ON THE APPLICATIONS OF ALEPH $(\mathbb{(N)}$ FUNCTION IN A SLIGHTLY DIFFERENT TYPE-1 BETA DENSITY MODEL

Harmendra Kumar Mandia ${ }^{1}$, Yashwant Singh ${ }^{2}$

Department of Mathematics
${ }^{1}$ Seth Motilal (P.G.) College, Jhunjhunu, Rajasthan
${ }^{2}$ Government College, Kaladera, Jaipur, INDIA

Abstract

In the present paper, the author has studied about the structures which are the products and ratios of statistically independently distributed positive real scalar random variables.The author has derived the exact density of a slightly different Type-1 beta density by the Mellin Transform and Hankel Tranform of the unknown density and afterthat the unknown density has been derived in terms of Aleph functions by taking the inverse Mellin transform and Inverse Hankel Transform .A more general structure of Type-1 beta density has also been discussed. Some special cases in terms of H-function are also given.

Key words: Type-1 Beta density, Aleph Function, I-function, H-function, Mellin Transform, Inverse Mellin Transform, Hankel Transform, Inverse Hankel Transform.
(2010 Mathematics Subject Classification: 33CXX, 44A15, 82XX)

1. Introduction

The I-function introduced by Saxena [4] will be represented and defined in slightly different manner as follows:

$$
\begin{equation*}
I(z)=I_{p_{i}, q_{i}: R}^{m, R}(z)=I_{p_{i}, q_{i}: R}^{m, n}\left[\left.z\right|_{\left(b_{j}, \beta_{j}\right)_{1, n},\left(b_{j i}, \beta_{j i}\right)_{m+1, q_{i}}} ^{\left(a_{j}, \alpha_{j}\right)_{1,2},\left(a_{j i}, \alpha_{j i}\right)_{n+1, p_{i}}}\right]=\frac{1}{2 \pi i} \int_{L} \theta(s) z^{-s} d s \tag{1}
\end{equation*}
$$

Where $i=\sqrt{-1}, z \neq 0$ and $z^{-s}=\exp [-\sin |z|+i \arg z]$ where $|z|$ represents the natural logarithm of $|z|$ and $\arg z$ is not the principal value. Here
$\theta(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i=1}^{R}\left\{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j i}-B_{j i} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j i}+A_{j i} s\right)\right\}}$
For $R=1$, the I-function reduces to the H-function.

The \aleph - function introduced by Suland et.al. [6] defined and represented in the following form:
$\aleph[z]=\aleph_{p_{i}, q_{i} i \tau_{i} \cdot r}^{m, n}[z]=\aleph_{p_{i}, q i, \tau_{i} \cdot r}^{m, n}\left[z \left\lvert\, \begin{array}{c}\left(a_{j}, \alpha_{j}\right)_{1, n},\left[\tau_{i}\left(a_{j i}, \alpha_{j i}\right)\right]_{n+1, p_{i}} \\ \left(b_{j}, \beta_{j}\right)_{1, m},\left[\tau_{i}\left(b_{j i}, \beta_{j i}\right)\right]_{m+1, q_{i}}\end{array}\right.\right]$
$=\frac{1}{2 \pi \omega} \int_{L} \theta(s) z^{s} d s$
Where $\omega=\sqrt{ }-1$;
$\theta(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+\alpha_{j} s\right)}{\sum_{i=1}^{r} \tau_{i}\left\{\prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}-\alpha_{j i} s\right\}\right.}$
We shall use the following notation:

$$
A^{*}=\left(a_{j}, \alpha_{j}\right)_{1, n},\left[\tau_{i}\left(a_{j i}, \alpha_{j i}\right)\right]_{n+1, p_{i}}, B^{*}=\left(b_{j}, \beta_{j}\right)_{1, m},\left[\tau_{i}\left(b_{j i}, \beta_{j i}\right)\right]_{m+1, q_{i}}
$$

The Mellin transform of $f(x)$ denoted by $M\{f(x) ; s\}$ or $F(s)$ is given by

$$
\begin{equation*}
M\{f(x) ; s\}=\int_{0}^{\infty} x^{s-1} f(x) d x \tag{5}
\end{equation*}
$$

The Hankel transform of $f(x)$ denoted by $H_{v}\{f(x) ; p\}$ or $F_{v}(p)$ is given by

$$
\begin{equation*}
H_{v}\{f(x) ; p\}=\int_{0}^{\infty} x J_{v}(p x) f(x) d x \tag{6}
\end{equation*}
$$

A real scalar random variable x is said to have a real type- 1 generalized beta distribution, if the density is of the following form ([1], p.121, eq. (4.8)):
$f(x)=\left\{\begin{array}{l}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} ; 0<x<1, \alpha>0, \beta>0 \\ 0, \text { elsewhere }\end{array}\right.$
Where the parameters α and β are real. The following discussion holds even when α and β are complex quantities. In this case, the conditions become $\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$ where Re (.)means the real part of (.).

