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Abstract 

Crop yield estimation is one of the most significant issues for agricultural management, and one of the areas 

that precision farming techniques can offer the greatest benefit. Crop yield prediction is an art of forecasting 

the yield of crop before harvesting. Prediction of crop yield will be very useful for the government to make 

food policies, market price, import and export policies and proper warehousing well in time.  Remote sensing 

technologies, together with the use machine learning have been shown to be effective in monitoring crop yield, 

improving land management, and facilitating the implementation of precision farming techniques. The main 

goals of crop yield estimation of precision agriculture is achieving maximum crop yield at minimum cost with 

a healthy ecosystem using combination of technologies. In India climatic conditions effected more on crop 

yield estimation. Other environmental factors also need to concentrate while studying crop yield such as 

temperature, rainfall, vegetative index, soil type, texture and nutrients. Crop yield prediction and estimation is 

very important to our government on the aspect of making food policies, crop insurance, market price, import 

and export policies etc. Use of remote sensing technologies is currently recognized to be the next generation 

of technical innovations that have the potential to refine the quality of within-field yield mapping technologies. 

we can implement various machine learning algorithms like ANN and Decision Tree on this research for crop 

estimation. The performance of ANNs can compare with four conventional modelling methods, namely, 

Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), Photochemical Reflectance Index (PRI), 

and Stepwise Multiple Linear Regression (SMLR) models. Principal Component Analysis (PCA) can also use 

to reduce the dimensionality of the hyperspectral imagery. The prediction can be of two types they are 

classification or regression. Classification can be to identify in which classes the crop growth falls. For 

example: Classes such as, well grown, medium grown and under grown. Another type is regression where it 

will give numerical estimated value. So that value of percentage for the estimated crop yield can be obtained. 

Keywords: Precision Agriculture, Remote sensing, Crop yield prediction, Machine learning, Hyperspectral 

Imagery 

1. Introduction  

India is at the second number for largest populated country around the world. most of people are depend on 

agriculture as income source. agriculture is backbone of Indian economy. Cultivation is major problem due to 

climate changes. Each crop has its unique ability to grow in different weather condition. There can be different 

factors affecting the production of a crop such as soil condition, pH, nitrogen, phosphate, potassium, organic 

carbon, calcium, manganese, copper, iron, depth, rainfall, temperature, humidity, price etc. [1]. Precision 

agriculture also known as smart farming a technology, enabled data-driven sustainable farm management 
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system. It is basically the adoption of modern information technologies, software tools, and smart embedded 

devices for decision support in agriculture. Precision Agriculture (PA) is a scientific domain that includes 

combination of technologies, tools, and decision-making systems to improve crop productivity and farm 

profitability [2]. Precision Agriculture focus on the major area such as crop management, livestock 

management, water management and soil management. Some application such as crop yield prediction, crop 

quality, weed detection, disease detection and species recognition categorise under Crop management. due to 

the rapidly growing population in the world Yield production need to be doubled. Precision agriculture enhance 

productivity, quality and yield. Crop yield estimation is one of the most significant issues for agricultural 

management, and one of the areas that precision farming techniques can offer the greatest benefit. Crop yield 

prediction is an art of forecasting the yield of crop before harvesting [3]. 

Remote sensing has great potential as a source of information for the prediction of agricultural production, 

both at the regional and the global scale, because it provides data at a level of consistency, repeatability, 

timeliness and scalability that is unmatched by any other data source The research and application of remote 

sensing technology in agriculture started in the late 1960s [4].There are many more Applications of remote 

sensing in Agriculture include crop condition monitoring, crop identification, change detection, health severity 

measurement, Land monitoring Crop stress detection Crop Area and production forecast Drought monitoring 

Soil mapping Pest/disease identification Flood mapping Inland fishery development etc. at  1970s,india started 

Crop yield estimation under Agricultural Resource Inventory and Survey Experiment (ARISE) using Colour 

Infrared (CIR) aerial data. in 1988, for the purpose of production estimation of major crops, at district and state 

level one national program was conducted name as Crop Acreage Production Estimation (CAPE) for the same 

purpose, in 2007 one of other programs was launched called as FASAL. Hyperspectral and multispectral 

Satellite images are widely used for agricultural applications due to easy, global and temporal availability. 

