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1. Abstract 

Extension fields a wonderful part of mathematics (Abreact Algebra) for finding zeros of 

polynomials and its properties. In principle, I have focused on to understand the basic concept 

of extension field and to find the zeros of irreducible polynomial over extended or splitting 

field, theory and corollary with suitable examples and diagram where needed. 
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2. Introduction 

An abstract algebra is an important branch of Mathematics and fields are one of the most 

important part of Algebra, also one of the important objects of study. Fields’s theory provides 

a useful generalization of many number systems, nature and zeros/roots of the polynomials. 

The study of extension field is specially study of polynomials. Generally, we know that an 

irreducible polynomial cannot be factorized. i.e., it cannot be warren into the product of two 

or more than two non-constant polynomials. It means zeros of polynomials do not find. So, 

we study all about the polynomials as well as its derivatives as its factor, zeros and 

irreducibility over field. Also, we see about splitting of field over some fields.      

 

3. Extension Field 

3.1. Definitions:   

3.1.1 Field: A field F is a set of two composition laws “+” (Addition) and “. ” (Multiplication) such that 

(a) (F, +) is a commutative group, 

(b) (F*, +) is a commutative group, where F* = F \ {0} 

(c) and holds distributive law. 

Hence, for a field a ring should be nonzero commutative. Therefore, all element (nonzero element) has an 

own inverse. i.e., Q, R, C, Fp = Z/pZ  (p prime) are fields. 

One of the most important and smallest field is F2= Z/2Z = {0,1}. 
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3.1.2. Subfield: If S ⊆ F and S itself a field then S is said to be subfield of F.   

3.1.3. Extension Field: Let us assume a subfield F of field E then, E is called extension field of F. It is 

denoted as [E: F]. An extension field E of a field F then, F ⊆ E and all operations of F are those E restricted 

to F. 

 

 

 

 

 

 

 

 

 

                        

     In practical: S ⊆ F ⊆ E 

  

3.2. Characteristic of a field:  

If F is a field, then its characteristic to be defined as a smallest positive integer p i.e., p · 1F = 0. It is 

denoted as char(F). 

 If such type  of  p exists then field is finite order and 0 otherwise if infinite order. 

3.3. Proposition:  

Characteristic of a field either zero or prime. 

3.4. Corollary: If F is a field and exists an irreducible polynomial p(x) over F. Thus,    

                          F[x]/< p(x) > is a field. 
 

3.5. Theorem: Fundamental theorem of field theory (Kronecker’s Theorem, 1887)    Let F be a 

field and f(x) a nonconstant polynomial in F[x], then there is an extension field E of F in which f(x) 

has a zero. 

Proof: 

Let us take a field F, hence as we know that if F is a field, then, F[x] is a unique factorization domain. Then, 

there exist an irreducible factor p(x) (say), of f (x).  

Hence, it is sufficient to construct an extension E of F where p(x) has a zero. 

We consider a field E = F[x]/< p(x) >                                     {corollary 3.4.} 

Now ѱ: F → E given by ѱ(k) = k + < p(x) >. ѱ is one-one, onto and preserves these operations.  

Thus, E has a subfield which is isomorphic to F. Therefore, we find a unique coset k + p(x) 

representative k that belongs to F. 

Finally, to show p(x) has a zero in E. 

Let  

   p(x) =   knxn + kn−1xn−1 + ... + a0 

  p(x+ < p(x) >) = kn(x+ < p(x) >)n + kn−1(x+ < p(x) >)n−1 + ... + k0 

                        = kn(xn+ <p(x)>) + kn−1(xn−1+ <p(x)>) + ... + k0+ < p(x) > 

 

Subfield (S) 

Field (F) 

Extension Field (E) 
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                        = knxn + kn−1xn−1 + ... + k0 + < p(x) > 

                      = p(x)+ < p(x) > 

                      = 0+ < p(x) > 

So, x+ < p(x) > is a zero of p(x) in E. 
 

3.5.1. Illustration: Let f(x) = x5 + 2x2 +2x + 2 ∈ Z3 [x]. 

There exits irreducible factorization of f(x) over Z3 is (x2 + 1) (x3 + 2x + 2).  

Hence, construct an extension field E (say) of Z3, where f(x) has a zero, we may let 

E = Z3 / (x
2 + 1) of order 9 or E = Z3 / (x

3 + 2x + 2) of order 27. 
 