2. General structures

A real scalar random variable x is said to have a real generalized type- 1 generalized beta distribution,if the density is of the following form:
$f(x)=\left\{\begin{array}{l}\frac{\Gamma\left(\frac{\alpha+m m}{\gamma}+\beta\right) A^{\frac{\alpha+m}{\gamma}}}{\Gamma\left(\frac{\alpha+t m}{\gamma}\right) \Gamma(\beta)} x^{\alpha-1}(1-A x)^{\beta-1} F_{2} F_{1}\left(a, b ; c, w ; \mu ; p x^{t}\right) \\ 0, \text { elsewhere }\end{array}\right.$

For $0<x<A^{\frac{-1}{\gamma}}, \alpha>0, \beta>0, A>0, a>0, b>0, c>0,1-A x^{\gamma}>0$.
Where the parameters α and β are real. The following discussion holds even when α and β are complex quantities. In this case, the conditions become $\operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0$ where $\operatorname{Re}($.$) means the real part of (.).$

The $h^{\text {th }}$-moment of x, when x has the density in (8), is given by
$E\left(x^{h}\right)=\frac{\Gamma\left(\frac{\alpha+t m+h}{\gamma}\right) \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{A^{\frac{h}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}\right) \Gamma\left(\frac{\alpha+h}{\gamma}+\beta\right)}$
For $\operatorname{Re}(\alpha+t m+h)>0, \operatorname{Re}(\alpha+t m+\beta)>0, \gamma>0$.
When α and h are real, the moments can exist for some values of h also such that $\alpha+h>0$.
The Mellin transform of $f(x)$ is obtained from (8) as:
$M\{f(x)\}=\frac{\Gamma\left(\frac{\alpha+t m+s-1}{\gamma}\right) \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{A^{\frac{s-1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}\right) \Gamma\left(\frac{\alpha+s-1}{\gamma}+\beta\right)}$
For $\operatorname{Re}(\alpha+t m+s-1)>0, \operatorname{Re}(\alpha+t m+\beta)>0, s=v+2 r+2>0, \gamma>0$.
The unknown density $f(x)$ is obtained in terms of \aleph-function by taking the inverse Mellin transform of (10). That is

$$
f(x)=\frac{A^{\frac{1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{\Gamma\left(\frac{\alpha+t m}{\gamma}\right)} \aleph_{1,1: \tau: R}^{1,0}\left[A^{\frac{1}{\gamma}} x\left[\begin{array}{l}
\left(\frac{\alpha-1}{\gamma}+\beta, \frac{1}{\gamma}\right) \tag{11}\\
\left(\frac{\alpha+t m-1}{\gamma}+\beta \cdot \frac{1}{\gamma}\right)
\end{array}\right]\right.
$$

The Hankel transform of $f(x)$ is obtained from (9) as:
$H\{f(x)\}=J_{v}(p) \frac{\Gamma\left(\frac{\alpha+t m+s-1}{\gamma}\right) \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{A^{\frac{s-1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}\right) \Gamma\left(\frac{\alpha+s-1}{\gamma}+\beta\right)}$
For $\operatorname{Re}(\alpha+t m+s-1)>0, \operatorname{Re}(\alpha+t m)>0, s=v+2 r+2>0, \gamma>0$.
The unknown density $f(x)$ is obtained in terms of \aleph-function by taking the inverse Hankel transform of (12). That is

$$
f(x)=J_{v}(p) \frac{A^{\frac{1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{\Gamma\left(\frac{\alpha+t m}{\gamma}\right)} \aleph_{1,1, \tau_{i}: R}^{1,0}\left[A^{\frac{1}{\gamma} x} x\left[\begin{array}{l}
\left(\frac{\alpha-1}{\gamma}+\beta, \frac{1}{\gamma}\right) \tag{13}\\
\left(\frac{\alpha+t m-1}{\gamma}+\beta, \frac{1}{\gamma}\right)
\end{array}\right]\right.
$$

