ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

"Financial Performance Analysis of Public sector banks- with special reference to Net Profit"

Mr. Ramraj Malav, Assistant Professor, P. P. Savani University, Kosamba, Gujarat. Ms. Nirali Kantharia, Assistant Professor, P. P. Savani University, Kosamba, Gujarat.

Abstract: Indian banking sector play an important role in economic growth of country. Non-Performing Assets adversely affect the health of banks. The term 'NPAs' first time introduced in economic reforms in 1991, since the reform Indian banking sector has gone through various economic transformation and there are different phases of NPAs. This paper examined financial performance analysis of public sector banks. Total 30 years of data were collected from different banks annual reports. In this study, financial performance will be analysed by using regression model. Net profit will be dependent variable and GNPA and CD ratio are significant with Net profit. GNPA is negatively impacted on Net profit and CD ratio is positively impacted on Net profit.

Keywords: CD ratio, financial performance. GNPA, Net Profit, Public sector bank

Introduction:

The banking sector play critical role in economic growth and development of country. Indian banking system faced lots of difficulties since independence. In every phases of development, various challenges hit Indian financial system. Recently, COVID- 19 hit the whole world. In early 2020 it hit India and has badly affected the growth of various sectors. One of the major sector which affected by COVID-19 is Indian financial sector or Indian banking sector. Indian banking system which has already faced lots of problem because of mounting high NPAs, this pandemic create more difficulties. Global market recession and economic fall down of countries are expected to push up NPAs of banking sector.

The economic growth in India is supported by a wide variety of banking institutions consisting of public sector and private sector banks. Co-operative banks, foreign sector banks RRBs and other Non-Banking Financial Companies also play vital role in providing credit facilities. Public sector banks are a major type of bank in India. Finance ministry, Government of India has held majority of stake i.e. more than 50%. Public sector banks have been merged by the government in last few years. Financial performance is process of measuring how effectively a company utilizes its assets from primary mode of business to raise incomes it also measure organizations whole financial health over a particular period of time.

Review of Literature:

(Lotto, 2019) In his research paper, he examines factors affecting operating efficiency of 36 commercial banks. He used multiple regressions model for to estimate the results. According to his model, bank liquidity and capital adequacy affect positively to bank operating efficiency. (Thiagarajan, 2011), she tried to analyse profitability of private sector and public sector banks by using correlation analysis and multiple regression analysis. (Palani, 2019) He made his attempt to study financial performance analysis of HDFC bank. He used different ratios like profitability ratios, long term solvency ratios and short term solvency ratios. (Sutan Emir Hidayat & Muhamad Abduh, 2012), in their research paper, they found factors which impacted on banking performance by using multiple regression models. Return on Assets and

JCR

Return on Shareholders' equity were taken as dependent variable and leverage, loans, GDP; expenses etc. were taken as independent variables. (Altman, 1977), his mathematical model of Z-Score become well known tool for financial analysis. (Joshi, 2020), he presented his study with aim of financial performance analysis by using Altman's Z-Score model. In his study he developed linear regression model, dependent variable was Altman's Z-score and Non-Performing assets, Net Profit and Total assets were independent variables. The results found that a GNPA/total asset has inverse relationship with Altman's Z-Score.

Research methodology:

Objective:

- To analyse the Financial Performance of Public Sector banks.
- To study the impact of C-D ratio and NPAs on banks Net Profit.

Data collection:

Source of Data:

This project is purely based on secondary data. The data was collected from RBI website and EPW research foundation official website. The sample includes 30 years data of all Public Sector banks.

Time duration: 1991-2020 (30 years)

Statistical tools and technique: In this project, we use multiple regressions model to identify various independent variables influencing Bank Profit. For running multiple regression model EViews 11 Student Version is used.

Dependent variable: Net Profit/loss during year

Independent variables: C-D ratio Gross NPA.

The relationship equation is shown below:

$Profit/loss = a + \beta * C/D + \beta * GNPA + e_i$

Here:

- **a** = Intercept
- β = Unknown parameter

 $\mathbf{e}_{\mathbf{i}} = \text{The Error Term}$

Profit/loss = Net profit or loss during year. The value of profit is taken after deducting interest and tax.

C-D Ratio = Credit to Deposit ratio.

GNPA = Gross Non-Performing Assets. NPA is one kind of loss for banking business.

Hypothesis:

H₀: There is no significance impact of C-D ratio and gross NPA on Net Profit/Loss.

H1: There is significance impact of C-D ratio and gross NPA on Net Profit/Loss.