3.5.2. Illustration:  Let f (y) = y 2 + 1 ∈ Q[y ]. Then E = Q[y]/ < y2 + 1 > 

We have,   

             f (y + < y 2 + 1 >) = (y+ < y2 + 1 >)2 + 1 

                                         = y2+ < y2 + 1 > +1 

                                        = y2 + 1+ < y2 + 1 > 

                                        = 0+ < y2 + 1 > 

Hence, y+ < y2 + 1 > is a zero of f (y) in F. 
 

4. Splitting Field 

 

4.1. Definition: An extension field of K of F is said to be splitting field of  f(x) ∈ F[x] over F if; 

(a) f(x) can be factored in two linear factors over K[x]. 

(b) f(x) can not be factored in two linear factors over any subfield of K containing F. 

 

4.1.1. Illustration: Show that Q[i] is splitting field of f(x) = x2 + 1 over Q but C is not splitting field 

of f(x) = x2 + 1 over Q. 

As given f(x) = x2 + 1 = (x+i) (x-i) over Q[i] and Q[i] is a smallest extension of Q then Q[i] is splitting 

field of f(x) = x2 + 1 over Q. 

But f(x) = x2 + 1 = (x+i) (x-i) over C and Q ⊆ Q[i] ⊆ C, such that f(x) = x2 + 1 over q[i] then C is not 

splitting field f(x) = x2 + 1 over Q 

 

4.2. Theorem: For a field 𝑭 and if a nonconstant element 𝒇(𝒙) ∈ 𝑭[𝒙]. 𝐓hen ∃ an extension 𝑲 of 𝑭 

which is a splitting field for 𝒇(𝒙).   
 

Proof: To show first that, an extension 𝐾 of 𝐹 and 𝑓(𝑥) is splits completely into linear factors through 

induction on degree 𝑛 of 𝑓(𝑥). 

Let degree of 𝑓(𝑥) is one, then 𝑓(𝑥) will be already in linear in this case 𝐾 =  𝐹. 

Now, 

Let us consider that the statement is true for all field, all polynomials degree less than that of 𝑓(𝑥). 

Hence, as per fundamental theorem of field theory that, an extension 𝐾 of 𝐹 in which has a zero (say) 𝑎1.  
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So, 𝑓(𝑥) has the linear factors (𝑥 −  𝛼) and we write  𝑓(𝑥)  =  (𝑥 −  𝛼)𝑔(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥)  ∈  𝐸[𝑥]. Since,  

𝑑𝑒𝑔 𝑔(𝑥) <  𝑑𝑒𝑔 𝑓(𝑥), by induction there is an extension 𝐸 𝑜𝑓 𝐸1 containing all the zeros of 

𝑔(𝑥), 𝑠𝑎𝑦, 𝛼1, 𝛼2, .  .  ., 𝛼𝑛 .  

Since, α ∈ E, E is an extension of F containing all the zeros of f(x). Now assume K be the intersection 

of all the subfields of E containing F and also contain all zeros of f(x). So, it is clearly, then a splitting 

field for 𝑓(𝑥) over 𝐹 is 𝐹(𝛼1, 𝛼2, .  .  ., 𝛼𝑛). 

 

4.2.1. Corollary: If K is an algebraic extension of F while is the splitting filed over F for a 

collection of polynomials f(x) ∈ F[x], then K is a normal extension of F. 
 

4.2.2. Illustration: The splitting field fir (x2 – 2)( x2 – 3) is the field Q(√2  , √3 ) generated over Q by 

√2  and √3 since the zeros of the polynomial are ±√2  ,± √3 . Hence, we seen that it is an extension 

of degree 4 over Q.  we can know subfields by following diagram: 

 

                                                             𝑄 [√2, √3 ]          
 

                                                   2             2                 2  
 

 

                                          𝑄 [√2 ]         𝑄 [√6 ]           𝑄 [√3 ] 
 

                                                   2             2                   2 
                                                    

 

                                                                     𝑄 
 

(Source: Dummit Foote, Abstract Algebra, Page No. 568, Third Edition 2011, Wiley India Pvt. Ltd.) 