Consider a set of real scalar random variables x_{1}, \ldots, x_{k}, mutually independently distributed, where x_{j} has the density in (8) with the parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$ and consider the product
$u=x_{1} x_{2} \ldots x_{k}$
In the standard terminology in statistical literature, the $h^{\text {th }}$ moment of u, when u has the density in (8), is given by
$E(u)=\frac{\Gamma\left(\frac{\alpha_{j}+t m+h}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+t m}{\gamma}+\beta_{j}\right)}{A^{\frac{h}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+h}{\gamma_{j}}+\beta_{j}\right)}$
For $\operatorname{Re}\left(\alpha_{j}+t m+h\right)>0, \gamma_{j}>0 ; j=1, \ldots, k$
Then the Mellin transform of $g(u)$ of u is obtained from the property of the statistical independent and is given by

$$
\begin{align*}
& M[g(u)]=M\left[x_{1}^{s-1}\right] \ldots M\left[x_{k}^{s-1}\right] \tag{16}\\
& M[g(u)]=\prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+t m}{\gamma}+\beta_{j}\right)}{A^{\frac{s-1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+s-1}{\gamma_{j}}+\beta_{j}\right)} \tag{17}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, \gamma_{j}>0, s=v+2 r+2$
The unknown density $f(x)$ is obtained in terms of \aleph-function by taking the inverse Mellin transform of (17). That is
$g(u)=\prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} \aleph_{k, k \tau_{i}: R}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} u\left(\begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right]\right.$
Then the Hankel transform of $g(u)$ of u is obtained from the property of the statistical independent and is given by:

$$
\begin{equation*}
H[g(u)]=H\left[x_{1} J_{v}\left(p x_{1}\right)\right] H\left[x_{2} J_{v}\left(p x_{2}\right)\right] \ldots H\left[x_{k} J_{v}\left(p x_{k}\right)\right] \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
H\{g(u)\}=J_{v}(p) \prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+t m}{\gamma}+\beta_{j}\right)}{A^{\frac{s-1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+s-1}{\gamma_{j}}+\beta_{j}\right)} \tag{20}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, \gamma_{j}>0, s=v+2 r+2>0$
The unknown density $f(x)$ is obtained in terms of \aleph-function by taking the inverse Hankel transform of (20). That is
$g(u)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} \aleph_{k, k: \tau_{i}: R}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}} u} u\left(\begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right]\right.$
If we consider more general structures in the same category. For example, consider the structure

$$
\begin{equation*}
u_{1}=x_{1}^{\delta_{1}} x_{2}^{\delta_{2}} \ldots x_{k}^{\delta_{k}}, \delta_{j}>0, j=1, \ldots, k \tag{22}
\end{equation*}
$$

Where x_{1}, \ldots, x_{k} are mutually independently distributed as in (8).
Then the Mellin transform of $g\left(u_{1}\right)$ of u_{1} is given as

$$
\begin{align*}
& M\left[g\left(u_{1}\right)\right]=M\left[x_{1}^{\left.\gamma_{1}^{(s-1)}\right] \ldots M\left[x_{k}^{\gamma_{k}(s-1)}\right]}\right. \tag{23}\\
& M\left[g\left(u_{1}\right)\right]=\prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{\delta_{j}(s-1)}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)} \tag{24}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2, \delta_{j}>0$.
The unknown density $g\left(u_{1}\right)$ is obtained in terms of \aleph-function by taking the inverse Mellin transform of (24). That is
$g\left(u_{1}\right)=\prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} \aleph_{k, k: \tau_{i}: R}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{\delta_{j}}{\gamma_{j}}} u_{1} \left\lvert\, \begin{array}{l}\left.\frac{\alpha_{j}-\delta_{j}}{\gamma}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)\end{array}\right.\right]$
For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2, \delta_{j}>0$.
The Hankel transform of $g\left(u_{1}\right)$ of u_{1} is obtained from the property of the statistical independent and is given by:

