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ABSTRACT:  

The asymptotic limit of fluid flow at zero viscosity is a major issue in mathematical fluid dynamics analysis. 

This is especially true when there are boundaries present, since boundary layer separation often results in the 

generation of vorticity at the boundary. The analyzed real-world geometries were representative of a turbine 

rear frame's regular vanes and mount vanes. Bumpy vanes have been compared to a flat plate in order to 

determine the effect of bumps on the boundary layer and whether it is possible to compare the results to those 

from a flat plate. To measure the suction peak boundary layer thickness, we used the regular vane and the 

mount vane. It was discovered that the method used to estimate the thickness of the boundary layer is unreliable 

in cases where the flow over the vane separates. 1 mm bumps located at 32 percent of the nominal boundary 

layer thickness on the regular vane and 30 percent on the mount vane has no separation. Flat plate results differ 

from the boundary layer thickness increase and a detailed analysis of how the thickness is calculated must be 

performed. 1mm bumps were used to measure correlation, with a 0.285 drag coefficient for the regular vane and 

0.275 for its mount version. Using a different method and similar geometry, the department came up with a drag 

coefficient of 0.25%, which can be used to compare. XFOIL has been used to investigate the properties of the 

boundary layer over a flat plate, both analytically, experimentally, and numerically. Analysis of the boundary-

layer properties over an infinitesimal thin flat plate has been carried out using the theory of Blasius and von 

Karma. An aerodynamically flat plate with a Hermite polynomial leading edge and a trailing edge that 

corresponds to the last 70% of a NACA 4-series airfoil section has been analysed with XFOIL and tested in the 

Silent Wind Tunnel of the University of Twente. 

1. INTRODUCTION 

Mathematically well defined displacement thickness 

and its related momentum thickness appear to be 

more popular than descriptions of the boundary 

layer region. It is true, however, that these 

parameters are not very useful for describing, 

visualising, and/or conceptualising the behaviour of 

the boundary layer velocity profile. A similar 

problem exists when attempting to characterise the 

thermal boundary layer. 

Following, we introduce a number of additional 

parameters that are useful in describing the 

behaviour of velocity and thermal boundary layers, 

as well as the thickness of the boundary layer. 

Laminar flow over a plate at zero incidence angle 

results in a Gaussian-like behaviour for both 

parallel flow velocity and temperature second-

derivatives at zero incidence angle. Probability 

distribution function theory is used to explain the 

boundary layers of velocity and temperature as 

moments in second derivative kernels of the 

velocity and temperature profiles. 
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1.1 Background 

To develop and produce components for 

commercial and military aircraft engines, VAC 

collaborates with some of the world's most 

renowned engine makers. GE, Pratt & Whitney, and 

Rolls-Royce are just a few examples. Because of 

this, VACs components can be found in 90 % of the 

world’s large commercial aircrafts. The motto, 

“Make It Light” is the core in VACs goal to reduce 

aircraft emissions by 50 % until 2020, and the 

company focuses heavily on developing lightweight 

solutions for aircraft engine structures and rotors. 

Within the areas of specialization for commercial 

components (Figure 1) Volvo has established a 

number of Centers of Excellence (CoE) and 

Advanced Technology Areas, which have enabled 

them to focus on developing optimal advanced 

technology solutions and being able to provide 
strong competence in all engineering disciplines. 

 

 

 

Figure 1: Some of the components of a jet engine and also Volvo Aero’s commercial component 

specializations. 

This project has been conducted in one of these 

CoEs, namely the aero-thermodynamics 

department, which is the competence centre for 

method and technology development within 

aerodynamics at VAC. Aero acoustics and 

aeromechanics, combustion, heat transfer, radiation, 

performance, and experimental verification are a 

few of the many fields in which this function is 

utilised throughout the product development 

process. 

1.1.1 Non-conformance definitions  

During manufacturing, the engine components go 

through a number of processes, like assembly and 

adjustment which will affect the products in 

different ways. This quite often has the impact that 

the finished product does not look like the intended 

design. The difference between the nominal (ideal) 

design of the components and the actual finished 

products is what causes non-conformances (NCs) or 

geometry defects. These deviations can have an 

unfortunate impact on the engine performance 

resulting in e.g. increased pressure losses, flow 

separation and increased swirl angles. The 

challenge is to determine how much these NC 

affects the aerodynamics of the components and if it 

is possible to relieve manufacturing and design 

constraints if they are found not to be detrimental. It 

will then be possible to reduce manufacturing and 

design costs. 
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1.2 Purpose of the project 

It is thus of great interest for the department to 

know if the definitions can be considered accurate 

enough or if they need to be adjusted. Therefore, 

one of the purposes of this project is to validate the 

defined borders of the local defects to see if the 

definitions needs to be adjusted or not. The second 

purpose is to develop a correlation for calculating 

the drag coefficient of a bump, consisting of 
variables such as bump height in relation to 

boundary layer thickness and the Reynolds number 

at the bump position. The correlation can then be 

used in a non-conformance analysis program 

currently in development at the department. 