Multiple satellite missions were launched by the National Aeronautics and Space Administration (NASA) and 

the European Space Agency (ESA), ISRO among others [5]. 

 

2 Literature Survey  

 

literature review focus on study of crop yield prediction, remote sensing, and machine learning 

methods with various case studies and satellite sensors used in agriculture research. 

 

2.1 Remote Sensing Systems in Precision Agriculture  

 

Remote sensing is a technique of getting information of objects without direct contact. Remote sensing has 

great potential as a source of information for the prediction of agricultural production, both at the regional and 

the global scale, because it provides data at a level of consistency, repeatability, timeliness and scalability that 

is unmatched by any other data source. Remote sensing using drones, satellites and sensors in fields has 

revolutionized agriculture around the world, making it possible to understand what is happening to crops day-

by-day and year-on-year [11]. Table 1 consist some application of remote sensing satellite sensor in precision 

agriculture. 
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Table 1: Applications of satellite sensors used for precision agricultural 

 

 

Application sensors Duration  Spatial 

Resolution  

Temporal 

Resolution 

Author  

Crop growth [2-6] SkySat-1  2013–

present 

MS (1 m)  daily Ferguson, 

Richard 2018 

[12] 

SkySat-2  2014–

present 

MS (1 m)  daily Zhang, 

Chongyuan 

2020 [13] 

RadarSAT 

(1995–2013) 

1995–

2013 

C-band SAR (30 

m)  

1–6 days Caturegli, Lisa, 

et al (2015) [14] 

WorldView-2  2009–

present 

MS (1.4 m)  1.1 days Tian, Jinyan, et 

al (2017) [15] 

Pleiades-1A  

Pleiades-1B  

2011–

present 

MS (2 m)  1 day Kokhan, 

Svitlana 2020  

[16] 

KOMPSAT 2012–

present 

MS (2.8 m)  1.4 days Ahn, Ho-yong, 

et al 2020 [17] 

Sentinel-1  2014–

present 

C-band SAR (5–

40 m)  

1–3 days Meroni, 

Michele, et al 

(2021) [18] 

TripleSat  2015–

present 

MS (3.2 m)  1 day Chua, Randy 

2020  

[19] 

Water 

management 

SPOT 1 and 

SPOT-2  

 

1990–

2009 

MS (20 m) 2–6 days [Baraldi, 

Andrea, et al 

(2009)[20] 

IRS 1A  1988–

1996 

MS (72 m) 22 days Choubey, V. K. 

(1994) 

[21] 

Terra-ASTER  2000–

present 

MS (15 m) 16 days Hasab,Hashim 

Ali, et al. (2020) 

[22]. 

 

nutrient 

management 

IKONOS  1999–

2015  

MS (3.2 m) 3 days  Goetz, Scott J., 

et al (2003) [23] 

GeoEye-1  2008–

present 

MS (1.65 m) 2–8days Caturegli, L 

(2015) 

[24] 

Sentinel-2  2015–

present 

MS (10 m) 2–5 days Sharifi, 

Alireza.(2020) 

 [25] 

Crop yield IKONOS  1999–

2015 

MS (3.2 m) 3 days Yang (2018) 

[26] 

Terra/Aqua 

MODIS  

1999–

present 

MS( 250–1000 

m) 

1–2 days Maselli, Fabio, 

et al (2020) [27] 

Spot-5 2002–

2015 

MS (V, NIR–10 

m, SWIR–20 m) 

2–3 days Aicha, et 

al(2018)  

[28] 

KOMPSAT-2  2006–

present 

MS (4 m) 5 days Denis, Antoine, 

et al (2021) [29] 

soil moisture 

 

SMAP  2015–

present 

L-band SAR (1–3 

km) 

2–3 days Vibhute, Amol 

D., et al. (2020) 

[30] 

Crop Disease 

Detection 

 

Spot-6 / Spot-7  2012–

present 

MS (6 m) 1-day Yang, (2020) 

