ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

On the Diophantine Equation $\frac{r}{n}=\sum_{i=1}^{m} \frac{1}{x_{i}}, r<n, m$, n are Positive Integers

Dr. Rajive Atri
Associate Professor and Head
Department of Mathematics, C.S.S.S. (PG) College, Machhra, Meerut

Abstract:
In this paper, the Diophantine equation $\frac{r}{n}=\sum_{i=1}^{m} \frac{1}{x_{i}}$ has been discussed for $r=$ 3,4 for integral solution. This is some sort of Erdos \& Straus conjecture.

Key words: Diophantine equation, conjecture and integral solution.

Introduction:

Erdos \& Straus (1950) conjectured that for all integers $n \geq 4$, the rational number $\frac{4}{n}$ can be expressed as sum of three unit fractions. Thus the conjecture states that for $n \geq 4$ there exist positive integers x, y and z such that

$$
\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

These unit fractions of $\frac{4}{n}$ is called Egyptian fraction representation. For illustration for $n=1801$, there exists solution $x=451, y=295364$ and $z=3249004$. Computer searches have verified the conjecture upto $n \geq 10^{14}$ but it is still open problem to prove for all values of n.

For some value of n satisfying certain congruence relation, one can obtain an expansion for $\frac{4}{n}$ as a polynomial identity. For example, for $n \equiv 2(\bmod 3), \frac{4}{n}$ has the expansion

$$
\frac{4}{n}=\frac{1}{n}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{(n-2)}{3}+1\right)}
$$

In the above identity, each term in the denominator of R.H.S. is a polynomial of n having integer value whenever $n \equiv 2(\bmod 3)$.

Jaroma (2004) presented the following expansion with one negative term:

$$
\frac{4}{n}=\frac{1}{(n-1) / 2}+\frac{1}{\frac{(n+1)}{2}}-\frac{1}{n(n-1)(n+1) / 4} .
$$

Hari Kishan, Megha Rani and Smiti Agarwal (2011) discussed the Diophantine equations of second and higher degree of the form $3 x y=n(x+y)$ and $3 x y z=$ $n(x y+y z+z x)$ etc.

In this paper, The Diophantine equation $\frac{r}{n}=\sum_{i=1}^{m} \frac{1}{x_{i}}$ has been discussed for $r=3,4$ for integral solution.

Analysis:

The above Diophantine equation has been discussed in the following cases:
(A): For $r=3$ the given Diophantine equation becomes $\frac{3}{n}=\sum_{i=1}^{m} \frac{1}{x_{i}}$.

Case 1: For $m=6$, the Diophantine equation (1) can be written as

$$
\begin{equation*}
\frac{3}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{x_{6}} . \tag{2}
\end{equation*}
$$

One has to find the integral values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}. The left hand side of (2) can be written as

$$
\begin{align*}
& \frac{3}{n}=\frac{1}{n}+\frac{2}{n}=\frac{1}{n}+\frac{2}{n+1}+\frac{2}{n(n+1)}=\frac{1}{n}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} \\
= & \frac{1}{n+1}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} \\
= & \frac{1}{n+3}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+1)(n+2)}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} . \tag{3}
\end{align*}
$$

Comparing equation (2) and (3), one get

$$
\begin{aligned}
& x_{1}=n+3, x_{2}=(n+2)(n+3), x_{3}=(n+1)(n+2), x_{4}=n(n+1) \\
& x_{5}=\frac{(n-1)}{2}+1, x_{6}=n\left(\frac{n-1}{2}+1\right) .
\end{aligned}
$$

Now if $n \equiv 1(\bmod 2)$ then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} are positive integers. Therefore these are the solution of the given Diophantine equation. Few solutions are as follows:

n	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
1	4	12	6	2	1	1
3	6	30	20	12	2	6
5	8	56	42	30	3	15
7	10	90	72	56	4	28

Case 2: For $m=7$, the Diophantine equation (1) can be written as

$$
\begin{equation*}
\frac{3}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{x_{6}}+\frac{1}{x_{7}} . \tag{4}
\end{equation*}
$$

One has to find the integral values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ and x_{7}. The left hand side of (4) can be written as

$$
\begin{align*}
& \frac{3}{n}=\frac{1}{n}+\frac{2}{n}=\frac{1}{n}+\frac{2}{n+1}+\frac{2}{n(n+1)}=\frac{1}{n}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} \\
& =\frac{1}{n+1}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} \\
& =\frac{1}{n+4}+\frac{1}{(n+3)(n+4)}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+1)(n+2)}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-1)}{2}+1}+\frac{1}{n\left(\frac{n-1}{2}+1\right)} . \tag{5}
\end{align*}
$$

Comparing equation (4) and (5), one get

$$
\begin{aligned}
& x_{1}=n+4, x_{2}=(n+3)(n+4), x_{3}=(n+2)(n+3), \\
& x_{4}=(n+1)(n+2), x_{5}=n(n+1) x_{6}=\frac{(n-1)}{2}+1, x_{7}=n\left(\frac{n-1}{2}+1\right) .
\end{aligned}
$$

Now if $n \equiv 1(\bmod 2)$ then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} are positive integers. Therefore these are the solution of the given Diophantine equation. Few solutions are as follows:

n	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
1	5	20	12	6	2	1	1
3	7	42	30	20	12	2	6
5	9	72	56	42	30	3	15
7	11	110	90	72	56	4	28

(B): For $r=4$ the given Diophantine equation becomes $\frac{4}{n}=\sum_{i=1}^{m} \frac{1}{x_{i}}$.

