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ABSTRACT 
 

In business, engineering, science and technology, electronic goods of Low cost, low power consumption, high operating 

speed, and high integration density are economically requisite in the present era. Single Electron tunneling based threshold 

gate is one approach with which we are able to implement all logic gates, combinational and sequential circuits. Threshold 

Logic Gates (TLGs) and Single Electron tunneling devices (SEDs) bear the capabilities of controlling the transport of an 

electron through a tunnel junction at a particular time. A single electron containing the charge is sufficient to store an 

information in a SED. Power that is required in the single electron tunneling circuits is really low in comparison with the 

(CMOS) circuits. The processing delay is very low and speed of the processing of TLG based devices will be close to 

electronic speed. The single-electron transistor (SET) and TLG are attracting scientists, technologists and researchers to 

design and implement for the consuming of ultra-low power and their small sizes. All tunneling events in a TLG-based 

circuit happens when only a single electron tunnels from one conductor to other through the tunnel junction when the bias 

voltage and multiple input signal voltages are applied. For implementing logic gates, Full adder and a converter, TLG 

would be a best candidate to fulfill the necessities needed for their implementations. So far as an Ultra-low noise is 

concerned, TLG based circuit can be considered to be a best selection for implementing the desired tunneling circuits. 

Different TLGs like 2-input AND, 2-input OR, 3-input AND/NAND, 3-input OR/NOR, XOR/XNOR, Full adder, and a 

converter of BCD-to-Excess-3 have been implemented by using linear threshold logic gates or devices. Truth table or 

simulated results of them are given in parallel in due places.  

 

Key words: up-down Counter, Electron-tunneling, Coulomb-blockade, linear threshold gate 

 

1. INTRODUCTION    
 

From the point of view of semiconductor technology that the ever decreasing feature size and the corresponding increase 

in density of transistors facilitates many improvements in semiconductor based designs. But one day such improvement 

will eventually come to an end. For ensuring further feature size reduction, possible imminent technologies with greater 

scaling potential like single electron tunneling technology is currently under the investigation of the researchers. SET-

based circuits or threshold logic gate based circuits are constructed with tunnel junctions, through which an electron can 

be passed in a controlled manner.  

 

Single Electron tunneling based device is one of such an equipment by which all Boolean logic gates and more complex 

circuits can be implemented. Tunneling events happen when a single electron can pass through the tunnel junction under 

the action of bias voltage and multiple input voltages connected to the islands via small capacitors. For implementing a 

BCD-to-Excess-3 counter, TLG would be a suitable candidate.  
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2. Multiple input threshold logic gate  

A multiple input threshold logic gate [1, 2, 3, 4, 8, 9, 10] is a gate which is made up of a tunnel junction bearing a 

capacitance 𝐶𝑗  and resistance 𝑅𝑗, two multiple input-signals 𝑉𝑘
𝑃s and 𝑉𝑙

𝑛s connected at two points ‘p’ and ‘q’. Each input 

voltage 𝑉𝑘
𝑃 , for the top left side, is connected to the point “q” through the corresponding capacitors 𝐶𝑘

𝑃𝑠 and each input 

voltage 𝑉𝑙
𝑛, for the bottom left side, is connected to the point “p” through their respective capacitors 𝐶𝑙

𝑛s. Supply voltage 

or  Bias voltage 𝑉𝑏  is connected to point the “b”   through a capacitor 𝐶𝑏 as well. Junction capacitor 𝐶𝑗 is connected to 

point “p” that is grounded through another capacitor C0. We will be able to implement the LTGs with the help of a function 

presented by the signun function(x) of h(x) expressed by equations (1) and (2).     

  

g(x) = sgn{h(x)} = {
  0, 𝑖𝑓 ℎ(𝑥) < 0
1, 𝑖𝑓 ℎ(𝑥) ≥ 0

 ………… (1) 

h(x) = ∑ (𝑤𝑘 ×
𝑛
𝑘=1  𝑥𝑘) −𝜃 ………….……………………. (2) 

            where 𝑥𝑘  being the n-Boolean inputs and 𝑤𝑘 being their corresponding n 

integer weights.  

 

The LTG compares the weighted sum of the inputs ∑ (𝑤𝑘 ×
𝑛
𝑘=1  𝑥𝑘  ) with the 

threshold value θ, if the weighted sum-value becomes greater than or equal to the 

threshold or critical voltage value θ then the logic output of the LTG would be high 

(logical “1”), otherwise it would be low ( logical “0”).  