[31] 

weed 

management 

Worldview-3   2014–

present 

SS (1.24 m) 1-day Sidike, 

Paheding, et al 

(2019)[32] 
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2.1.1 Hyperspectral Imaging  

Hyperspectral imaging is the one of best informative source of remote sensing. It plays vital role in many domains like 

military and space use, industries, medical field, security and safety, agriculture and many more. It can capture the 

entire, continuous electromagnetic spectrum of colour and light [33]. There are lots of application of hyperspectral 

imaging in agriculture like Crop nutrition and fertilization, including macro and micronutrients (P, K, Mg, Mn, Cu, 

Mn, Zn), Early disease detection and stresses, Biophysical indicators for high throughput phenotyping to support plant 

breeding experiments. Analysis of biophysical properties, Analysis of biochemical properties (e.g., Anthocyanins, 

Carotenoids, Chlorophyll) etc. hyperspectral imaging in agriculture are use ground-based or space-based platforms 

[34]. Ground-based systems are typically used to make measurements requiring extremely high spectral resolution, 

such as measurements of spectral signature or bidirectional reflection distribution function [35]. 

 

2.1.2 Spectral signature of vegetation 

A plant leaf does not absorb aIl wavelengths so it consists of biochemical and chemical substances with different 

absorption peaks. It is documented those various pigments - such as chlorophyll-a and b, anthocyanin, a and ~-

carotenoids, lutein, violaxanthin - the physical structure of leaves and their spectral signature [36][37]. Remote sensing 

provides information about vegetation species over huge areas at a low cost. The hyperspectral sensors have the potential 

to divide the electromagnetic (EM) spectrum range in various narrow contiguous bands for detection of signatures. These 

sensors record the energy (emitted and reflected) and also used for processing, analysing the data which will be used for 

further analysis [3]. 

 

2.2 Use of remote sensing for crop yield estimation  

2.2.1 Satellite Sensors 

 

There are several officially announced hyperspectral earth observation satellite sensors on orbit, including PROBA-

CHRIS, EO-1 HYPERION, HysIS, HISUI as described in table2. The first Indian Hyperspectral Imaging Satellite 

(HysIS) from Srihari Kota on 29 November 2018 launched by The Indian Space Research Organisation (ISRO). The 

information provide by satellite is useful in research study of agriculture, environmental, coastal zones, geolog, forestry 

etc [39].In 2019, Ministry of Economy, Japan developed space borne hyperspectral earth imaging system known as 

Hyperspectral Image Suiter (HISUI). It has 3 years of activity duration. HISUI will be terminated in 2021-2022. It has 

high spatial resolution with 185 spectral bands, spectral range to 0.4 to 2.4 μm and spectral resolution is 10nm and 12. 

nm for VNIR region and SWIR regions respectively [40]. 

 
Table 2: specifications of hyperspectral Sensor 

Sensor Sensor Agency Band  Spectral 

range  

Spatial 

Resolution(m) 

Status/year Revisit time 

Hyperion EO1 

[41] 

NASA, USA 242  

 

30 m Mission 

Terminated 

2000-2015 

200 days 

HysPIRId [42] NASA 217 400-2500 60 m 2022 19 days 

 

CHRIS 

PROBA[43] 

UK Space 

Agency 

37 415–1050 17/34 m 2001 3 days 

AVIRIS 4 [44]  USA 224 400–2500 4-20 m Data available 

on user request 

- 

HysIS [39] ISRO, India 32 60/256 30 m 2019-2026 5/19 days 

 

HyMap  [45] Australia 128 10-20 2-10 m Data available 

on user request 

Airborne 

HISUI  [40] Japan 185 0.4μm-2.5μm 20-30m  2019-2021 Airborne 

 

MODIS [46] NASA 36 400–1400 5-10 nm 2002 -2007 2 day 

 

PRISMA[47] Italy 210 400-2500  12 nm launched in 

2012, -2016 

Airborne 

CASI  [48] Canada 288 0.2-1.5  user demand Airborne 

 

AISA [49] Finland 84 8-12 100nm user demand Airborne 

 

GaoFen-5[50] NASA 330 400-2500 30 m Launched in 

2018/ 15 year 

plan 

7 day 
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2.2.2 Satellite Platforms 

 

For gathering the data many types of sensor and platforms are used in crop yield estimation and yield mapping in 

precision agriculture such as satellites, airplanes, helicopters, UAVs and close-range etc. as shown in Table 3. [51][52]. 