2. GENERAL APPROACH FOR FLOWS 

WITH VORTICITY 

Due to fluid viscosity, flow vortices in the boundary 

layer are significantly non-uniform. Between zero 

and some value on the body boundary, the vorticity 

changes as a function of distance from the 

boundary. In order to account for the non-

uniformity of the vorticity, discrete vortex sheets 

are used instead of continuously distributed 

vorticity in the flow region. There is no vortexing 

between vortex lines, and the sheets of vortexing 

are arranged along the flow. As depicted in Figure 

2, vortex sheets or streamlines separate the flow 
region into layers/channels. The normal and 

tangential components of the velocity and pressure 

in the channels are both continuous, but their 

tangential components are not. The velocity profile 

gradually changes from one channel to the next 

when using this technique. As the number of 

layers/channels increases, the stepwise discontinuity 

in the velocity profile disappears, and this is true up 

to an infinite number of layers/channels. The 

original flow's non-uniform vorticity can be seen 

here.

 

 

Figure 2. Sketch of a vortex flow: (a) past a downward step. (b) past an upward step. 

The theory of potential flows can be used to solve 

the cavity flow problem with vorticity using this 

vortex flow model. First, the problem is a cavity 

flow in a finite-width channel with a specified 

lower-side shape and an upper-side velocity 

distribution (see Figure 2); the second type is a 

channel flow with curved walls (see Channels 1 N); 

the third type is a semi-infinite surface flow (see 

Layer N + 1), which is described in detail in the 

following sections. The original problem is made up 

of these three types of vortex-free problems. 

Complex velocity and complex potential derivatives 

can be formulated as boundary value problems on 

the parameter plane introduced by them. Using 

these functions, the physical-to-parameter mapping 

function can be determined as follows: 

𝑧(𝜁) =  𝑧𝑜 +  ∫
𝑑𝑧

𝑑𝜁
 𝑑𝜁

𝜁

0

= 𝑧𝑜 + ∫

𝑑𝑤
𝑑𝜁

𝑑𝑤
𝑑𝑧  

⁄  𝑑𝜁    (1)
𝜁

0
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where 𝑧𝑜 is the point in the physical plane 
corresponding to the point ζ = 0 in the parameter 

plane. 

The following is a list of the problems that have 

been solved so far. Solution of this problem, as 

shown in Figure 2, yields an upper-wall shape based 

on previous iteration's velocity magnitude 

assumption, as shown in this figure. In channel 1, 

the lower side of this wall is considered to be a solid 

wall. It is assumed that velocity magnitude along 

channel 1's upper wall is already known from 

previous iterations. The shape of channel 1's upper 

side can be determined by solving the problem. N + 

1 is the half-space of the liquid that flows along the 

curved solid wall of the channel N by repeating the 

process. Solving this problem gives us information 

about the upper wall velocity of channel N. 

Based on the observation that, except for around 𝜂 
= 0, the resulting profile is well approximated by a 

Gaussian curve when plotting 𝑓 ′′′  versus 𝜂  this 

method for defining the boundary layer was 

developed. There are two ways to check for 

Gaussian-like behaviour: the second derivative plot 

and a least squares fit to that plot. Instead, we'll take 

a different route because it's more instructive than 

the one we're currently on. Due to the second 

derivatives' gaussian behaviour, it is possible to 

approximate the velocity profile as the integral of 

the integral of a Gaussian. The approximate 

expression for velocity based on the Gaussian-Error 

function is as follows: 

𝑢(𝑦)

𝑈∞

 ≅  
√2𝜎𝑣

𝑠𝜇1√𝜋
 [𝐸𝑋𝑃 (−

1

2
(

𝜇1
𝜎𝑣

⁄ )
2

)

− 𝐸𝑋𝑃 (−
1

2
(

𝑦 − 𝜇1

𝜎𝑣
)

2

)]

+ 
𝑦

𝑠𝜇1
[1 − 𝐸𝑅𝐹 (

√2

2
(

𝑦 − 𝜇1

𝜎𝑣
))

+ 
1

𝑠
[𝐸𝑅𝐹 (

√2𝜇1

2𝜎𝑣
)

+  𝐸𝑅𝐹 (
√2

2
(

𝑦 − 𝜇1

𝜎𝑣
))]]   (2) 

 

Fig. 3. A lower velocity profile parallel to the plate 

surface.  

