µg/mL in Abs700= 0.5
			compared to other extracts. ⁶⁶
6. Cedrus atlantica	Wood	Total condensed	Chemical characterization identified
		tannins	Himachalene and α -atlantone isomers (14.51
		Total polyphenolic	% - 4.07 %), Calacorene (3.52 %) and ar-
		content	Turmerone 3.35 %, as the major components,
		Total antioxidant	the total polyphenolic content and condensed
		capacity by phospho	tannins contents were 57.15 \pm 0.15 mg
		molybdenum method	equivalent of gallic acid /g tar and 4.41 ± 0.05
		Ferric-reducing	mg equivalent of catechin /g tar respectively.
		antioxidant power	The extract also showed remarkable Ferric-
			reducing antioxidant power with an effective
			concentration equal to 50 \pm 0.075 mg /mL \pm
			0,00028 and total antioxidant capacity equal to
			262.75 mg equivalents of ascorbic acid /g tar
			$\pm 14,43.^{67}$
7. Pinus densiflora	Barks	DPPH method.	hot water extract exhibited the lowest ROS
			production. The pattern of HPLC analysis of

		ROS inhibition	each extract indicated that the hot water
		activity in a cellular	extract contained the highest
		system using MC3T3	proanthocyanidin level. ⁶⁸
		E-1 cells	
8. Picea smithiana	Leaf and	DPPH radical	Methanolic extract of leaf contained good
	Bark	scavenging method,	content of phenolic compound (70.4 \pm 2.1 mg
		Fe ²⁺ ion chelating	GAE/g) which contributed as good antiradical
		method, FRAP assay,	(IC $_{50}$ value 228 \pm 3.2 $\mu g/ml$), chelation activity
		and Potassium ferric	$(55 \pm 1.5\% \text{ at } 500 \mu \text{g})$, FRAP $(494 \pm 5.2 \mu \text{mol})$
		cyanide reduction	Fe (II)/g) and Potassium ferric cyanide
		method.	reduction activity (EC ₅₀ value of 978μ g/ml). A
			correlation between the antioxidant activity
			(FRAP) and the phenolic content of extracts
			has also been drawn and found significant
			(R ² =0.965). In comparison, bark extracts
			possess fewer polyphenols that confer poor
			antioxidant potential. ⁶⁹
9. Larix gmelinii	Bark	DPPH radical-	The defatted extracts displayed a higher
		scavenging capacity	content of proanthocyanidins and antioxidant
		Lipid peroxidation	activity than un-defatted extracts. DPPH
		capacity	radical-scavenging capacity of extracts (29.88
			μ g mL ⁻¹ was higher than VC (36.04 μ g mL ⁻¹),
			and the inhibition effect of lipid peroxidation
			of extracts (15%) was higher than VC (13%)
			and VE (11%). ⁷⁰
10.		Total phenolic	The ethyl acetate fraction of methanol extract
		content	contained the highest amount of polyphenols
		DPPH radical	$(47.72 \pm 0.38 \text{ g gallic acid equivalents}/100 \text{ g}).$
		scavenging assay	Its DPPH scavenging and ferrous ions
		Superoxide anion	chelating abilities (EC ₅₀ = 7.9 ± 0.1 and $1.56 \pm$
		radical scavenging	0.05μ g/ml) were comparable to those of the
		assay	positive controls, catechin (EC ₅₀ = 7.10 ± 0.05
		Hydroxyl radical	μ g/ml) and EDTANa ₂ (EC ₅₀ = 1.27±
		scavenging assay.	0.01µg/ml), respectively. It also scavenged
		Ferrous ion chelating	superoxide anion and hydroxyl radicals with
		assay	superoxide anion and hydroxyl radicals with EC_{50} values of 53.30 \pm 5.91 and 63.12 \pm

Conclusion

Many different human disorders are treated with medications derived from plant sources. Plant reproductive cones, roots, leaves, stems, bark, and seeds are the sources of phytochemical substances. Allopathic, homeopathic, and Ayurvedic medications are made with the phytochemicals. The purpose of medications derived from plants is to avert illnesses. Advanced technology has made a significant contribution to the development of a wide range of medications. The medications made from plant sources might come in the following forms: extracts, pills, capsules, injections, and decoctions. The medications are derived from genera that fall among the Cycadales, Confierales, Ginkgoales, and Gnetales orders. The members have a lot of secondary metabolites, which are crucial for the manufacture of pharmaceuticals.