 

 

 

 

2.3 crop yield estimation and predictions 

 

For developing agriculture domain crop yield estimation and predictions is essential by reliable time to time and correct 

information of crop area, crop growth and condition to plan various polices. 

Chu and Yu [2020] developed rice prediction model which predicts summer and winter rice crops in the eighty-one 

countries of the Guangxi Zhuang Autonomous Region, China. This module was categorised in to three stages in first 

stage is pre-processed original area and meteorology data later that in second stage BPNN and RNN learns deep spatial 

and temporal features from the input data of first stage .at last stage BPNN learns the summer and winter rice crop deep 

feature relationship. The final result of this BBI model was present lowest error values with MAE and RMSE of 0.0044 

and 0.0057 for summer rice prediction and 0.0074 and 0.0192 for winter rice within 100 iterations [53]. 

A case study in Western Australia, Patrick Filippi et al (2019) built Random Forest models to predict crop yield of wheat, 

barley and canola using data from national and global datasets, such as rainfall and MODIS between 2013 to 2015.to 

explore the crop yield ability three modules was created, depend on the pre sowing, mid-season and late season crop 

conditions.[54]. One another similar approach on under varying environment condition. Author studied difference 

between predicted and actual yields [55]. 

2.4 Machine Learning in Precision Agriculture  

2.4.1 Machine Learning Approach  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine learning is the branch of computer science which is used to build algorithms which exhibit self-learning property 

means that machine learns itself so it known as Machine Learning. The ML consist three types supervised learning, 

unsupervised learning, and reinforcement learning. In supervised learning, the model is created with known labelled data 

with previous knowledge.[56]. For research purpose many different algorithms are studied by researchers. Some of them 

are listed as follows  

Support Vector Machine (SVM) is a classification and regression algorithm that builds multi-dimensional boundaries 

between data points in the feature space. The output of the SVM is predicted based on the classes divided using the 

training data.[57]. A decision tree is one of the simplest and intuitive machine learning method with tree structure by 

splitting label data to its node [58].    

K Nearest Neighbour KNN is a neighbourhood-based classifier where a data point is classified based on the classification 

of ‘k’ closest points. KNN does not require training and is not prone to overfitting.[59]. Convolutional Neural Network 

CNN is a deep learning method with convolutional, pooling and fully connected layers. Convolutional and pooling layers 

do the feature extraction while fully connected layers do the classification. CNN is very efficient in extracting mid-level 

Table 3: Hyperspectral Imaging Platforms [51][52] 

 

Attribute Satellites Airplanes Helicopters Fixed-Wing 

UAVs 

Multi-

Rotor 

UAVs 

Close-

Range 

Platforms 

Operational 

Altitudes 

400–700 

km 

1–20 km 100 m–2 km <150 m <150 m <10 m 

 

Spatial Coverage Very large Medium—

large (~100 

km) 

Medium 

Small (~10 

km) 

Medium 

Small (~5 

km) 

Small 

(~0 .5km) 

Very small 

(~0 .005km) 

 

Spatial Resolution 20–60 m  1–20 m 0.1–1 m 0.01–0.5 m   0.01–0.5 

m 

0.0001–

0.01 m 

Operational 

Complexity 

low medium medium High High High 

 

Image Acquisition 

Cost 

Low to 

medium 

High High High High High 

Flexibility  Low medium medium High High High 

 

Temporal 

Resolution 

Days to 

weeks 

Depends on flight operations 
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and high-level features especially with image data. They are generally successful in capturing spatial and temporal 

characteristics in data.[60]. Instance-based learning is a memory-based model that learns based on the comparison, i.e., 

examples are compared with instances from the training datasets Prominent algorithms in Instance-based learning 

includes learning vector quantization, k-nearest neighbour (KNN), and locally weighted learning.[61]. 