The Blasius solution is depicted by the solid line. 

Equivalent to the dashed line is a profile calculated 

using Equation (2). 

Equation (2) gives us an approximation of velocity, 

which is shown in Fig. 3 as a dashed line alongside 

Blasius's result (the values used for rv and l1 are 

given below). Gaussian-like behaviour has been 

observed in a second derivative of the velocity 

because of the close proximity of these lines. 

𝜇𝑛  ≡  ∫ 𝑑𝑦(𝑦 − 𝜇1)𝑛  
𝑑2 {−𝜇1

𝑢(𝑦)
𝑈∞

}

𝑑𝑦2

∞

0

    (3) 

3. SYSTEM CONFIGURATION 

3.1 Computational fluid dynamics  

An analysis tool for fluid flow, heat transfer, and 

other related processes, computational fluid 

dynamics (CFD) is a computer simulation. 

Numerical algorithms are used by these simulation 

tools to solve the relevant physical process. 

Numerical solution techniques include finite 

difference, finite element, and spectral methods, 

which are all distinct from one another. The CFD 

code chosen in this project, CFX, uses a special 

finite difference formulation called the finite 

volume method. How this works is that the user 

creates a computational grid on the domain 

consisting of cells (control volumes). For each 

control volume, the governing equations of fluid 
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flow are integrated, discretized into algebraic 

equations, and then solved using an algorithmic 

method. The complex and non-linear nature of the 

governing equations (equations (4) – (8)) 

necessitates an iterative approach. 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦: 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢) = 0  (4) 

𝑋 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑢𝒖)

= −
𝜕𝑝

𝜕𝑥
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑢)

+ 𝑆𝑀𝑥  (5) 

𝑌 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 
𝜕(𝜌𝑣)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑣𝒖)

= −
𝜕𝑝

𝜕𝑦
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑦)

+ 𝑆𝑀𝑦  (6) 

𝑍 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚: 
𝜕(𝜌𝑤)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑤𝒖)

= −
𝜕𝑝

𝜕𝑧
+ 𝑑𝑖𝑣(𝜇 𝑔𝑟𝑎𝑑 𝑤)

+ 𝑆𝑀𝑧  (7) 

𝐸𝑛𝑒𝑟𝑔𝑦: 
𝜕(𝜌𝑖)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑖𝒖)

= −𝑝𝑑𝑖𝑣 𝑢 + 𝑑𝑖𝑣(𝑘𝑡 𝑔𝑟𝑎𝑑 𝑇) + Φ

+ 𝑆𝑖  (8) 

 

The governing equations come from applying the 

three fundamental physical laws of conservation of 

mass, momentum and energy to a control volume. 

For further information about these laws, the 

derivation of the equations and the numerical 

approach used by CFX, the reader is referred to 

standard text books in fluid dynamics and CFD. 

3.1.1 Turbulence modeling  

The turbulent nature of flows makes them much 

more difficult to calculate than if they are laminar. 

Due to the random and chaotic nature of the 

turbulent flow, eddies have a wide range of length 

and time scales. This can be done by using direct 

numerical simulation (DNS), large eddy simulation 

(LES) and Reynolds-averaged Navier–Stokes 

equations (RANS) for turbulence modelling 

(RANS). Using the DNS method, four equations 

with four unknowns can be formed using the 

turbulent continuity and Navier-Stokes equations. 

These can then be used to find a starting point for 

the simulations, which then develops a transient 

solution to resolve all the scales of the motion. This 

method requires extremely fine computational grids 
(around 103 grid points in each coordinate 

direction) and very small time steps, which makes it 

too computational heavy to be used in industrial 

applications and hence it is more commonly used in 

fundamental research in turbulence. 

The LES method uses a filtering method on the 

Navier-Stokes equations to separate the larger and 

smaller eddies. The larger eddies are then resolved 

using unsteady flow simulations while the smaller 

scale eddies are modeled with a so called sub-grid 

model. This method is much less demanding on 

computational resources than DNS but it still 

requires a lot more computer power than the third 

method. 

