www.ijcrt.org © 2021 JCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, INTERNATIONAL JOURNAL OF CREATIVE
@99 RESEARCH THOUGHTS (1JCRT)
G

An International Open Access, Peer-reviewed, Refereed Journal

THEORY OF QUOTIENT MATRIX

Lalit Sharma
Faculty Department of Mathematics, Modern School, Barakhamba Road, New Delhi

Abstract: Generally, when we discuss operations on matrices, we introduce addition, subtraction, scalar
multiplication and even multiplication. We never discuss the concept of division of two square matrices.
In this paper, | have introduced the concept of division of two square matrices under certain

A
conditions. In fact, we have introduced the term ‘Quotient Matrix’ E for two square matrices A and B of the

same order provided AB = BA and B is a non-singular matrix. We have also established all the parallel results
for ‘Quotient Matrix’ related to algebra of Quotient Matrices, adjoint of a Quotient matrix, inverse of a
Quotient matrix and determinant of a quotient matrix.

Keywords: Quotient Matrix

INTRODUCTION

> Why do we stop at matrix multiplication while doing algebra of matrices?

> Why did we not talk about matrix division?

NOTE: Let us go to real number system where we learnt division. If a and b are two real numbers, b =

a
0 then E is defined as solution of the equations bx = a and xb = a. We know that bx = xb (by

a
commutativity in real numbers), therefore uniqueness of a is preserved so the quotient B IS
meaningful.

Now, if we consider A and B as two square matrices (of same order), B = 0 and suppose — = C (where C is

B
a square matrix of same order as of A and B) then A = BC or A = CB are the consequent matrix equation BC

A
# CB (in general), therefore uniqueness of A gets violated. Hence E does not make sense in case of matrices.
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MATERIAL AND METHODS

Let A and B are two square matrices of order n xn such that:

() AB=BA (i) |B|#0
. . A .
Then we define quotient matrix E as a matrix C of order n xn such that C = AB*

NOTE: If A and B are commuting matrices (of same order) then AB! = B*A.

C is uniquely determined.

cosa Sina cosa -Sina
Example 1:A={ } B={ }

—Sinae cosa sina  coSa

Then AB=BAand |B|=1 (¢ 0)

A
ey =C where C = AB!

c coOSa Sina cosa Sina
—sina cosa | | —-Sinax CcOS«

—sin2a cos2a

A= . and B= .
Example 2: A= 0 7 “lo 2

Then AB =BA and |B| =2 (= 0)

ba. C where C = AB*
B

L3l %

6 O

:0%

{ cos2a  sin Za}
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Algebra of Quotient Matrices

Let E and B are two quotient matrices (where A, B, C and D are square matrices of order n), then we can

define.

A C . ) . )
éJrg, é—g, aé (fora to be a scalar) and — . — in usual manner in which we have defined X + Y, X —
B D B D B B D

Y, aX and XY. (for two suitable matrices x and y)

Some more properties which one can easily verify are:

. (A 1 A

(1) adj O{EJ =a"* adj (Ej where o is a scalar and nis the order of the square matrices A and
B.
(AY (AYY

2 Fornez*, adj| — | =|adj| —
@ Form ’(Bj [ ’(BD

(A C .C . A
3 dj| —.— | = adj—= . adj—
©) aJ(BD) 2t padi

(wheread]j denotes adjoint)

RESULTS AND DISCUSSION

A A
Result 1: ‘ E‘ = H (where |A| = determinant of matrix A)
A 1 LA
: i —|=|AB*!|=|A||B? ==
Proof: Consider, B‘ | | =]Al| | Bl
Result2: Forn € Z*, we have [é)n = ‘A ”
S TInESs B B
Proof: Consider,
A n
(—j = |(AB™)"] = |A"(B™)"| (- AB=BA)
B
A" (A"
=|A"| |(BT™)" =|—=‘— By Prop.1
‘ ‘ |B|n B (By Prop.1)
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esult3: ) B = |a dj B| .
Proof: Consider,

adj [gj‘ =|adj AB™| = |adj (B™).adj A|
=|adj (B™)| |adj A|

= |adj B| " | adj A|

_|adj A
~ [adj B|

(NOTE: |B|#0= l|adjB|#0)

A C
Result4: For two quotient matrixE and D we have

.(A cj‘ ladj(CA)|  [adj(AC)|
adj| —.— || =— =T _
B'D)| |adj(DB)| |adj(BD)]
Proof: Consider,
(A C .C .
adj(E.Bj‘ = aij.adj—‘

_ |adjC| |adj A|
~ |adj D| |adj B]

(D

_|adjC. adj A
~ |adjD. adjB|

_|adi (AC)| _
|adj (BD) |

adj (CA)
adj (DB)