 

2.4.2 ML Algorithms for Agriculture Application 

 

ML algorithms are mainly used to solve complex problems where human expertise fails such as weather prediction, spam 

filtering, disease identification in plants, pattern recognition. Here, Table 4 listed and discussed some innovative ML 

algorithms which play vital role in solving diverse set of problems in the field of precision agriculture. 

 Table 4: Machine Learning algorithms used for precision agricultural application 

 

1 irrigation management ANN Seyedzadeh, Amin, et al. (2020) [62],  

Navinkumar,. (2020) [63],  

Al-Naji, Ali, et al. (2021) [64], 

 D’Emilio, Alessandro, et al (2018) [65] 

SVM  Ifriza .(2021) [66]  

Liu, Dong, et al. (2020) [67] 

Deep learning Chen, Huazhou, et al.(2020) [68],  

Chen, Huazhou, et al.(2020) [69],  

Pan, Jinqiu, et al. (2018) [70] 

 

Decision tree Patil, Chinmay, et al. (2021) [71],  

Brédy, Jhemson, et al. (2020) [72], 

Regression García–Nieto, Paulino J.,  

et al. (2020) [73],  

Kumar, Anusha, et al.. (2017) [74] 

2 crop yield prediction ANN Aghighi, Hossein, et al. (2018) [75],  

Gandge, Yogesh(2018) [76],  

 

Bayesian network Ma, Yuchi, et al. (2021) [78]   

Cao, Juan, et al. (2021) [79]   

van Klompenburg(2020) [80]   

Shetty, Supreetha A., et al (2021)[81]. 

 

Deep learning Shetty, Supreetha A. (2021) [82],  

et al. Elavarasan (2020) [83], 

Mehra et al. (2018) [84]  

Decision tree Bhanumathi, S(2019) [85]  

Chlingaryan et al. (2018) [86] 

Instance-based learning Feng, Luwei, et al. (2020) [87], 

 

Ensemble learning Keerthana, Mummaleti, et al (2021) [88], 

SVM Keerthana, Mummaleti, et al (2021) [89]  

Reshma, R., et al. (2020) [90]  

 

3 disease detection ANN Nihar, Fatema, et al. (2021) [91],  

Saeed, Farah, et al. (2021) [92], 

Bayesian deep learning Zheng, Rui, et al. (2021) [93], 

 Hernández, S., (2021) [94], 

Deep learning Wani, Javaid Ahmad, et al. (2021) [95], 

Ashok, Surampalli, et al. (2020) [96],  

Tiwari, Divyansh, et al. (2020) [97]. 

Regression Saeed, Farah, et al. (2021) [98]. 

SVM Patil, Asha (2021) [99], 

 Abdullah, Dakhaz (2021) [100]. 

    

4 weeds detection. ANN Panda, Bikramaditya, et al. (2021) [101], 

Decision tree Wang, Bo (2020) [102], 

KNN Khurana, Gurpreet (2021) [103], 

SVM Badhan, Siddhesh, et al.  (2021) [104], 

CNN Veeragandham (2021) [105], 

Deep learning Knoll, Florian J., et al. (2019) [106], 

5 nutrient management. ANN Peng, Qiu, and Weihong Xu. (2021) [107],  

Leelavathy. (2021) [108],  
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2.4.3 Machine learning for crop yield prediction and Estimation 

 

Paudel (2021), predicted early season or end of season prediction for the large-scale crop yield with crop modelling and 

machine learning approach by using database from s the European Commission’s MARS Crop Yield Forecasting System 

(MCYFS). five crops soft wheat, spring barley, sunflower, sugar beet, potatoes from three countries the Netherlands, 

Germany and France Tested for his developed workflow. Ridge Regression, K-nearest Neighbours Regression, Support 

Vector Machines Regression and Gradient Boosted Decision Trees Regression these four algorithms are used for 

accuracy tested on different 13 case studies [121]. 

Kamir et al. (2020) predicted wheat production and identified yield gap hotspot with the help of nine machine learning 

algorithms as SVR, RF, Gaussian Process, k-NN, Cubist, Multivariate Adaptive Regression Splines, MLP and KNN. 