References

- 1. P Radha, C Udhayavani, R Nagaraj (2018) A Comprehensive Review on Medicinally Important Gymnosperms Mentioned in Siddha J Res Sid Med 1(1): 23-32.
- 2. R.C. Srivastava, P.K. Agrawal, V. Ramabharathi, Sameer Patil (2021) Gymnosperms In India: Ethnic And Economic Uses Journal of Economic and Taxonomic Botany 45:173-183
- 3. S. C. Sati, Savita Joshi (2011) Antibacterial Activities of Ginkgo biloba L. Leaf Extracts Scientific World Journal. 11; 2237–2242.
- Cristina Lungu Apetrei, Cristina Tuchilus, Ana Clara Aprotosoaie, Adrian Oprea, Karl Egil Malterud, Anca Miron (2011) Chemical, Antioxidant and Antimicrobial Investigations of Pinus cembra L. Bark and Needles Molecules. 16(9): 7773–7788.
- Aman Khan, Gul Jan, Afsar Khan, Farzana Gul Jan, Ali Bahadur, Muhammad Danish (2017) In Vitro Antioxidant and Antimicrobial Activities of Ephedra gerardiana (Root and Stem) Crude Extract and Fractions Evid Based Complement Alternat Med 2017: 4040254.
- Priyanka Adhikari, Kuldeep Joshi, Mithilesh Singh & Anita Pandey (2020) Influence of altitude on secondary metabolites, antioxidants, and antimicrobial activities of Himalayan yew (*Taxus wallichiana*) Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 156(2): 187-195
- Chinyere V. Ilodibia, Rachael U. Ugwu, Onyinye L. Nwokolo, Maureen U. Chukwuma, Ebele E. Akachukwu (2015) Phytochemical Screening, Antifungal and Antibacterial Activity of Aqueous and Ethanolic Leaf and Stem Extracts of Gnetum africanum Welw Research Journal of Medicinal Plant 9 (6): 275-283
- Despina Charalambous, Nicolas-George Homer Eliades, Michalis Christoforou, Eleni Kakouri, Charalabos Kanakis, Petros A. Tarantilis, Maria Pantelidou (2022) Chemical Characterization, Antioxidant and Antimicrobial Properties of Different Types of Tissue of Cedrus brevifolia Henry Extracts Molecules. 27(9): 2717.
- Nabil Haman, Ksenia Morozova, Giustino Tonon, Matteo Scampicchio, Giovanna Ferrentino (2019) Antimicrobial Effect of Picea abies Extracts on E. coli Growth Molecules. 24(22): 4053.
- Marta Faggian, Giulia Bernabè, Sara Ferrari, Stefano Francescato, Gianni Baratto, Ignazio Castagliuolo, Stefano Dall'Acqua, Gregorio Peron (2021) Polyphenol-Rich Larix decidua Bark Extract with Antimicrobial Activity against Respiratory-Tract Pathogens: A Novel Bioactive Ingredient with Potential Pharmaceutical and Nutraceutical Applications Antibiotics (Basel). 10(7): 789.

- Aishwarya N. Kapse, C. J. Chandekar (2020) Antimicrobial Activity of Leaves Of Thuja Compacta Against Pathogenic Organisms Compared With Control Drugs EJBPS7 (11): 197-201.