Data analysis and interpretations:

Table (1) Profit/Loss, C-D (Credit Deposits) Ratios and Gross NPA of Public Sector Banks (1991-2020)

All Public Sector Bank							
Year	Profit / (Loss) during the year (In Crore)	gross NPA (In Crore)	C-D Ratio				
1991	435	34768	60.4				
1992	846	37345	55.9				
1993	-3293	39253	58.9				
1994	-4349	41041	55.1				
1995	1115	38385	55.6				
1996	-371	41660	58.3				
1997	3115	43577	55.3				
1998	4978	45653	54				
1999	3258	51710	53.4				
2000	5114	53033	54.4				
2001	4317	54672	54.5				
2002	8304	56473	56.2				
2003	12296	54090	56.3				
2004	16547	51537	55.4				
2005	15432	48399	63.1				
2006	16538	41358	71.5				
2007	20152	38968	74.9				
2008	26592	40452	74.4				
2009	34373	44957	72.6				
2010	39256	59926	74.2				
2011	44900	74600	75.9				
2012	49513	117839	78.7				
2013	50582	165606	78.1				
2014	37018	227264	78.2				
2015	37539	278467	75.8				
2016	-17993	539956	75.6				
2017	-11388	684732	69.9				
2018	-85370	895601	72.5				
2019	-66608	739541	74.1				
2020	-26015	678317	74				

Sources: http://www.epwrfits.in/

Table (2) Stationary test

Data analysis				Interpretation
Null Hypothesis: D(PROFITLOSS_) has a unit ro Exogenous: Constant Lag Length: 3 (Automatic - based on SIC, maxlag=7)				The given data of Net profit and loss are stationary at 1 St difference.
	t-Statistic	Prob.*		P value is less than 0.05. Thus, null hypothesis will be rejected.
Augmented Dickey-Fuller test statistic	-7.584198	0.0000		i.e. data is not unit root.
Test critical values: 1% level	-3.724070			
5% level	-2.986225			
10% level	-2.632604			
*MacKinnon (1996) one-sided p-values.				
Null Hypothesis: D(CD_RATIO) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag:	=7)			The given data of C-D Ratio are stationary at 1 St difference. P value is less than 0.05. Thus, null hypothesis will be rejected.
	t-Statistic	Prob.*		i.e. data is not unit root.
Augmented Dickey-Fuller test statistic	-4.595812	0.0011		
Test critical values: 1% level	-3.689194			
5% level	-2.971853			
10% level	-2.625121			
*MacKinnon (1996) one-sided p-values.			<u>100</u>	
Null Hypothesis: D(GROSS_NPA) has a unit root Exogenous: Constant Lag Length: 2 (Automatic - based on SIC, maxlag=	=7)			The given data of GNPA are stationary at 1 St difference. P value is less than 0.05. Thus
	t-Statistic	Prob.*		null hypothesis will b rejected. i.e. data is not uni
Augmented Dickey-Fuller test statistic	-4.648178	0.0011		root.
Test critical values: 1% level	-3.711457			
5% level	-2.981038			
10% level	-2.629906			
*MacKinnon (1996) one-sided p-values.				
				0

Table (3) Multiple Regression model results:

Dependent Variable: PROFIT___LOSS_ Method: Least Squares Date: 06/07/21 Time: 18:24 Sample: 1991 2020 Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CD_RATIO GROSS_NPA	-100843.5 1964.643 -0.117051	19075.91 301.1803 0.011478	-5.286429 6.523146 -10.19778	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.800591 0.785819 13872.34 5.20E+09 -327.1173 54.19989 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	7227.767 29975.03 22.00782 22.14794 22.05265 1.420315

Interpretation:

The regression results presented in table 2 show that bank net profit/loss is impacted by C-D ratio and gross NPA.

- **Gross NPA**: the results show that the relationship of bank Net Profit with Gross NPA is **negative** That means if Gross NPA increased then Net Profit will decrease. And if the level of Gross NPA reduced then Net profit will increase. **P value is less than 0.05 and 0.01. Thus, it is significant at 1% and 5% level**
- C-D ratio: Net profit and C-D ratio has direct or positive relationship. That mean if the C-D ratio increase then Net profit goes up and vice-versa. P value is less than 0.05 and 0.01. Thus, it is significant at 1% and 5% level.
- **R- Squared** value is 0.80 i.e. **80%** and **adjusted R-squared** value is 0.785, i.e. **79%**. It indicates that regression model is well fits to observed data. **R- Square** value is 0.80 that means **80% of data fit** the regression model.
- The value of **Durbin Watson** test is **1.4** that means there is **positive autocorrelation** detected in the sample.
- **F-statistics** value also shows that the model is significant.

Table (4) Serial correlation LM test:

Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags

F-statistic	1.150227	Prob. F(2,25)	0.3328
Obs*R-squared	2.527929	Prob. Chi-Square(2)	0.2825

Test Equation: Dependent Variable: RESID Method: Least Squares Date: 06/07/21 Time: 18:24 Sample: 1991 2020 Included observations: 30 Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CD_RATIO GROSS_NPA RESID(-1) RESID(-2)	-370.4460 17.42305 -0.004324 0.242649 0.124812	18972.31 -0.01952 299.7621 0.05812 0.012040 -0.35916 0.204953 1.18393 0.229218 0.54451		0.9846 0.9541 0.7225 0.2476 0.5909
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.084264 -0.062253 13795.79 4.76E+09 -325.7969 0.575113 0.683251	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-3.00E-11 13385.43 22.05313 22.28666 22.12784 1.893444

Interpretation:

The breusch-godfrey test is a test for autocorrelation in the errors in a regression model.