$$
\begin{equation*}
H\left[g\left(u_{1}\right)\right]=H\left[x_{1}^{\delta_{1}} J_{v}\left(p x_{1}^{\delta_{1}}\right)\right] H\left[x_{2}^{\delta_{2}} J_{v}\left(p x_{2}^{\delta_{2}}\right)\right] \ldots H\left[x_{k}^{\delta_{k}} J_{v}\left(p x_{k}^{\delta_{k}}\right)\right] \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
H\left\{g\left(u_{1}\right)\right\}=J_{v}(p) \prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{\delta_{j}(s-1)}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right) \Gamma\left(\frac{\alpha_{j}+\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)} \tag{27}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2>0, \delta_{j}>0$.
The unknown density $g\left(u_{1}\right)$ is obtained in terms of \aleph-function by taking the inverse Hankel transform of (27). That is
$g\left(u_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} \aleph_{k, k, \tau_{i}: R}^{k, R}\left[\prod_{j=1}^{k} A^{\frac{\delta_{j}}{\gamma_{j}}} u_{1} \left\lvert\,\left(\begin{array}{l}\left(\frac{\alpha_{j}-\delta_{j}}{\gamma}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)\end{array}\right]\right.\right.$
For $\operatorname{Re}\left(\alpha_{j}+t m+s-1\right)>0, s=v+2 r+2>0, \delta_{j}>0$.

A More General Structure

We can consider more general structures. Let
$w=\frac{x_{1}, x_{2}, \ldots, x_{r}}{x_{r+1}, \ldots, x_{k}}$
Where x_{1}, \ldots, x_{k}, mutually independently distributed real random variables having the density in (8) with x_{j} having parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$.

Then the Mellin transform of $g(w)$ is given by

$$
\begin{equation*}
M[g(w)]=M\left[x_{1}^{s-1}\right] \ldots M\left[x_{r}^{s-1}\right] M\left[x_{r+1}^{-(s-1)}\right] \ldots M\left[x_{k}^{-(s-1)}\right] \tag{30}
\end{equation*}
$$

$M[g(w)]=\prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{-1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\gamma_{j}}\right)}{A^{\frac{s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+s-1}{\gamma_{j}}+\beta_{j}\right)}\right\}$
$\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-(s-1)}{\gamma_{j}}\right)}{A^{\frac{-s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}-(s-1)}{\gamma_{j}}+\beta_{j}\right)}\right\}$
For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2>0$
The unknown density $g(w)$ is obtained in terms of \aleph-function by taking the inverse Mellin transform of (31). That is
$g(w)=\prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\aleph_{r, r \tau_{i}: R}^{r, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} w \left\lvert\,\left(\begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right]\right.\right\}\right.$

Then the Hankel transform of $g(w)$ is given as:

$$
\begin{equation*}
H[g(w)]=H\left[x_{1} J_{v}\left(p x_{1}\right)\right] \ldots H\left[x_{r} J_{v}\left(p x_{r}\right)\right] H\left[x_{r+1}^{-1} J_{v}\left(p x_{r+1}^{-1}\right)\right] \ldots H\left[x_{k}^{-1} J_{v}\left(p x_{k}^{-1}\right)\right] \tag{33}
\end{equation*}
$$

$$
\begin{align*}
& H\{g(w)\}=J_{v}(p) \prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{-1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+s-1}{\gamma_{j}}\right)}{A^{\frac{s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+s-1}{\gamma_{j}}+\beta_{j}\right)}\right. \\
& \left\{\begin{array}{l}
\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-(s-1)}{\gamma_{j}}\right)}{A^{\frac{-s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}-(s-1)}{\gamma_{j}}+\beta_{j}\right)}
\end{array}\right\} \tag{34}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2>0$
The unknown density $g(w)$ is obtained in terms of \aleph-function by taking the inverse Hankel transform of (34). That is
$g(w)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{T}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\aleph_{r, r, \tau_{i}: R}^{r, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} w\left\{\begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right]\right\}\right.$
$\left\{\aleph_{k-r, k-r, \tau_{i} ; R}^{0, R-r}\left[\prod_{j=r+1}^{k} A^{\frac{1}{\gamma_{j}}} w \left\lvert\, \begin{array}{l}\left.\left(\left.\begin{array}{l}\left.1-\frac{\alpha_{j}+t m+1}{\gamma_{j}}, \frac{1}{\gamma_{j}}\right)\end{array} \right\rvert\, j=r+1, \ldots, k\right]\right\}, ~\left(1-\frac{\alpha_{j}+1}{\gamma_{j}}-\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right.\right]\right\}$
We can consider more general structures in the same category. For example, consider the structure $w_{1}=\frac{x_{1}^{\delta_{1}}, \ldots, x_{r}^{\delta_{r}}}{x_{r+1}^{\delta_{r+1}}, \ldots, x_{k}^{\delta_{k}}}$

Where x_{1}, \ldots, x_{k}, mutually independently distributed real random variables having the density in (8) with x_{j} having parameters $\alpha_{j}, \beta_{j} ; j=1, \ldots, k$.

