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Abstract: This paper establishes a connection involving classical osculatory interpolation and convolution 

(cubic and higher order) based interpolation. These well-structured cubic convolution formally equivalent 

to oscillatory interpolation and modern convolution- schemes.   Further it is discussed about the 

computational difference among the sample images of cubic interpolation. Furthermore separable bi-cubic 

convolution strategies are applied for image interpolation. This examines the theoretical and sensible 

problems with non-separable two-dimensional cubic and higher order convolution. This article expands two 

non-separable cubic convolution kernels. The primary kernel, has 3 parameters with constraints and focuss 

about biaxal symmetry (diagonal symmetry), continuity and smoothness of the sample image. The second 

kernel, is processed with higher order to arrive biaxial symmetry, diagonal symmetry, continuity and 

smoothness.    
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I. INTRODUCTION 

In the past five decades polynomial interpolation ways are studied and demonstrated broadly in the 

digital and medical image processing literature [9]. In the recent days it is extended in the field of natural 

language processing, which is understood to provide interpolants that are incessantly differentiable [3, 12]. 

Lot of uniform interpolants, as could also be necessary for a few applications; many various interpolation 

ways are projected [7]. 

 Interpolation concepts plays a vital role in digital and bio medical image processing , notably in 

operations that need image re-sampling like resizing, registration, warping, and geometric distortion and 

correction [2 , 10]. Interpolation is often enforced with a image with kernel calculated according to its 

coefficient function [16]. Well known convolution interpolation ways embrace the nearest neighbor 

interpolation techniques. Cubic convolution provides an honest contribution in the quality of digital images 

from the sampled images [1, 15]. However, images are sometimes not statistically divisible. The primary 

kernel, with 3 parameters, relaxes the kernel value. Most general piecewise two-dimensional cubic 

interpolators are classified with symmetrical constraints [4, 6]. The second kernel, with higher parameters 

relaxes the diagonal symmetry constraint, supported the observation of input images and its rotation [14]. 
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The structure of the paper is as follows. Section II formulates the interpolation which supports the 

convolution. Section III dealt with osculatory interpolation which has been represented as the type of 

interpolation within the corresponding sequence of interpolation curves which are employed  and forming a 

compound curve adjacent to particular range (cubic spline, fourth order cubic spline and so on) of its 

derivatives, on various interpolation intervals. Section provides the details about the derivations of for image 

interpolation of two parameters to five parameters. Finally section V concludes the paper.  

II       Interpolation supported convolution 

The convolution-based uniformly sampled information involves the kernel as  𝜑: ℝ → ℝ , which 

determines the weights. Consider the samples as   𝑓𝑘 =  𝑓 (𝑘𝑇) where 𝑓: ℝ → ℝ  , however without loss of 

generality, use  𝑇 =  1 and 𝑘 ∈  ℤ. If so, this method is often described as  

𝑓(𝑥) = ∑ 𝑓𝑘𝑘∈ ℤ 𝜑(𝑥 − 𝑘)     (1) 

𝑓 is described as interpolator  and the kernel  𝜑  proves the factors 𝜑(0) = 1  and 𝜑(𝑘) = 0, ∀ 𝑘 ≠

0. The familiar case is the theory related to ideal synchronization which operates the digital images and the 

process and the purpose of this digital image processing is highly attracted by the researchers in the recent 

years. Different examples are computationally fascinating, however in theory establishes the perfect line 

from interpolation kernel and nearest neighbor [5]. 

The cubic convolution kernel family provides significantly higher compromise between the process 

of accurate data and noisy data. These creates the piecewise interrogatory polynomials and are continuously 

differentiable [11]. The primary approximate order is 3 , which means that the ensuing interpolator 

converges to the initial operate as quick as possible between the samples. It conjointly implies that the 

kernel is ready to sort out the second degree polynomials [8]. This hypothetical concepts are outlined as 

follows: 

𝜑𝐶𝐶3(𝑥) = {

3

2
|𝑥|3 −

5

2
|𝑥|2 + 1 𝑖𝑓 0 ≤ |𝑥| ≤ 1

−
1

2
|𝑥|3 +

5

2
|𝑥|2 − 4|𝑥| + 2 𝑖𝑓 1 ≤ |𝑥| ≤ 2

0 𝑖𝑓 2 ≤ |𝑥|         

  (2) 