- Ji-Hye Ko, Su-Hee Cho, Ji-Seon Hyun, Ju-Mi Hyun, Je-Hwan Jeong, Duk Soo Kim, Choon Il Kang, Nam Ho Lee, Chang-Gu Hyun (2018) Chemical Composition and Antimicrobial Activity of Torreya nucifera Essential Oils against Oral Pathogens Der Pharma Chemica. 10(1): 21-25
- 13. Walaa A. Negm, Mona El-Aasr, Ghada Attia, Moneerah J. Alqahtani, Rania Ibrahim Yassien, Amal Abo Kamer, Engy Elekhnawy (2022) Promising Antifungal Activity of Encephalartos laurentianus de Wild against Candida albicans Clinical Isolates: In Vitro and In Vivo Effects on Renal Cortex of Adult Albino Rats J. Fungi, 8(5): 426
- 14. Espinoza J, Urzúa A, Sanhueza L,Walter M, Fincheira P, Muñoz P, Mendoza L and Wilkens M (2019) Essential Oil, Extracts, and Sesquiterpenes Obtained From the Heartwood of Pilgerodendron uviferum Act as Potential Inhibitors of the Staphylococcus aureus NorA Multidrug Efflux Pump. Front. Microbiol. 10:337
- 15. Ninh The Son, Le Tuan Anh, Pham Thi Thuy Hoai, Dinh Thi Thu Thuy, Nguyen Dinh Luyen, Tran Thi Tuyen (2023) Essential Oils of the Podocarpaceae Plants Nageia wallichiana (C. Presl) Kuntze and Podocarpus pilgeri Foxw and Their Antimicrobial Activities National Academy Science Letters 46(1):71-76
- 16. Carlos L Céspedes, J Guillermo Avila, Ana M García, José Becerra, Cristian Flores, Pedro Aqueveque, Magalis Bittner, Maritza Hoeneisen, Miguel Martinez, Mario Silva (2006) Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans Z Naturforsch C J Biosci. 61(1-2):35-43.
- Courtney M. Starks, Vanessa L. Norman, Russell B. Williams, Matt G. Goering, Stephanie M. Rice, Mark O'Neil-Johnson and Gary R. Eldridge (2014) Antibacterial activity of Taxodium ascendens Diterpenes against Methicillin-resistant Staphylococcus aureus Natural Product Communications Vol. 9 (8): 1129 - 1130
- Zhifen Chen, Daohang He, Daohang He, Jingdan Deng, Jiaying Zhu (2015) Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves March Natural Product Research 29(21):1-4
- 19. Shi Hyoung Kim, Jae Gwang Park, Yong Deog Hong, Eunji Kim, Kwang-Soo Baik, Deok Hyo Yoon, Sunggyu Kim, Mi-nam Lee, Ho Sik Rho, Song Seok Shin, Jae Youl Cho (2016) Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells Journal of Ethnopharmacology 188: 167-176
- 20. Nguyen Trung Thanh, La Thi Thuy, Do Thi Xuyen, Le Quynh Mai, Do Van Hai, Nguyen Sinh Khang, Do Thi Trang, Bui Huu Tai, Phan Van Kiem (2023) Amenyunnaosides A-C, Three New Neolignans Isolated from Amentotaxus yunnanensis and Their Anti-inflammatory Activities Chem Biodivers. 20(6): e202300604.
- 21. Satyajit Dutta, G. Mariappan, Dipankar Sarkar, Piyali Sarkar (2010) Assessment of Anti-Inflammatory Activity of Taxus Baccata Linn. Bark Extract Ancient Science of Life 29 (3): 19 - 21
- 22. Radhika Khanna, H R Chitme, Khushaboo Bhadoriya, Y C Tripathi, V K Varshney (2023) In vitro and in vivo anti-inflammatory activity of Cupressus torulosa D.DON needles extract and its chemical characterization J Ethnopharmacol. 314:116578.

- 23. Suchismita Raha, Seong Min Kim, Ho Jeong Lee, Sang Joon Lee, Jeong Doo Heo, Venu Venkatarame Gowda Saralamma, Sang Eun Ha, Eun Hee Kim, Sung Phil Mun, Gon Sup Kim (2019) Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in Sprague-Dawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells Int J Mol Med. 43(1): 393–403.
- 24. Miruna Silvia Stan, Sorina Nicoleta Voicu, Sonia Caruntu, Ionela Cristina Nica, Neli-Kinga Olah, Ramona Burtescu, Cornel Balta, Marcel Rosu, Hildegard Herman, Anca Hermenean, Anca Dinischiotu (2019) Antioxidant and Anti-Inflammatory Properties of a Thuja occidentalis Mother Tincture for the Treatment of Ulcerative Colitis Antioxidants (Basel). 8(9): 416.