Then the Mellin transform of $g\left(w_{1}\right)$ is given by

$$
\begin{align*}
& M\left[g\left(w_{1}\right)\right]=M\left[x_{1}^{\delta_{1}(s-1)}\right] \ldots M\left[x_{r}^{\delta_{r}(s-1)}\right] M\left[x_{r+1}^{-\delta_{r+1}(s-1)}\right] \ldots M\left[x_{k}^{-\delta_{k}(s-1)}\right] \tag{37}\\
& M\left[g\left(w_{1}\right)\right]=\prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{-\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\gamma_{j}}\right)}{A^{\frac{\delta_{j} s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)}\right\} \\
& \left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-\delta_{j}(s-1)}{\gamma_{j}}\right)}{A^{\frac{-s \delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}-\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)}\right\} \tag{38}
\end{align*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, s=v+2 r+2>0, \delta_{j}>0$.
The unknown density $g\left(w_{1}\right)$ is obtained in terms of \aleph-function by taking the inverse Mellin transform of (38). That is
$\left.g\left(w_{1}\right)=\prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\aleph_{r, r: \tau_{i}: R}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\,\binom{\left(\frac{\alpha_{j}-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)}{\alpha_{j}+t m-\delta_{j}} \beta_{j}\right., \frac{\delta_{j}}{\gamma_{j}}\right)\right]\right\}$
$\left.\left\{\aleph_{k-r, k-r \cdot c_{i}: R}^{0, R-R_{i}}\left[\sum_{j=r+1}^{k} A^{\frac{-\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\, \begin{array}{l}\left(1-\frac{\alpha_{j}+t+t_{j}+\delta_{j}}{\gamma_{j}}, \frac{\delta_{j}}{\gamma_{j}}\right) \\ \left(1-\frac{\alpha_{j}+\delta_{j}}{\gamma_{j}}-\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right.\end{array}\right.\right) ; j=r+1, \ldots, k\right]\right\}$
For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right) \geq 0, s=v+2 r+2>0, \delta_{j}>0$.
Then the Hankel transform of $g\left(w_{1}\right)$ is given as:

$$
\begin{align*}
& H\left[g\left(w_{1}\right)\right]=H\left[x_{1}^{\delta_{1}} J_{v}\left(p x_{1}^{\delta_{1}}\right)\right] \ldots H\left[x_{r}^{\delta_{r}} J_{v}\left(p x_{r}^{\delta_{r}}\right)\right] \\
& H\left[x_{r+1}^{-\delta_{r+1}} J_{v}\left(p x_{r+1}^{-\delta_{r+1}}\right)\right] \ldots H\left[x_{k}^{-\delta_{k}} J_{v}\left(p x_{k}^{-\delta_{k}}\right)\right] \tag{40}
\end{align*}
$$

$H\left\{g\left(w_{1}\right)\right\}=J_{v}(p) \prod_{j=1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{A^{\frac{-\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\prod_{j=1}^{r} \frac{\Gamma\left(\frac{\alpha_{j}+t m+\delta_{j}(s-1)}{\gamma_{j}}\right)}{A^{\frac{\delta_{j} s}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)}\right\}$

$$
\begin{equation*}
\left\{\prod_{j=r+1}^{k} \frac{\Gamma\left(\frac{\alpha_{j}+t m-\delta_{j}(s-1)}{\gamma_{j}}\right)}{A^{\frac{-s \delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}-\delta_{j}(s-1)}{\gamma_{j}}+\beta_{j}\right)}\right\} \tag{41}
\end{equation*}
$$