To maintain the best degree of polynomial as  𝑛 = 3 , further we can extend a cubic convolution 

kernel with approximation order  4 and is defined as  

𝜑𝐶𝐶4(𝑥) =

{
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0                                            𝑖𝑓 3 ≤ |𝑥|

  (3) 
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III     Recursive Osculatory Interpolation 

This section dealt with osculatory interpolation which has been represented as the type of 

interpolation within the corresponding sequence of interpolation curves which are employed  and forming a 

compound curve adjacent to particular range (cubic spline, fourth order cubic spline and so on) of its 

derivatives, on various interpolation intervals.  

Exclusively this osculatory interpolation involves when central variations of the given multiple 

samples is very high. Obviously these are defined as:   

𝑓(𝑥) = 𝑓(𝑘 + 𝜉) + 𝐹(𝜉, 𝛿)𝑓𝑘+1 + 𝐹(1 − 𝜉, 𝛿)𝑓𝑘    (4) 

 𝐹(𝑥, 𝛿) = 𝐹𝐾𝐾(𝑥, 𝛿) = 𝑥 +
1

2
𝑥2(𝑥 − 1)𝛿2𝑖     (5) 

With 𝑘 =  |𝑥|, 0 ≤ 𝜉 ≤ 1, and  𝐹 (𝑥, 𝛿) = ∑ 𝐹𝑖(𝑥)
 𝑖𝑚𝑎𝑥 
𝑖=0 𝛿2𝑖  for some 𝑖𝑚𝑎𝑥  , wherever  𝐹𝑖  are polynomial 

functions appropriately chosen in  𝑥   and its ensuing interpolator which satisfies the specified criteria like 

smoothness of the images [13].  Here, the central differences of the 𝑝-th order 𝛿𝑝 of any operation 𝑔 is 

outlined as  

𝛿𝑝𝑔(𝑥) = 𝛿𝑝−1𝑔 (𝑥 +
1

2
) − 𝛿𝑝−1𝑔 (𝑥 −

1

2
), 

To extend and simplified (5), we get 

𝐹(𝑥, 𝛿) = 𝐹𝐻(𝑥, 𝛿) = 𝑥 +
1

6
𝑥(𝑥2 − 1)𝛿2 −

1

12
𝑥2(𝑥 − 1)𝛿4   (6) 

Proceeding in an identical approach we acquired the osculatory interpolation as 

𝛿2𝑖𝑓𝑘 = ∑ (
2𝑖
𝑚
) (−1)𝑚𝑓𝑘−𝑚+𝑖

2𝑖
𝑚=0       (7) 

which is valid for all 𝑖 ≥ 0 integers. further,  we get 

𝑓(𝑥) = 𝑓(𝑘 + 𝜉) = ∑ ∑ (
2𝑖
𝑚
) (−1)𝑚[𝐹𝑖(𝜉)𝑓𝑘−𝑚+𝑖+1 + 𝐹𝑖(1 − 𝜉)𝑓𝑘−𝑚+𝑖]

2𝑖
𝑚=0

𝑖𝑚𝑎𝑥
𝑖=0       (8) 

In general  𝛽1(𝑥)  is the interpolation kernel, or B-spline of degree and the facts that   𝛽1(−𝑥) =

𝛽1(𝑥), ∀𝑥 ∈ ℝ.  It is further written like  𝐹𝑖(𝜉)𝑓𝑘−𝑚+𝑖+1 + 𝐹𝑖(1 − 𝜉)𝑓𝑘−𝑚+𝑖   and are often combined with 

  ∑ 𝐹𝑖(𝛽
1(𝑥 − 𝑘– 𝑙))𝑖∈ℤ 𝑓𝑘−𝑚+𝑖+𝑙 , hence we get  

𝜑(𝑥) = ∑ ∑ (
2𝑖
𝑚
) (−1)𝑚𝐹𝑖

2𝑖
𝑚=0

𝑖𝑚𝑎𝑥
𝑖=0 (𝛽1(𝑥 − 𝑚 + 𝑖))    (9) 

Taking 𝑖𝑚𝑎𝑥 = 1,  and  𝐹1(𝑥) =
1

2
𝑥2(𝑥 − 1), and simplifying (9) we get the kernel of osculating 

interpolation which is exactly same as in (2). Simultaneously, considering  𝑖𝑚𝑎𝑥 = 2, 𝐹1(𝑥) =
1

6
𝑥(𝑥2 −

1)  and  𝐹2(𝑥) = −
1

12
𝑥2(𝑥 − 1), and hence we discover  the higher order core style of osculatory 

interpolation is exactly as in (3). 