By (1)

Inverse of quotient matrix:

Let g be any quotient matrix with |[A| # 0, then we say gis invertible if 3 a quotient matrix %

suchthaté.gzlzg.é.
B D D B
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i c A\ "1
In this case, > = (E)
=1
Now, 2) " = (4Bl = BA~!
B

ot ((3)7] -

Proof:  LHS = ((SJIT - ((ABI)_l)_l ~(BAY) = AB™ :EA

SHCGREGIO

Proof: Consider,

R3] v
=(AB™?) (BA™)

= A(B’lB)A’l =AA =

Similarly, (gjl(gj ((ae) ) (e )

=B(A*A)B =1
_ Bl ¥ : AY'| |B]
Result5: In addition, if A is non-singular then B = m
Proof: Consider,
AV -l T B |B|
IR RN EHIINE
. - (&) 1401 _ 1041
Result6: Further, if |C| # 0, we can see (g) =15~ [cB|
D

(a0 )]

B)E)

Sl
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=|A[[B7|D[|c™|
_IAlD]
Bl [C|
_|AD]| _|DA|
~|BC| |CB|
Assumptions:
i 1c]20 =Sl 0 as :H:um
|D D| |D|

W >
wl>

.. C C
(i) "5°O

-1

n
Prob.1: If (g) = [ for some positive integer n, then show that (gj exists.

Sol. Given: (g)n =1
= )=
= gln =1
= é‘:il
B
= | A| =0 (-~ |B|=0)

A -1
— | exists.
)

Prob.2: If (g] IS a 3x3 quotient matrix, suchthat g‘: 4. Find ‘2 adj g ‘

Sol. Consider,

[2aa3] = sfaarg] =8 (5])

2
_ gx(éj
B
= 8x16
=128
Prob.3: A adj (éj:‘é‘| = adj (éj é_
B B B B/ B
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Sol. Consider,
Soa(2)
=(AB™) adj(AB™)
=(AB™) adj(B™) adj A
= A(B"adj (B‘l)) adj A

=A[B™| I adj A( A adj A=|A]D)

=B (A adj A)
_IAL
B
- . A
Similarly, adj (é : s u I
B) B |B]
.
Prob.4: If A is a 3x3 matrix satisfying ‘é‘zland (éj(éj = 1. Prove that é—I ‘:o.
B B B/\B B
Sol. Consider,
s FEE)E)
B B B/\B

- GO)
&)
|-6)

|
B

A
=1 =2](C Al =147
B‘( A= |AT])
— (_1\3 4 _
=D |B I|
= Z‘A—l‘zo
B
5 ‘é—l‘zo
B
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Prob.5:

Sol.

Prob.6:

Sol.

Prob.7:

Sol.

If g is a matrix order 2, such that

—16and | B|=1. Find |A|

(3)3)

Given,
.
3 )5)|-
B /\ B
.
= 4‘é‘ [éj =16
B B
2 T
L |Al L, “A‘z [_A”
B B B
= A =+2
B
= H=w_L2
|
= |A|=12

-1
If g is a 2x2non-singular matrix, show that adj [gj =adj (gj . Find ’S‘

Given,

M A A n—1
= _|=+1< |ad]E|= E| >
S Al
B
2
Let g and % are two non-singular matrixof order 2x2, such that |B|=2=|D|, (gj =§ %

2 -1
and (Ej =[§Ej . Find|Aland|C|.
D B D

Given,
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AY_A C
B B D
Al ‘AHC
= — | =|— |—
B B| |D
N Al_IC
B D
2 -1
Also, (Ej =é.2
D B D
2
N cr_ 1
el
B||D
4
N Cl 4 . AILIC
D B D
= 2=il
D
Al_IS] s
B D
A
Also, é‘:il :u:il
B B
= |A|==%]|B]| S Al =x2
Similarly, |C|=+2

s (3] -{(8)7)

Sol. Consider,
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Prob.9:  For any quotient matrix g (with |A| # 0) and a non-zero scalar o, we have:

-1 -1
(agj = i(g) . (Verify yourself)
(94

Prob.10:  For two quotient matrixgand % (with |A| # 0, |C| # 0) (for which g . % is defined), we have:

A CY' _(CcY'(AY' :
(E'Bj =(BJ [Ej : (Verify yourself)

CONCLUSION
The concept of division of two square matrices can be defined under certain assumed conditions. In fact, we

can talk about the quotient matrix ¢ S > and verify that all the parallel results related to algebra of matrices,

adjoint of a matrix, inverse of a matrix and determinant of a matrix hold true in case of quotient matrix.
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