Case 3: For $m=6$, the Diophantine equation (6) can be written as

$$
\begin{equation*}
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{x_{6}} . \tag{7}
\end{equation*}
$$

One has to find the integral values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}. The left hand side of (7) can be written as

$$
\begin{align*}
& \frac{4}{n}=\frac{1}{n}+\frac{3}{n}=\frac{1}{n}+\frac{3}{n+1}+\frac{3}{n(n+1)}=\frac{1}{n}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+1}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+3}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+1)(n+2)}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} . \tag{8}
\end{align*}
$$

Comparing equation (7) and (8), one get

$$
\begin{aligned}
& x_{1}=n+3, x_{2}=(n+2)(n+3), x_{3}=(n+1)(n+2), x_{4}=n(n+1) \\
& x_{5}=\frac{(n-2)}{3}+1, x_{6}=n\left(\frac{n-2}{3}+1\right) .
\end{aligned}
$$

Now if $n \equiv 2(\bmod 3)$ then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} are positive integers. Therefore these are the solution of the given Diophantine equation. Few solutions are as follows:

n	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
2	5	20	12	6	1	2
5	8	56	42	30	2	10
8	11	110	90	72	3	24
11	14	182	132	156	4	44

Case 4: For $m=7$, the Diophantine equation (6) can be written as

$$
\begin{equation*}
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{x_{6}}+\frac{1}{x_{7}} . \tag{9}
\end{equation*}
$$

One has to find the integral values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ and x_{7}. The left hand side of (9) can be written as

$$
\begin{align*}
& \frac{4}{n}=\frac{1}{n}+\frac{3}{n}=\frac{1}{n}+\frac{3}{n+1}+\frac{3}{n(n+1)}=\frac{1}{n}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+1}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+4}+\frac{1}{(n+3)(n+4)}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+1)(n+2)}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} . \tag{10}
\end{align*}
$$

Comparing equation (9) and (10), one get

$$
\begin{aligned}
& x_{1}=n+4, x_{2}=(n+3)(n+4), x_{3}=(n+2)(n+3), \\
& x_{4}=(n+1)(n+2), x_{5}=n(n+1) x_{6}=\frac{(n-2)}{3}+1, x_{7}=n\left(\frac{n-2}{3}+1\right) .
\end{aligned}
$$

Now if $n \equiv 2(\bmod 3)$ then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} are positive integers. Therefore these are the solution of the given Diophantine equation. Few solutions are as follows:

n	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
2	6	30	20	12	6	1	2
5	9	72	56	42	30	2	10
8	12	132	110	90	72	3	24
11	15	210	182	143	132	4	44

Case 5: For $m=8$, the Diophantine equation (6) can be written as

$$
\begin{equation*}
\frac{4}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}}+\frac{1}{x_{6}}+\frac{1}{x_{7}}+\frac{1}{x_{8}} \tag{11}
\end{equation*}
$$

One has to find the integral values of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ and x_{8}. The left hand side of (11) can be written as

$$
\begin{align*}
& \frac{4}{n}=\frac{1}{n}+\frac{3}{n}=\frac{1}{n}+\frac{3}{n+1}+\frac{3}{n(n+1)}=\frac{1}{n}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+1}+\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} \\
& =\frac{1}{n+5}+\frac{1}{(n+4)(n+5)}+\frac{1}{(n+3)(n+4)}+\frac{1}{(n+2)(n+3)}+\frac{1}{(n+1)(n+2)} . \\
& +\frac{1}{n(n+1)}+\frac{1}{\frac{(n-2)}{3}+1}+\frac{1}{n\left(\frac{n-2}{3}+1\right)} . \tag{12}
\end{align*}
$$

Comparing equation (11) and (12), one get

$$
x_{1}=n+5, x_{2}=(n+4)(n+5), x_{3}=(n+3)(n+4),
$$

$$
\begin{aligned}
& x_{4}=(n+2)(n+3), x_{5}=(n+1)(n+2), x_{6}=n(n+1) \\
& x_{7}=\frac{(n-2)}{3}+1, x_{8}=n\left(\frac{n-2}{3}+1\right) .
\end{aligned}
$$

Now if $n \equiv 2(\bmod 3)$ then $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ and x_{8} are positive integers. Therefore these are the solution of the given Diophantine equation. Few solutions are as follows:

n	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
2	7	42	30	20	12	6	1	2
5	10	90	72	56	42	30	2	10
8	13	156	132	110	90	72	3	24
11	16	240	210	182	156	132	4	44

Concluding Remarks:

Here the given Diophantine equation has been discussed for $r=3$ and 4. m is considered equal to 6, 7 and 8 . The problem can further be discussed for other values of r and m.

References:

Erdos, P. \& Straus, E.G. (1950): On a Diophantine equation. Math. Lapok, 1, 192-210.
Ghanouchi, J. (2008): An algebraic-analytic approach of Diophantine equation. Asean J. Algebra, 2, 11-16.

Jaroma, J.H. (2004): On expanding $\frac{4}{n}$ into three Egyptian fractions. Crux Math, 30, 36-37.
Kishan, H., Rani, M. and Agarwal, S. (2011): The Diophantine equations of second and higher degree of the form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+z x)$ etc. Asean J . Algebra, 4(1), 31-37.