 Therefore, it seems that the osculating convolution-based interpolation schemes provide quicker 

algorithms, however needs a lot of memory. 
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Using (9) we determine it’s kernel as 

𝜑(𝑥) =

{
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5
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7
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9
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1
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1

4
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18
|𝑥| −

2

3
𝑖𝑓 2 ≤ |𝑥| ≤ 3

0                                            𝑖𝑓 3 ≤ |𝑥|

  (10) 

This kernel’s approximation order is 4. The central three-dimensional Lagrange interpolation of the 

kernel is given by 𝐹1(𝑥) = 𝑥(𝑥 − 1) ((2𝛼 +
1

2
) 𝑥 − 𝛼), and 𝐹2(𝑥) =

1

2
𝛼𝑥2(𝑥 − 1). Due to the parameter, 

α, it constitutes an entire family of three-dimensional interpolation whose general type follows from (9) as 

𝜑(𝑥) =

{
 
 

 
 (𝛼 +

3

2
) |𝑥|3 − (𝛼 +

5

2
) |𝑥|2 + 1                                                𝑖𝑓 0 ≤ |𝑥| ≤ 1

1

2
(𝛼 − 1)|𝑥|3 − (3𝛼 −

5

2
) |𝑥|2 + (

11

2
𝛼 − 4) |𝑥| − (3𝛼 − 2) 𝑖𝑓 1 ≤ |𝑥| ≤ 2

−
1

2
𝛼|𝑥|3 + 4𝛼|𝑥|2 −

21

2
𝛼|𝑥| + 9𝛼                                           𝑖𝑓 2 ≤ |𝑥| ≤ 3

0                                                                                                   𝑖𝑓 3 ≤ |𝑥|

 (11) 

Analyzing (11), when 𝛼 = 0  and 𝛼 =  −
1

6
 , for every  𝛼 ∈ ℝ , its ensuing that the kernel has a minimum 

regularity and approximation order  is  3. Finally, assume that 

  𝐹1(𝑥) = 𝑥(𝑥 − 1) ((2𝛼 +
1

2
) 𝑥 − 𝛼) 

𝐹2(𝑥) = 𝑥 ((
1

2
𝛼 + 2𝛽)𝑥2 − (

1

2
𝛼 + 3𝛽) 𝑥 + 𝛽)  ,   and 

 𝐹3(𝑥) =
1

2
𝛽𝑥2(𝑥 − 1). 

 The overall pattern is expressed as 

𝜑(𝑥) = 

{
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5

2
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3

2
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5
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5

2
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1

2
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9

2
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5

2
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2
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−
1

2
(𝛼 − 3𝛽)|𝑥|3 + (4𝛼 −

25

2
𝛽) |𝑥|2 − (

21

2
𝛼 − 34𝛽) |𝑥| − (9𝛼 − 30𝛽)                     2 ≤ |𝑥| ≤ 3

−
1

2
𝛽|𝑥|3 +

11

2
𝛽|𝑥|2 − 20𝛽|𝑥| + 24𝛽                                                                                     3 ≤ |𝑥| ≤ 4
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              (12) 

IV   Cubic interpolation parameters formulation 

This section outlines the derivations of for image interpolation of two parameters to five parameters.  

Image interpolation makes an attempt to recreate the sample images as  𝑠(𝑥, 𝑦), (𝑥, 𝑦 ∈ 𝑅) is a sample 

image consisting of uniformly spaced from the normalized spatial coordinates. Without loss of generality, 

the interpolation is usually enforced by convolving the sample image as  𝑠[𝑚, 𝑛],𝑚, 𝑛 ∈ 𝑅 with a 

kernel 𝑓(𝑥, 𝑦) where (𝑥, 𝑦 ∈ 𝑅) and are denoted as follows: 

𝑟(𝑥, 𝑦) = ∑ ∑ 𝑠[𝑚, 𝑛]𝑓(𝑥 − 𝑚, 𝑦 − 𝑛)