- 25. Ololade, Z. S., Olawore, N. O., Kolawole, A. S., Onipede, O. J., Alao, F. O. (2012) Phyto-chemicals, Free Radical Scavenging and Anti-inflammatory Activity of the Leaf Essential Oil of Callitris columellaris F. Muell from Plateau State, Nigeria International Journal of Applied Research and Technology 1 (7): 38 – 45.
- 26. KFH Nazeer Ahamed, Venkatesan Kumar, Sundararajan Raja, Kakali Mukherjee, Pulok Kumar Mukherjee (2005) Anti-Nociceptive and Anti-Inflammatory Activity of Araucaria bidwillii Hook IJPT 4 (2): 105-109
- 27. by ChoEen Kim, DucDat Le, Mina Lee (2021) Diterpenoids Isolated from Podocarpus macrophyllus Inhibited the Inflammatory Mediators in LPS-Induced HT-29 and RAW 264.7 Cells Molecules 26(14): 4326
- Dhirender Kaushik, Ajay Kumar, Pawan Kaushik, A. C. Rana (2012) Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg. Adv Pharmacol Sci. 2012: 245431.
- 29. Elisha Jae V Elardo, Abbie Grace M Olea, Francesca Josephine Sta. Cruz, Gloriana Julia C Teope, Rodel Jonathan S Vitor II (2017) Antidiabetic effects of Cycas edentata aqueous leaf extract on the blood glucose levels of alloxan-induced diabetic ICR mice (Mus musculus L.) National Journal of Physiology, Pharmacy and Pharmacology 7 (11):1284-1290.
- 30. Tavga Ahmed Aziz, Saad Abdulrahman Hussain, Taha Othman Mahwi, Zheen Aorahman Ahmed, Heshu Sulaiman Rahman, Abdullah Rasedee (2018) The efficacy and safety of Ginkgo biloba extract as an adjuvant in type 2 diabetes mellitus patients ineffectively managed with metformin: a double-blind, randomized, placebo-controlled trial Drug Des Devel Ther. 12: 735–742.
- 31. Michael Chukwuka Ojo, Foluso Oluwagbemiga Osunsanmi, Godfrey Elijah Zaharare, Rebamang Anthony Mosa, Nkosinathi David Cele, Michael Osawemi Oboh, Andy Rowland Opoku (2019) In-vitro Anti-diabetic and Antioxidant Efficacy of Methanolic Extract of Encephalartos ferox leaves Pharmacogn J. 11(3): 455-460
- 32. Maha N. Abu Hajleh, Khaled M. Khleifat, Moath Alqaraleh, Esra'a Al-Hraishat, Muhamad O. Al-limoun, Haitham Qaralleh, Emad A. S. Al-Dujaili (2022) Antioxidant and Antihyperglycemic Effects of Ephedra foeminea Aqueous Extract in Streptozotocin-Induced Diabetic Rats Nutrients. 14(11): 2338.
- 33. Pradeep Singh, R. L. Khosa, Garima Mishra (2013) Evaluation of antidiabetic activity of ethanolic extract of Cedrus deodara (Pinaceae) stem bark in streptozotocin induced diabetes in mice Nigerian Journal of Experimental and Clinical Biosciences 1 (1): 33-8.
- 34. Najoua Salhi, Abdelhakim Bouyahya, Otman El Guourrami, Meryem El Jemli, Ilhame Bourai, Amina Zellou, Yahia Cherrah, My El Abbes Faouzi (2021) Investigation of in vitro and in vivo antioxidant and antidiabetic activities of Pinus halepensis extracts J Herbmed Pharmacol. 10(1): 123-131.