Data was collected from three sources, one from NDVI at 250 m resolution from the MODIS i.e., MOD13Q1 data set 

from 2009 to 2015, second rainfall and temperature data from SILO (Scientific Information for Land Owners) at 

Australia and third one from maps of observed grain yield were collected using harvesting machines. The result of SVMr 

algorithm performs best with showing high accuracy with an RMSE value of 0.545 t ha−1 and an R2 of 0.77 at the pixel 

level, and an R2 using cross validation [122]. 

Hossein Aghighi (2018) Introduce crop monitoring and yield estimation technique of Maize crop using remote sensing 

at NorthWest of Iran. NDVI dataset of Landsat 8 OLI satellite was used for investigate research study. In this study 

comparison of performance of Boosted Regression Tree, Random Forest Regression, Support Vector Regression, and 

Gaussian Process Regression algorithms are done by conventional regression method. on the basis of 2013-2014 trained 

dataset, model predict the crop yield of Maize in 2015 as R value was higher than 0.87 on 13 [123]. 

At county-level soybean yield prediction by using remote sensing data in the U. S was done by Jiaxuan You (2017), to 

extract feature from raw data he used CNN and LSTM algorithms. He proposed dimensionality reduction approach by 

Deep Gaussian Process framework to integrate the spatio-temporal information from the data. The better result of this 

models with 30% reduction of RMSE from the best competing methods.[124]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zheng, Caiwang(2021) [109], 

Clustering Zhang (2021) [110],  

Gokulnath (2021) [111], 

Decision tree Jahan (2021) [112],  

Amirruddin, Amiratul Diyana, et al.  (2021) [113] 

Ensemble learning Bai, Xueyuan, et al. (2021) [114] 

Deep learning Nandhini. (2021) [115] 

Regression Peng, Junxiang, et al. (2021) [116] 

6 prediction of soil 

properties 

Naïve Bayes algorithm Malik. (2021) [117] 

Clustering Gao, Hongju. (2021) [118] 

CNN Das. (2021) [119] 

Regression Ou, Depin, et al. (2021) [120] 
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Table 5 summarizes the previous research and case studies of yield prediction using Machine learning 

approach 

Table 5  previous research and case studies of yield prediction using Machine learning approach 

 

Previous Studies Crop /location 

/dataset 

algo Research Focuses 

on models 

Summery and accuracy 

measure  

 

SA Shetty(2021) 
[125] 

major crops 
grown in the 

Karnataka ,India 

Random forest A Multi-Layer 
Perceptron neural 

network model and 

Random forest 

regression models 

Web based application is 
developed using python to 

crop prediction. Multi-Layer 

Perceptron network and 

Random forest regression 
obtained the Mean absolute 

error of 12.3% and 12.4%, 

mean square error of 3.4% and 
2.9%, root mean square error 

of 18.55% and 17.12% 

respectively. 

B 

Darwin(2021)[126] 

grapes, apples, 

citrus, tomatoes 

and vegetables 

convolutionneural 

network (CNN) 

SVM 

Theautomation in 

image analysis with 

computer vision and 
deep learning 

models used 

provided a better accuracy for 

smart farming The deep 

learning models outperform 
the other conventional image 

processing techniques with an 

average accuracy of 92.51% 

in diverse agricultural 
applications. 

Raí A. Schwalbert 
(2020)[127] 

Soybean/southern 
Brazil 

linear regression, 
random forest and 

LSTM 

forecasting soybean 
yield using NDVI, 

EVI, land surface 

temperature and 

precipitation as 
independent 

variables 

This research portrays the 
benefits of integrating 

statistical techniques, remote 

sensing, weather to field 

survey data in order to 
perform more reliable in-

season soybean yield forecasts 

with MAE increasing from 

0.24 Mg ha−1 to 0.42 Mg 
ha−1 

Wei Marcelo Chan 
Fu et 

al.(2020)[128] 

Carrot/ Uberaba 
state of Minas 

Gerais, Brazil 

andom forest 
(RF) regression 

algorithm 

Georeferencedcarrot 
yield sampling was 

carried out and 

satellite imagery 

was obtained during 
crop development. 

The Gini index was 

used to find the 

fivemost important 
predictor variables 

of the model. 