- Null hypothesis: No serial correlation at up to 2 lags.
- Here results show that P value is not significant at any level of significance.
- Thus, null hypothesis is **accepted**. That means there is no serial correlation found in observed data.

Table (4) Heteroskedasticity Test: ARCH

 Heteroskedasticity Test: ARCH							
			0.2155 0.2016				

Method: Least Squares Date: 06/07/21 Time: 18 Sample (adjusted): 1992 Included observations: 2 HAC standard errors & c	ependent Variable: RESID^2						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C RESID ⁴ 2(-1)	1.31E+08 0.237798	65355900 0.128196	2.007098 1.854952	0.0548 0.0746			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.056229 0.021274 2.41E+08 1.56E+18 -599.7630 1.608633 0.215511	S.D. depende Akaike info cri Schwarz criter Hannan-Quin	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat				

Interpretation:

- ARCH: Autoregressive conditional Heteroskedasticity, this is used to analyse volatility.
- This test normally performed for removing the error from regression test results.
- Null hypothesis: Heteroskedasticity ARCH error.
- **P value for Chi Square** is 0.4804 that means **not significant** at any level of significance. Thus, we **accepted** null hypothesis.

	(=		•	14	C.	•	1 4	1 1	4
Table	15) Regra	ecin	result	after	removing	hetero	skedag	sticity error:
I UDIC) Itest	CODICIL	I Court	arter	I CILLO VILLES	HELCI OF	Jix uus	cicicy ciror.

Dependent Variable: PROFITLOSS_ Method: Least Squares Date: 06/07/21 Time: 18:29 Sample: 1991 2020 Included observations: 30	
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)	

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CD_RATIO GROSS_NPA	-100843.5 1964.643 -0.117051	24934.64 423.9331 0.014418	-4.044313 4.634322 -8.118362	0.0004 0.0001 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.800591 0.785819 13872.34 5.20E+09 -327.1173 54.19989 0.000000 0.000000	 S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat Wald F-statistic 		7227.767 29975.03 22.00782 22.14794 22.05265 1.420315 32.95972

After Heteroskedasticity Test, the result of multiple regressions does not change more. Value of R-squares, F-statistics, and P-value and durbin-watson test are same. But now operating profit is not significant at 1% level, it is significant at only 5% level. R- Square value is 0.80 that means 80% of data fit the regression model.

Limitation of Study:

- 1. Present study considers only public sector banks.
- 2. There are many factors which affect Net profit or Loss. But present study takes only two variables i.e. GNPA and C-D ratio.
- 3. This study take data on yearly basis, but monthly or quarterly data give more accurate results.

Results and Conclusion:

This project aimed at examining the factor influence to bank profit. The study period is 30 years i.e.1991 to 2020. This study consist only public sector banks. The finding of study reveals that Gross NPA affect net profit adversely. And Credit-Deposit Ratio (C-D Ratio) affect directly or positively. The multiple regression results show that the model is significant at 1%, 5% and 10% level of significance. R- Square value is 0.80 that means 80% of data fit the regression model. In Regression results, Durbin Watson test value is 1.4, which indicates positive autocorrelation in observed data. But in breusch-godfrey LM test which test the Autocorrelation in data is not significant. i.e. there is no auto correlation upto 2 lag.

P – Value < 0.05 = Rejecting Null Hypothesis, at 5% level of significance.

P - Value > 0.05 = Not able to reject Null Hypothesis, at 5% level of significance.

Here, as the results show that all the P – Value are less than 0.05. Thus, **null hypothesis is rejected**. That means there is significance impact of C-D Ratio and Gross NPA on Net Profit/Loss of public sector bank.

References:

Altman, E. I. (1977). The Z-Score bankruptcy model: Past, Present and Future. Financial Crises, New York, 89-129.

Joshi, M. K. (2020). FINANCIAL PERFORMANCE ANALYSIS OF SELECT INDIAN PUBLIC SECTOR BANKS USING ALTMAN'S Z-SCORE MODEL. *JOURNAL OF BUSINESS MANAGEMENT STUDIES*, 74-87.

Lotto, J. (2019). Evaluation of factors influencing bank operating efficiency in Tanzanian banking sector. *Cogent Economics & Finance*, volume 7 issue 1.

Palani, R. (2019). A STUDY ON FINANCIAL ANALYSIS AND PERFORMANCE OF HDFC BANK. Studia Rosenthaliana, XI (XI), 37-49.

Sutan Emir Hidayat & Muhamad Abduh. (2012). Does Financial Crisis Give Impact on Bahrain Islamic Banking Performance? A panel Regression Analysis. *International Journal of Economics and Finance*, 04, 79-87.

Thiagarajan, S. (2011). An Analysis of Determinants of Profitability in public and Private Sector Banks in India. *The International Journal's Research Journal of Social Science & Management*, 140-152, volume 01 no. 6.

http://www.epwrfits.in/

www.rbi.org.in