- 35. Cory S. Harris, Jennifer Lambert, Ammar Saleem, Jason Coonishish, Louis C. Martineau, Alain Cuerrier, Pierre S. Haddad, John T. Arnason, Steffany A.L. Bennett (2008) Antidiabetic Activity of Extracts from Needle, Bark, and Cone of Picea glauca: Organ-Specific Protection from Glucose Toxicity and Glucose Deprivation Pharmaceutical Biology 46 (1–2): 126–134
- Devinder Kumar Maheshwari, Saara Mohammad Subhan (2022) In Vitro Evaluation of Antidiabetic Profile of Abies pindrow Aerial Parts Acta Scientific Pharmacology 3 (12): 08-12
- Devendra Kumar Rawat, Arun Kumar Sharma, Vishal Shrivastava, Kehar Singh Dhakad (2020) Evaluation of Antidiabetic Action of Araucaria Columnaris Leaf Extracts JARIIE 6 (5): 1367-1372
- 38. Boussoussa, Hadjer; Khacheba, Ihcen; Berramdane, Tayeb; Maamri, Anfal; Bendahgane, Hanya; Yousfi, Mohamed (2018) In vitro Antidiabetic Effect of Saponins and Phenolic Extracts from Fruits and Seeds of Algerian Cypress Tree: Cupressus sempervirens L Current Enzyme Inhibition 14 (2):92-96
- Pankaj Pradhan, Yuvraj Singh Sarangdevot (2020) Evaluation of Antidiabetic Activity Of Aerial Parts Of Thuja Occidentalis Plant Archives 20: 957-962
- 40. Chia-Yun Hsu, Gong-Min Lin, Shang-Tzen Chang (2020) Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin Journal of Traditional and Complementary Medicine 10 (4): 389-395
- 41. Nilüfer Orhan, Mustafa Aslan, Mert Pekcan, Didem Deliorman Orhan, Erdal Bedir, Fatma Ergun (2012) Identification of hypoglycaemic compounds from berries of Juniperus oxycedrus subsp. oxycedrus through bioactivity guided isolation technique Journal of Ethnopharmacology 139: 110–118
- 42. C.-M. Wu, X.-Y. Lao, W. Li, Y. Li (2010) Antidiabetic effect of Cephalotaxus sinensis leaf extract (STP) in STZ-induced diabetic rats by its antioxidant activity Healthmed 4(2):316-322
- Fang-fang Duan, Shan-Shan Jia, Ke Yuan (2017) Antitumor effects and mechanism of n-butanol fraction from aril of Torreya grandis in H22 mice Pharmacognosy Magazine. 13 (51):351-357.
- 44. Shang, W., Qiao, J., Gu, C. *et al.* ((2011) Anticancer activity of an extract from needles and twigs of *Taxus cuspidata* and its synergistic effect as a cocktail with 5-fluorouracil. BMC Complement Altern Med 11: 123.
- 45. Dake Cai, Jing Jin, Huichang Bi, Guoping Zhong, Minhua Zhou, Jianfen Guo, Yike Cai, Miaoyin Liang, Qiong Gu, Zixuan Hu, Yijing Lai, Zi Dai, Lingjie Li, Yuxing Chen, Haili Gao, Min Huang (2022) Paclitaxel-Containing Extract ExertsAnti-Cancer Activity through Oral Administration in A549-Xenografted BALB/C Nude Mice: Synergistic Effect between Paclitaxel and Flavonoids or Lignoids Evidence-Based Complementary and Alternative Medicine 2022: 1-19
- Shang-Tse Ho, Chi-Chen Lin, Tung-Lin Wu, Yu-Tang Tung, Jyh-Horng Wu (2019) Antitumor agent yatein from Calocedrus formosana Florin leaf induces apoptosis in non-small-cell lung cancer cells J Wood Sci. 65:59
- 47. Santhi Subramanyan, Varsha Karunakaran, Selvakumar Deepika, Anuja Joseph Gracy (2022) Libocedroquinone: A Promising Anticancer Lead against Lung Cancer from Calocedrus decurrens Planta Medica International Open 9(01): e54-e59
- Sultan Alhayyani, Abdullah Akhdhar, Amer H. Asseri, Abdelhafeez M. A. Mohammed, Mostafa A. Hussien,