The five most important 
predictor variables were the 

near-infrared spectralband at 

92 and 79 days after sowing 

(DAS), green spectral band at 
50 DAS and blue spectral 

band at92 and 81 DAS. The 

RF algorithm applied to the 

entire dataset presented R2, 
RMSE and MAE valuesof 

0.82, 2.64 Mg ha−1and 1.74 

Mg ha−1, respectively. The 

method based on RF 
regression applied to 

adatabase composed of 

spectral bands proved to be 

accurate and suitable to 
predict carrot yield 

Stas, M (2016) 
[129] 

wheat crop Boosted 
Regression Tree 

(BRT), SVM 

Three types of 
NDVI-related 

predictors have 

been used Single 

NDVI, Incremental 
NDVI were used for 

analysis. The results 

revealed that BRT 

performs better than 
SVM 

When a limited number of 
training samples is available, 

ML techniques used here are 

better able to cope with large 

set of predictors (compared to 
MLR The results of 

comparison, which are based 

on a cross-validation error 

(RMSE), showed that BRT 
model consistently 

outperforms SVM 

Sushila Shidna 

(2019)[130] 

Healthy leaf of 

crop 

Convolutional 

Neural Networks 

(CNN) 

two tired machine 

learning models are 

used with neural 

networks and k-
means clustering 

method is used  

Research observed deficiency 

identification of leaf to predict 

yield pre-diction. The 

accuracy of prediction wasn 
76 to 77%  

X.E. 

Pantazi(2016)[131] 

wheat crop/ 

Bedfordshire, UK 

 

unsupervised 

learning 

algorithm 

Counter-

propagation 

Artificial Neural 

Thepresented approach 

incorporates the yield limiting 

factors in a multi-layer fusion 
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Network (CPANN), 

Supervised 

Kohonen Network 

(SKN) and XY-

fusion 

network(XYF), 
based on 

Supervised 

Learning 

mode SKN network for the 

predic-tion of the low 

category of wheat yield with a 

correct classificationreached 

91.3% for both cross 

validation and independent 
valida-tion. 

Chen et al. 

(2019)[108] 

Strawberry/ 

Florida in Citra, 

Florida, USA 

Faster Region-

based 

Convolutional 
Neural Networks 

(Faster R-CNN) 

deep neural network 

model, used to 

detect and counting 
flowers, mature 

strawberries, and 

immature 

strawberries, 
ResNet-50 

architecture and 

transfer learning 

from ImageNet, to 
detect 10objects 

accuracy to be 84.1%, with an 

average occlusion of 13.5% 

Shah et al. 
(2018)[132] 

corn yield Support vector 
machine, random 

forest 

multivariate 
polynomial 

regression, support 

vector machine 

regression and 
random forest 

models 

SVM regression finds the 
minimum 5.48, 3.57and 1.58 

RMSE, MAE and median 

absolute error value 

respectively square value was 
0.968. 

Zeel Doshi  

(2018) [133] 

jowar, bajra, 

maize wheat, rice 

Decision Tree, K 

Nearest, Random 

Forest and Neural 
Network 

Developed system 

based on models of 

combination of Big 
Data Analytics and 

Machine Learning 

algorithms  

four machine learning 

algorithms have different 

accuracies Decision Tree 
90.20, K-NN 89.78, Random 

Forest 90.43 and Neural 

Network 91.00 

 

3 Conclusions  

This review paper gives information about Role of Remote Sensing Systems and machine learning in Precision 

Agriculture. Here we categorise remote sensing application for precision agriculture as Crop growth, Water management, 

nutrient management, Crop yield, weed management, Crop Disease Detection, soil moisture. For the crop yield 

prediction and estimation hyperspectral satellite sensor are used. The review consists of two main parts first is on crop 

yield prediction and estimation using hyperspectral remote sensing and another part on machine learning algorithms.  the 

first part describes the previous case studies of precision agriculture with details of remote sensing and various sensors 

used in agriculture research. In second part focus on Machine Learning Approach with different algorithms like 

convolutional neural network (CNN) SVM, Random Forest, Decision Tree, K Nearest, Random Forest and Neural 

Network etc with case studies. 
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