 

5. Zeros of Irreducible Polynomial 

5.1. Definition (Derivative of polynomials) 

Let f(x) = 𝑘𝑛𝑥𝑛 + 𝑘𝑛−1𝑥𝑛−1+ .  .  . +  𝑘1𝑥 +  𝑘0  belong to 𝐹[𝑥]. then derivative of f(x), is denoted by f’’(x) 

= 𝑛𝑘𝑛𝑥𝑛−1 + (𝑛 − 1)𝑘𝑛−1𝑥𝑛−2+ .  .  . +  𝑘1in 𝐹[𝑥]. 

5.2. Lemma: [Algebraic laws of derivative] 

(a) [𝑓(𝑥) +  𝑔(𝑥)]’ =  𝑓’(𝑥)  +  𝑔’(𝑥) 

(b) [𝑎 𝑓(𝑥)]’ =  𝑎 𝑓’(𝑥) 

(c) [𝑓(𝑥)𝑔(𝑥)]’ =  𝑓’(𝑥)𝑔(𝑥) +  𝑓(𝑥)𝑔’(𝑥). 

5.3. Definition (Multiple zeros): Zeros of multiplicity greater than 1, such are called multiple zeros. 

5.4. Definition (Perfect field): A field 𝑭 is said to be perfect if its characteristic 0 or 𝒑 and 𝑭𝒑 = {𝒂𝒑 | 𝒂 ∈

𝑭} = 𝑭. 

 

5.5. Theorem: Let a nonconstant polynomial 𝑓(𝑥) ∈ 𝐹, has multiple zeros in some extension 𝐾 if and only 

if 𝑓(𝑥) 𝑎𝑛𝑑 𝑓’(𝑥) have a common factor of positive degree in 𝐹[𝑥].   

Proof. 𝐿𝑒𝑡 𝑓(𝑥)  =  (𝑥 −  𝑎)2 𝑔(𝑥)  ∈  𝐸[𝑥], then 𝑓’(𝑥)  =  2(𝑥 − 𝑎)(−𝑎)𝑔(𝑥) +  (𝑥 −  𝑎)2  𝑔’(𝑥). 

So, that 𝑓 (𝑥) 𝑎𝑛𝑑 𝑓’(𝑥) ℎ𝑎𝑣𝑒 (𝑥 − 𝑎) common factor in 𝐾.  

http://www.ijcrt.org/


www.ijcrt.org                                            ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT2112198 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b883 
 

Now we suppose that, if  𝑓(𝑥) 𝑎𝑛𝑑 𝑓’(𝑥) have not any common factors in 𝐹[𝑥]. 

Therefore, all these are relatively prime. 

Hence, there exist 𝑔(𝑥), ℎ(𝑥)  ∈  𝐹[𝑥], such that, 𝑔(𝑥)𝑓(𝑥)  +  ℎ(𝑥)𝑓’(𝑥)  =  1, and (𝑥 −  𝑎) is a factor of 

1∈ 𝐾[𝑥]. 

Conversely, we suppose 𝑓(𝑥) 𝑎𝑛𝑑 𝑓’(𝑥) have a common factor (𝑥 − 𝑎), 𝑡ℎ𝑒𝑛 𝑓(𝑥) = (𝑥 −

𝑎)𝑔(𝑥) 𝑎𝑛𝑑 𝑓′(𝑥) = 𝑔(𝑥) + (𝑥 − 𝑎)𝑔′(𝑥), 𝑡ℎ𝑖𝑠 𝑒𝑚𝑙𝑖𝑠𝑒 𝑔(𝑥) = (𝑥 − 𝑎)ℎ(𝑥).  

Hence, 𝑓(𝑥) =  (𝑥 − 𝑎)2ℎ(𝑥)𝑖𝑛 𝐾[𝑥]. 

  

5.6. Theorem: An irreducible polynomial 𝑓(𝑥) over a field 𝐹; 

(1) and 𝐹 has characteristic 0. Then, 𝑓(𝑥) has no multiple zeros. 

(2) and 𝐹 has characteristic 𝑝 ≠ 0. Then, 𝑓(𝑥) has a multiple zero, 

     If it is in the form of 𝑓(𝑥) =  𝑔(𝑥𝑝) for some 𝑔(𝑥) in 𝑓[𝑥]. 