 L. Selva Roselin, Salman Hosawi, Fahad AlAbbasi, Khadijah H. Alharbi, Roua S. Baty, Abdulaziz A.

Kalantan, Ehab M. M. Ali (2023) Potential Anticancer Activity of Juniperus procera and Molecular Docking Models of Active Proteins in Cancer Cells Molecules 28(5): 2041

- 49. Nan-Chieh Huang, Ru-Lai Huang, Xiao-Fan Huang, Kai-Fu Chang, Chien-Ju Lee, Chih-Yen Hsiao, Shan-Chih Lee, Nu-Man Tsai (2021) Evaluation of anticancer effects of Juniperus communis extract on hepatocellular carcinoma cells in vitro and in vivo Biosci Rep. J41(7): BSR20211143.
- Sayed Fayed Chemical Composition, Antioxidant, Anticancer Properties and Toxicity Evaluation of Leaf Essential Oil of Cupressus sempervirens (2015) Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2):320-326
- 51. Fikry E., Orfali R., Elbaramawi S.S., Perveen, S., El-Shafae A.M., El-Domiaty M.M., Tawfeek N. (2023) Chamaecyparis lawsoniana Leaf Essential Oil as a Potential Anticancer Agent: Experimental and Computational Studies. Plants.12: 2475.
- 52. Yong-Jin Kwon, Eun-Bi Seo, Seul-Ki Kim, Hyun-Seung Lee, Haeri Lee Young-Ah Jang, Yu Mi Kim, Yong-Nyun Kim, Jin-Tae Lee, Sang-Kyu Ye (2023) Pharmacological anti-tumor effects of natural Chamaecyparis obtusa (siebold & zucc.) endl. Leaf extracts on breast cancer Journal of Ethnopharmacology 313: 116598
- 53. Hye-Youn Kim, Seul-Gi Lee, Taek-Joo Oh, Sa Rang Lim, So-Hyun Kim, Hong Jin Lee, Young-Suk Kim, Hyung-Kyoon Choi (2015) Antiproliferative and Apoptotic Activity of Chamaecyparis obtusa Leaf Extract against the HCT116 Human Colorectal Cancer Cell Line and Investigation of the Bioactive Compound by Gas Chromatography-Mass Spectrometry-Based Metabolomics Molecules. 20(10): 18066–18082.
- 54. Yu-Chang Sua, Kuan-Ping Hsub, Eugene I-Chen Wangb and Chen-Lung Hob (2012) Composition, Anticancer, and Antimicrobial Activities in vitro of the Heartwood Essential Oil of Cunninghamia lanceolata var. konishii from Taiwan Natural Product Communications 7 (9): 1245 - 1247
- 55. Xiaofeng Shi, Dongyan Liu, Junmin Zhang, Pengbin Hu, Wei Shen, Bin Fan, Quhuan Ma, Xindi Wang (2016) Extraction and purification of total flavonoids from pine needles of Cedrus deodara contribute to anti-tumor in vitro BMC Complement Altern Med. 16: 245.
- 56. Andree Elias, Wassim Nasri Shebaby, Bilal Nehme, Wissam H Faour, Bassem S Bassil, Joelle El Hakim, Rita Iskandar, Nahia Dib-Jalbout, Mohamad Mroueh, Costantine Daher, Robin I Taleb (2019) In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani Scientific Reports 9(1):12855
- 57. Narayanan K Narayanan, Kazuhiro Kunimasa, Yukio Yamori, Mari Mori, Hideki Mori, Kazuki Nakamura, George Miller, Upender Manne, Amit K Tiwari, Bhagavathi Narayanan (2015) Antitumor activity of melinjo (Gnetum gnemon L.) seed extract in human and murine tumor models in vitro and in a colon-26 tumor-bearing mouse model in vivo Cancer Med. 4(11): 1767–1780.
- 58. Kurnia Indah Fatmawati, Peni Indrayudha(B), Maryati, Azis Saifudin, and Cita Hanif Muflihah (2023) Cytotoxic Activity of Melinjo Seed Protein (Gnetum Gnemon L.) Against 4T1 Cells and Hela Cells, and Antiproliferation Test on 4T1 Cells AHCPS 3:370–378.