For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, \delta_{j}>0, s=v+2 r+2>0$
The unknown density $g\left(w_{1}\right)$ is obtained in terms of \aleph-function by taking the inverse Hankel transform of (41). That is
$g\left(w_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{\aleph_{r, r \cdot \tau_{i}: R}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\,\left(\frac{\left(\frac{\alpha_{j}-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)}{\left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)}\right]\right.\right\}\right.$
$\left\{\aleph_{k-r, k-r, r i R}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{\frac{\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\,\binom{\left.1-\frac{\alpha_{j}+t m+\delta_{j}}{\gamma_{j}}, \frac{\delta_{j}}{\gamma_{j}}\right)}{\left(1-\frac{\alpha_{j}+\delta_{j}}{\gamma_{j}}-\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right.} j=r+1\right., \ldots, k\right]\right\}$
For $\operatorname{Re}\left(\alpha_{j}+t m \pm(s-1)\right)>0, \delta_{j}>0, s=v+2 r+2>0$.

3. Special Cases

If we take $\tau_{i}=1, R=1$ in (11), the unknown density $f(x)$ is obtained in terms of H-function. That is

$$
f(x)=\frac{A^{\frac{1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{\Gamma\left(\frac{\alpha+t m}{\gamma}\right)} H_{1,1}^{1,0}\left[A^{\frac{1}{\gamma}} x \left\lvert\, \begin{array}{l}
\left(\frac{\alpha-1}{\gamma}+\beta, \frac{1}{\gamma}\right) \tag{43}\\
\left(\frac{\alpha+t m-1}{\gamma}+\beta, \frac{1}{\gamma}\right)
\end{array}\right.\right]
$$

For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (13), the unknown density $f(x)$ is obtained in terms of H-function. That is

$$
f(x)=J_{v}(p) \frac{A^{\frac{1}{\gamma}} \Gamma\left(\frac{\alpha+t m}{\gamma}+\beta\right)}{\Gamma\left(\frac{\alpha+t m}{\gamma}\right)} H_{1,1}^{1,0}\left[A^{\frac{1}{\gamma}} x \left\lvert\, \begin{array}{l}
\left(\frac{\alpha-1}{\gamma}+\beta, \frac{1}{\gamma}\right) \tag{44}\\
\left(\frac{\alpha+t m-1}{\gamma}+\beta, \frac{1}{\gamma}\right)
\end{array}\right.\right]
$$

For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (18), the unknown density $g(u)$ is obtained in terms of H-function. That is
$g(u)=\prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} H_{k, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} u \left\lvert\, \begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right.\right]$
For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (21), the unknown density $g(u)$ is obtained in terms of H-function. That is
$g(u)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} H_{k, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} u \left\lvert\, \begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right.\right]$
For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (25), the unknown density $g\left(u_{1}\right)$ is obtained in terms of H-function. That is

$$
\begin{equation*}
\left.g\left(u_{1}\right)=\prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} H_{k, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{\delta_{j}}{\gamma_{j}}} u_{1} \left\lvert\,\left(\frac{\left(\frac{\alpha_{j}-\delta_{j}}{\gamma}+\beta_{j} \cdot \frac{\delta_{j}}{\gamma_{j}}\right)}{\left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}\right.}\right) \frac{\delta_{j}}{\gamma_{j}}\right.\right)\right] \tag{47}
\end{equation*}
$$

For $\gamma_{j}=1=\delta_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (28), the unknown density $g\left(u_{1}\right)$ is obtained in terms of H-function. That is

$$
\begin{equation*}
g\left(u_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)} H_{k, k}^{k, 0}\left[\prod_{j=1}^{k} A^{\frac{\delta_{j}}{\gamma_{j}}} u_{1} \left\lvert\,\left(\frac{\frac{\alpha_{j}-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}}{\left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)}\right]\right.\right. \tag{48}
\end{equation*}
$$

For $\gamma_{j}=1=\delta_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (32), the unknown density $g(w)$ is obtained in terms of H-function. That is

$\left\{H_{k-r, k-r}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{\frac{1}{\gamma_{j}}} w \left\lvert\, \begin{array}{l}\left(\begin{array}{l}\left.1-\frac{\alpha_{j}+t m+1}{\gamma_{j}}, \frac{1}{\gamma_{j}}\right)\end{array}(j=r+1, \ldots, k]\right\} \\ \left(1-\frac{\alpha_{j}+1}{\gamma_{j}}-\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right.\right]\right\}$