Proof. Let 𝑓(𝑥)  = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1+ .  .  . +  𝑎1𝑥 + 𝑎0 in 𝐹[𝑥].  

So, f’’(x) = 𝑛𝑎𝑛𝑥𝑛−1 +  (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2+ .  .  . +  𝑎1 in 𝐹[x]. 

Let 𝑓(𝑥) has a multiple zero then, 𝑓(𝑥) and 𝑓’(𝑥)  have common factors 𝑔(𝑥) (say) of degree at list in 𝐹[𝑥]. 

Then, 𝑔(𝑥)/𝑓(𝑥) and 𝑔(𝑥)/𝑓’(𝑥), 

⇒ 𝑔(𝑥) = 𝑢 𝑓(𝑥). Hence, we see 𝑓 ‘(𝑥) = 0 means only 𝑘𝑎𝑘  =  0 𝑓𝑜𝑟 𝑘 =  1, 2, .  .  .  𝑛. 

Now, we can see two cases; 

(a) If 𝑐ℎ𝑎𝑟(𝐹)  =  0, and 𝑓(𝑥)  = 𝑎0, which is not irreducible. But it is a contradiction that 𝑓(𝑥) is an 

irreducible. Therefore, 𝑓(𝑥) has no multiple zeros. 

(b) 𝐼𝑓 𝑐ℎ𝑎𝑟(𝐹)  =  𝑝 ≠  0, and  𝑎𝑘   =  0, where 𝑝 does not divide 𝑘. Thus, the power of x that in the 

sum  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +  .  .  . + 𝑎0, are these of the form 𝑥 𝑝𝑖 =  ( 𝑥𝑝)𝑖 .  This follows 𝑓(𝑥) =

 𝑔(𝑥𝑝), for some 𝑔(𝑥)  ∈  𝐹[𝑥]. 
 

5.6.1. Corollary: Every finite field is perfect. 

 

5.7. Theorem: An irreducible polynomial 𝑓(𝑥) over a field 𝐹 and splitting field 𝐾 of 𝑓(𝑥) over 𝐹. Then 

the zeros of 𝑓(𝑥) in 𝐾 having the similar multiplicity. 

Proof:  Suppose 𝑎, 𝑏 are two zeros (distinct) of 𝑓(𝑥) in 𝐾.  

Now we take multiplicity of 𝑎 is 𝑛.  

So, it may write as 𝑓(𝑥)  =  (𝑥 − 𝑎) then, it is written 𝑓(𝑥) = (𝑥 − 𝑎)𝑛 ℎ(𝑥)  ∈  𝐾[𝑥].   

Now, we know a field isomorphism ∅ ∶ 𝐾 → 𝐾  leaving 𝐹 invariant and brings 𝑎 𝑡𝑜 𝑏.  

Therefore, 𝑓(𝑥) = ∅{𝑓(𝑥)} = (𝑥 − 𝑏)𝑛∅{ℎ(𝑥)} =  (𝑥 − 𝑎)𝑛∅{ℎ(𝑥)} ∈ 𝐾[𝑥].  

Hence, we seen that, multiplicity of 𝑏 is greater or equal to multiplicity of 𝑎 and vice-versa. 

Thus, 𝑎 and 𝑏 have the same multiplicity.   

 

5.7.1. Corollary: An irreducible polynomial 𝒇(𝒙) over a field 𝑭 and splitting field 𝑲 of 𝒇(𝒙). 

Then, 𝒇(𝒙) has the form 𝒌(𝒙 − 𝒂𝟏)𝒏(𝒙 − 𝒂𝟐)𝒏.  .  .  (𝒙 − 𝒂𝒊)
𝒏 where 𝒂𝟏 , 𝒂𝟐, 𝒂𝟑,   .  .  . , are 
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distinct elements of 𝑲 and 𝒂 ∈ 𝑭.   

 

6. Conclusions 

In conclusion, the irreducible polynomial over any field which is contained all coefficient are absolutely 

irreducible. As per crucial hypothesis of algebra, a univariate polynomial is absolutely irreducible iff its 

degree is 1. Then again, with a few indeterminates, there are totally irreducible polynomials having any 

degree. Existing of splitting field over some field, multiplicity of zeros, common factors of positive degree 

polynomials over some extension field. Hence this article helps us to know the characteristics of irreducible 

polynomials over the fields and their extension.   
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