- Min Li, Bin Li, Zi-Ming Xia, Ying Tian, Dan Zhang, Wen-Jing Rui, Jun-Xing Dong, Feng-Jun Xiao (2019) Anticancer Effects of Five Biflavonoids from Ginkgo Biloba L. Male Flowers In Vitro Molecules. 24(8): 1496.

- 60. Chenjie Cao, Ya Su, Dongdong Han, Yanqi Gao, Menghua Zhang, Huasheng Chen, Aihua Xu (2017) Ginkgo biloba exocarp extracts induces apoptosis in Lewis lung cancer cells involving MAPK signaling pathways Journal of Ethnopharmacology 198: 379-388
- 61. Eric Zadok Mpingirika, Ahmed El Hosseiny, Sheri Magdy Saleeb Bakheit, Rami Arafeh, Asma Amleh (2020) Potential Anticancer Activity of Crude Ethanol, Ethyl Acetate, and Water Extracts of Ephedra foeminea on Human Osteosarcoma U2OS Cell Viability and Migration BioMed Research International 2020: 1-16
- D. Gupta, R. Bhardwaj, R. K. Gupta (2011) In Vitro Antioxidant Activity Of Extracts From The Leaves Of Abies pindrow Royle Afr J Tradit Complement Altern Med. 8(4):391-397 391
- Mahendra Nath Mitta, M. Sankara Rao, L. Ramesh, K. Madhava Chetty (2014) Phyto-Chemical Evaluation and Anti-oxidant potentiality of Cycas beddomei Dyer Male cone aqueous Extract Int. J. Drug Dev. & Res. 6 (2): 220-227
- 64. Katarína Ražná, Zuzanna Sawinska, Eva Ivanišová, Nenad Vukovic, Margarita Terentjeva, Michal Stričík, Przemysław Łukasz Kowalczewski, Lucia Hlavačková, Katarína Rovná, Jana Žiarovská, Miroslava Kačániová (2020) Properties of Ginkgo biloba L.: Antioxidant Characterization, Antimicrobial Activities, and Genomic MicroRNA Based Marker Fingerprints Int J Mol Sci. 21(9): 3087.
- 65. Dayana Wazir, Syahida Ahmad, Radzali Muse, Maziah Mahmood, M. Y. Shukor (2011) Antioxidant activities of different parts of Gnetum gnemon L. Journal of Plant Biochemistry and Biotechnology 20: 234-240
- 66. Chouikh A, Houba Z, Himeur H, Alia F, Adjal E (2021) Phytochemical Study, HPLC Chromatographic Analysis and Antioxidant Activity of Ephedra alata DC. Female Cones Extracts Asian Journal of Research in Chemistry 14(04):259-264
- 67. Inssaf Skanderi, Ourida Chouitah (2020) Chemical Characterization and Antioxidant Activity of Cedrus atlantica Manetti Tar (Atlas Cedar Tar) French-Ukrainian Journal Of Chemistry 08 (02): 244-255
- 68. Yong Soo Park, Min Hee Jeon, Hyun Jung Hwang, Mi Ra Park, Sang-Hyeon Lee, Sung Gu Kim, Mihyang Kim (2011) Antioxidant activity and analysis of proanthocyanidins from pine (Pinus densiflora) needles Nutr Res Pract. 5(4): 281–287.
- 69. Bhagat M, Gupta S, Sudan R (2017) In vitro Evaluation of Antioxidant Activity of Picea smithiana Growing in Bhaderwah Region of Jammu and Kashmir Cell & Cellular Life Sciences Journal 2 (1): 1-6
- Shuqin Luo, Xiaoli Zhang, Xiang Zhang, Liping Zhang (2014) Extraction, identification and antioxidant activity of proanthocyanidins from Larix gmelinii Bark Nat Prod Res. 28(14):1116-20.
- 71. Al. Vasincu, Elena Creţu, Ioana Geangalău, Roxana Laura Mihăilescu Amalinei, Anca Mironn (2013) Polyphenolic Content And Antioxidant Activity Of An Extractive Fraction From Abies alba Bark Revista Medico-Chirurgicala 117(2):545-50