For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (35), the unknown density $g(w)$ is obtained in terms of H-function. That is
$g(w)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{1}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{H_{r, r}^{r, 0}\left[\prod_{j=1}^{k} A^{\frac{1}{\gamma_{j}}} w\left[\begin{array}{l}\left(\frac{\alpha_{j}-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-1}{\gamma_{j}}+\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right)\right]\right\}$
$\left\{H_{k-r, k-r}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{\frac{1}{\gamma_{j}}} w \left\lvert\, \begin{array}{l}\left(\begin{array}{l}\left.1-\frac{\alpha_{j}+t m+1}{\gamma_{j}}, \frac{1}{\gamma_{j}}\right)\end{array}(j=r+1, \ldots, k]\right\}, ~\left(1-\frac{\alpha_{j}+1}{\gamma_{j}}-\beta_{j}, \frac{1}{\gamma_{j}}\right)\end{array}\right.\right]\right\}$
For $\gamma_{j}=1 ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (39), the unknown density $g\left(w_{1}\right)$ is obtained in terms of H-function. That is
$g\left(w_{1}\right)=\prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{H_{r, r}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\,\left(\begin{array}{l}\left(\frac{\alpha_{j}-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right) \\ \left(\frac{\alpha_{j}+t m-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)\end{array}\right]\right.\right\}\right.$
$\left\{H_{k-r, k-r}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{\frac{-\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\, \begin{array}{l}\left(1-\frac{\alpha_{j}+t m+\delta_{j}}{\gamma_{j}}, \frac{\delta_{j}}{\gamma_{j}}\right) \\ \left(1-\frac{\alpha_{j}+\delta_{j}}{\gamma_{j}}-\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)\end{array}\right. ; j=r+1, \ldots, k\right]\right\}$
For $\gamma_{j}=1=\delta_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.
If we take $R=1=\tau_{i}$ in (42), the unknown density $g\left(w_{1}\right)$ is obtained in terms of H-function. That is
$\left.g\left(w_{1}\right)=J_{v}(p) \prod_{j=1}^{k} \frac{A^{\frac{\delta_{j}}{\gamma_{j}}} \Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}+\beta_{j}\right)}{\Gamma\left(\frac{\alpha_{j}+t m}{\gamma_{j}}\right)}\left\{H_{r, r}^{r, 0}\left[\prod_{j=1}^{r} A^{\frac{\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\,\left(\frac{\alpha_{j}-\delta_{j}}{\gamma_{j}}+\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right)-\frac{\alpha}{j}^{\gamma_{j}+t-\delta_{j}}+\beta_{j}\right., \delta_{j}\right)\right]\right\}$
$\left\{H_{k-r, k-r}^{0, k-r}\left[\prod_{j=r+1}^{k} A^{\frac{-\delta_{j}}{\gamma_{j}}} w_{1} \left\lvert\, \begin{array}{l}\left.\left.\left(\begin{array}{l}1-\frac{\alpha_{j}+t m+\delta_{j}}{\gamma_{j}}, \frac{\delta_{j}}{\gamma_{j}}\end{array}\right) ; j=r+1, \ldots, k\right]\right\},{ }_{\left(1-\frac{\alpha_{j}+\delta_{j}}{\gamma_{j}}-\beta_{j}, \frac{\delta_{j}}{\gamma_{j}}\right.}^{j}\end{array}\right.\right)\right.$
For $\gamma_{j}=1=\delta_{j} ; j=1, \ldots, k$, the H-function reduces to the G-function.

References

[1] A.M. Mathai,"A pathway to matrix-variate gamma and normal densities," Linear Alg. Appl. 396 317-328, 2005.
[2] A.M. Mathai and R.K. Saxena,"The H-function with Applications in Statistics and Other Disciplines," Wiley Eastern, New Delhi and Wiley Halsted, New York, 1978.
[3]A.M. Mathai, R.K. Saxenaand H.J. Haubold, "The H-function: Theory and Applications," CRC
Press, New York, 2010.
[4] V.P. Saxena, " Formal solution of certain new pair of dual integral equations involving H Functions," Proc. Nat. Acad. India, sect. A 52 366-375, 1982.
[5] H.M. Srivastava, K.C. Gupta and S.P. Goyal, "The H-function of One and Two Variables With Applications," South Asian Publisher, New Delhi, 1982.
[6]N. Sudland,B. Baumann and T.F. Nonnenmacher, "Open problem: who knows about the Aleph
(ふ)-functions?,"Frac. Calc. Appl. Annl. 1(4), 401-402, 1998.