3.2 Boundary layers  

Consider fluid flow over a flat plate, like in Figure 

4. Small velocity gradients and little friction affect 

the flow in the vast majority of the flow field away 

from the surface. At the wall however, the velocity 

gradients are large and friction has a large impact 

on the flow due to the frictional forces retarding the 

motion of the fluid, and hence a thin layer is formed 

above the surface. This thin viscous region is called 

the boundary layer. A no-slip condition occurs 

when flow velocity at the surface is equal to the 

freestream velocity, u∞. As we move away from the 

surface, flow velocity increases to the point where it 

equals the freestream velocity. The height  and it’s 

normallyabove the wall where this occurs is called 

the boundary layer thickness  defined as the point 

above the wall where the velocity equals 99 % of 

the freestream velocity (equation (9)). 

𝑢 = 0.99𝑢∞  (9)
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Figure 4: Boundary layer along a flat plate. 

Boundary layers (BL) can be laminar or turbulent 

depending on the Reynolds number (Re). The flow 

over a flat plate changes from one to the other at 

approximately Re = 5*105. Lower Reynolds 

numbers are laminar, while higher Reynolds 

numbers are turbulent, and the velocity changes 

uniformly as one moves away from the wall in a 

straight line. 

Particles of fluid in the BL do not always adhere to 

the body's surface in a thin layer along its length. 

The flow in the boundary layer can be reversed and 

the boundary layer's thickness can increase 

significantly when adverse pressure gradients are 

present. Because of reversed flow, there is a large 

wake of backwards-flowing water that separates 

from and recirculates the surface. This will cause a 

pressure drop in the region and will increase the 

pressure drag on the body. 

4. METHODOLOGY 

To validate the local non-conformance definition 

for the bumps the work was split up into several 

parts. First an investigation of the flow over a flat 

plate was conducted (reference case) to visualize 

the boundary layers and to find the thickness at a 

position where the flow was fully developed. This 

was done for Reynolds numbers ranging from 105 to 

107 to see how the thickness changed with Re. 

Since the NC definition that VAC use is defined as 

a percentage of the boundary layer thickness (BLT), 

bumps were created with a height of 10, 40, 60, 99 

and 150 % of the BLTs found in the flat plate 

simulations. This was done to see how the size and 

shape of the BL was affected by the bumps. A 

correlation for the drag coefficient for the bumps 

was then derived based on the data from the bump 

analysis. 

Finally the boundary layers for representative vanes 

of a TRF were analyzed for both nominal cases and 

with bumps so that VAC could be provided with 

recommended values for maximum allowed bump 

sizes on the vanes. The correlation derived from the 

flat plate simulations was then tested on some of the 

bump cases to see how well it predicted the drag 

coefficient. 

4.1 Simulation approach  

A similar approach was used during all the 

simulations to standardize the work. All the flat 

plate simulations were very much alike, apart from 

slight geometry changes and boundary conditions, 

which made it possible to keep a lot of things 

constant during the process. For each case the steps 

below were followed.  

1. Create the geometry.  

2. Create the computational grid. Depending on the 

inlet boundary condition used in step 3, modify the 

distance from the wall to the first node.  

3. Define the simulation case with appropriate 

boundary conditions and simulation settings.  

4. Run the calculations. Monitor convergence of the 

residuals and domain imbalances until the 

monitored parameters can be considered to be low 

enough and steady.  
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5. Check if the y + value fulfills the criteria 

demanded by the turbulence model. If it does, 

continue to step 6, otherwise repeat step 2-5.  

6. Post-process the results. 

4.1.1 Software and simulations settings  

Due to the simple geometry of a flat plate it was 

constructed in the geometry builder of the meshing 

software ANSYS ICEM 12.1. The bumps that were 

to be placed on the flat plate were created in 
MATLAB and then imported as formatted point 

data files into ICEM. All the mesh generation was 

then done with ICEM. 

The solver chosen was the commercial software 

package ANSYS CFX 12.1 where CFX-Pre was 

used for defining the simulations and CFX-Solver 

for running them. In CFX-Pre the simulations SST 

turbulence model. This were set up as steady and 

incompressible and run with the k- calculating the 

advection terms in the discrete finite volume 

equations as well as the turbulence numerics, 2nd 

order high resolution schemes were utilized. Since 

the boundary layers were studied in detail it was 

important to use a turbulence model that could 

utilize a fine mesh and SST model was chosen 

because of it advantages to calculate well and close 

to the walls.  