+∞

𝑛=−∞

+∞

𝑚=−∞

                                         (13) 

In the general observation, the spatial image is convolved, and process through Fourier frequency 

domain as 
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𝑟̃(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) ∑ ∑ 𝑠̃(𝑢 − 𝜇, 𝑣 − 𝛾)

+∞

𝑣=−∞

+∞

𝑢=−∞

                                         (14) 

    

where  𝑟̃(𝑢, 𝑣), 𝑓(𝑢, 𝑣) and 𝑠̃(𝑢, 𝑣) are the Fourier transforms of the sample image 𝑟(𝑥, 𝑦), and this leads to 

the optimal image 𝑠(𝑥, 𝑦). Several well-known image interpolation strategies are outlined in this manner, 

together with nearest neighbor interpolation. 

Consider the region [−2,2] × [−2,2] has sixteen unit-sized items, every bit with sixteen parameters, 

for example, 

𝑓(𝑥, 𝑦) =∑∑𝑎𝑗𝑘𝑥
𝑗𝑦𝑘

3

𝑘=0

3

𝑗=0

                                                         (15) 

0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ .   This permits 16 × 16 = 256 parameters.  The massive varieties of parameters are 

often reduced by constrictive kernel. These parameters developed subject to image interpolation which 

includes symmetry, continuity, and smoothness.  

These constraints, observes the cubic-convolution kernel of 3 coefficients say (𝑎33, 𝑎32, 𝑎30). 

Further it is extended to the alternative quadrants outlined by line symmetry as  𝑓(−𝑥, 𝑦) =

𝑓(𝑥, 𝑦) and 𝑓(𝑥, −𝑦) = 𝑓(𝑥, 𝑦).     Piecewise cubic interpolator are also 

developed in terms of the consequent parameter 𝛽  are derived as 

𝑎0 = 𝛼 + 2 

𝑎1 = 𝛽 + (𝛼 + 2)2 

𝑎2 = 𝛾 − (𝛼 + 2)(𝛼 + 3) − 𝛽 (16) 

With these parameters, we have the following functions:  

𝑓(𝑥, 𝑦) = (𝑓0(𝑥) + 𝛼𝑓1(𝑥))(𝑓0(𝑦) + 𝛼𝑓1(𝑦)) + 𝛽𝑓1(𝑥)𝑓1(𝑦) + 𝛾𝑓2(𝑥, 𝑦)  (17) 

where 𝑓0 and 𝑓1 are the convolution functions and 𝑓2 is additional non separable  function parameterized 

by  𝛾 .   

The higher order parameter comes with constraints of symmetry and smoothness through 

interpolation. Cubic convolution is often needs additional details on these constraints and the non-separable 

symmetric higher order parameter’s kernel. This is reduced to 

𝑓(𝑥, 𝑦) = 𝑎33𝑓33(𝑥, 𝑦) + 𝑎32𝑓32(𝑥, 𝑦) + 𝑎23𝑓23(𝑥, 𝑦) + 𝑎30𝑓30(𝑥, 𝑦) + 𝑎03𝑓03(𝑥, 𝑦) + 𝑓00(𝑥, 𝑦) 

  (18) 

where  (𝑎33, 𝑎32, 𝑎23, 𝑎30, 𝑎03)  are the 5 parameters.   

V   Conclusion 

In this article we derived the general expression for the implicit classical osculatory interpolation 

schemes. In addition its variations, from cubic to higher order osculatory versions are computationally done.  

The interpolated images are to limit the consequences and the visual variations for many interpolated results 

are aliasing two parameters to five parameters.  Our results progresses in various analysis like extending 

non-separable cubic form convolution to image restoration and exploitation of alternative fields.  
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Furthermore separable bi-cubic convolution strategies are applied for image interpolation. This 

examines the theoretical and sensible problems with non-separable cubic and higher order convolution. This 

article expands two non-separable two-dimensional cubic convolution kernels. The primary kernel, has 3 

parameters with constraints and focuss about biaxal symmetry (diagonal symmetry), continuity and 

smoothness of the sample image. The second kernel, is processed with higher order to arrive biaxal 

symmetry, diagonal symmetry, continuity and smoothness. 
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