The post-processing was carried out in several 

programs. CFX-Post was mainly used for exporting 

data from the CFD-simulations for the BL and drag 

coefficient calculations. MATLAB was utilized to 

deal with the large amount of data needed to 
calculate the boundary layer thickness and doing the 

BL calculations. Microsoft Excel was used for 

evaluating all the data relevant to the drag 

coefficient as well as deriving the correlation. 

4.2 Boundary conditions   

The leftmost side in Figure 5 was set as an inlet 

with a velocity Vin depending on the Reynolds 

number ReL wanted at a location of x = 19 meters 

(Table 1). VACs applications aren’t restricted to 

just one Re so it was important to study how the BL 

changed with an increasing value, but also to be 

able to find a correlation that would work for a wide 

range of Re. The inlet velocity was calculated from 

equation (10).

 

 

 

Figure 5: Initial 2D-mesh for the reference case. 

𝑅𝑒𝐿 =  
𝜌∞ 𝑉∞ 𝐿

𝜇∞
   (10) 

Table 1: Inlet velocities for different Reynolds numbers. 
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Figure 6: Reference case geometry: flat plate. 

Using a wall with a no-slip boundary condition, the 

bottom side of the geometry was given the 

appearance of a plate.   

The top side of the domain was set as a wall with a 

free-slip condition. 

The two walls in the cross-flow direction (Figure 6) 

were both given a symmetry boundary condition 

(ANSYS Inc, Modeling 2D Problems, 2020).   

For the rightmost side of the domain an outlet 

boundary condition was set with an average static 

pressure of zero Pascal over the whole outlet. 

4.3 The Runge-Kutta Method for the Blasius 

Equation  

The obtained third-order, nonlinear, ordinary 

differential equation cannot be solved analytically 

and has to be solved numerically. A technique that 

can be used is the Runge-Kutta method. The 

method integrates in small steps along the y-

direction, starting from the wall. 

However, because we only have two of the 

boundary conditions at y=0 (the boundary condition 

for f’’(0) is missing), we have to assume a value for 

this boundary condition and check if at large η, the 

condition f’(∞) = 1 is satisfied. This process is 

repeated until the solution is congruent. This 

method is also called the ’shooting-method’ and 

Matlab will provide the help needed to find the 

solution. 
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5. RESULTS AND DISCUSSION 

5.1 Reference case  

Following the method for calculating the BLT for 

the flat plate yielded the results shown in Figure 7. 

The line at the top of the graph is the lowest Re 

(105) and the bottom one the highest (107) and as 

was mentioned earlier they all correspond to a Re at 

19 meters in the flow direction.

 

 

Figure 7: Boundary layer thickness for the reference case. 

 

Fig. 8. The first two moments of the velocity boundary layer, the skewness, and the excess 

calculated as a function of plate temperature (T1 = 300 K, Re = 5000). 
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This flavour can also be found in the skewness and 

excess terms in the boundary layer context, but they 

tend to be biassed by the velocity profile near the 

plate. The calculated higher order moments, as 

shown in Fig. 8, are the most obvious examples of 

this behaviour. 

5.2 Comparison analysis 

 

Figure 9: Comparison of the velocity profiles 

In Figure 9, η is plotted against u/U∞ and 

the four velocity profiles are compared.

 

 

Figure 10: Comparison of the boundary-layer thickness. 

Second-order approximation in Figure 10 is close to the Blasius solution. There is even more 

discrepancy between the Blasius equation and the fourth-order approximation in the boundary-

layer thickness graph Here, the third-order approximation appears to be the most accurate. 
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CONCLUSION 

It has been determined that the boundary layer 

thickness can be defined mathematically, along with 

a number of additional parameters that can be used 

to measure the behaviour of the velocity and 

temperature profiles. Experimental and computer-

generated velocity and temperature profiles, as well 

as laminar and turbulent flow, should all be 

compatible with the method. It was studied both 
with and without bumps on the suction and pressure 

sides of real geometries that represent the vanes in 

the turbine rear frame. Boundary layer thicknesses 

at the suction peak on the regular vane and the 

mount vane were found to be 3.4 mm at 50% span 

on the regular vane and 3.1 mm at 90% span on the 

mount vane. It was extremely difficult to calculate 

the boundary layer thickness along the vanes when 

large bumps of more than 1 mm were present, as 

they were on both vane types. More than 80 percent 

increase in boundary layer thickness was found on 

regular vane and 20 percent on mount vane for 

bumps of 1 mm in diameter. 
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