 

The tunnel junction capacitance 𝐶𝑗 and the capacitance 𝐶0 are in series being 

considered the two basic circuit elements in a LTG. The input signal voltages  𝑉1
𝑃 , 𝑉2

𝑃 , 𝑉3
𝑃 , … , 𝑉𝑘

𝑃 , which are weighted 

by their corresponding vector capacitances𝐶1
𝑃 , 𝐶2

𝑃 , 𝐶3
𝑃 , … , 𝐶𝑘

𝑃, are added to the junction voltage, 𝑉𝑗. Whereas, the input 

signal voltages 𝑉1
𝑛 , 𝑉2

𝑛, 𝑉3
𝑛, … , 𝑉𝑙

𝑛 (which are weighted by their corresponding vector capacitances 𝐶1
𝑛, 𝐶2

𝑛, 𝐶3
𝑛, … , 𝐶𝑙

𝑛), 

are being subtracted from the voltage, 𝑉𝑗. 

 

The critical voltage 𝑉𝑐  is needed to enable tunneling action, and which acts as the intrinsic threshold of the tunnel 

junction circuit. The supply or bias voltage 𝑉𝑏 connected to tunnel junction through the capacitance, 𝐶𝑏, is used to adjust 

the gate threshold to the desired value 𝜃. When a tunneling happens though the tunnel junction, an electron goes through 

the junction from p to q as directed by an arrow in Fig. 1. 

The following notations would be used for the rest our discussion. 

C∑
P = Cb + ∑ Ck

Pg
k=1

……………………..……………………(3) 

 

C∑
n = C0 + ∑ Cl

n    h
l=1

…………………………………………(4) 

 

𝐶𝑇 = C∑
P𝐶𝑗 + C∑

PC∑
n  + 𝐶𝑗C∑

n……………………………… (5) 

 

When we assume that all voltage sources in Fig. 1 are connected to ground, then the circuit can be treated as it is made 

up of three capacitors namely, C∑
P, C∑

n and 𝐶𝑗, connected in series. 𝐶𝑇 is assigned to the sum of all 2-term products of these 

three capacitances  C∑
P, C∑

n and 𝐶𝑗. 

Now we will find the expression regarding the critical voltage 𝑉𝑐 of the tunnel junction. We assume the capacitance of the 

tunnel junction to be 𝐶𝑗 and the remaining part of the circuit has the equivalent capacitance to be 𝐶𝑒, as observed  from 

the point of view of  tunnel junction, we can measure the threshold or critical voltage [1,2, 8,9,10] for the tunnel junction 

as below. 

 

 𝑉𝑐 =
𝑒

2(𝐶𝑗 +𝐶𝑒 )
   ………………………………… (6) 

 𝑉𝑐 =
𝑒

2[𝐶𝑗 + (𝐶∑
𝑃||𝐶∑

𝑛)]
 

 
Fig. 1 Multiple input TLG 
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= 
𝑒

2[𝐶𝑗 + 
( 𝐶∑

𝑃) ∗ (𝐶∑
𝑛)

(𝐶∑
𝑃 + 𝐶∑

𝑛)
  ] 

 

= 
𝑒(𝐶∑

𝑃 + 𝐶∑
𝑛) 

2[𝐶𝑗 ∗ (𝐶∑
𝑃 + 𝐶∑

𝑛) +   ( 𝐶∑
𝑃) ∗ (𝐶∑

𝑛)]  
 

 

= 
𝑒(𝐶∑

𝑃+𝐶∑
𝑛) 

2𝐶𝑇 
 …………………………………….(7) 

 

When the voltage of the junction is  𝑉𝑗 , a tunneling event comes to happen through this tunnel junction if and only if the 

condition given below is satisfied. 

 

 |𝑉𝑗| ≥ 𝑉𝑐
……………………………………….(8) 

 

From this equation it is decided that if the junction voltage is less than the critical voltage i.e. |𝑉𝑗| < 𝑉𝑐 , then no 

tunneling events through the tunnel junction happens. As a consequence, the tunneling circuit keeps its stable state. 

 

Theoretically, the thresholds are being integer numbers though it can be a real number. The threshold logic equations for 

2-input or 3-input logic AND, OR, NAND and NOR gates are shown in sections from 5 to 9.  

3. Buffer 

 The buffer or inverter [2, 3, 4, 8, 10] depicted in Fig. 2(a) 

is made up of two single electron transistors (SETs) 

connected in series. The two input voltages having the 

same values are directly coupled to the islands of the 

SET1 and SET2 [6,7] through two capacitors 𝐶1 and 𝐶2 

of same values respectively. The islands of each SETs 

have a size close to 10 nm diameter of gold and their 

capacitances should be less than 10-17 F. The output 

terminal 𝑉0  is connected to the common channel 

between SET1 and SET2 and to the ground through a 

capacitor 𝐶𝐿 to put down charging effects.  

For the buffer, the parameter values chosen are: 𝑉𝑔1=0, 𝑉𝑔2=0.1×
𝑞𝑒

𝐶
 , 𝐶𝐿 = 9𝐶, 𝑡4 =

1

10
𝐶, 𝑡3 =

1

2
𝐶, 𝑡2 =

1

2
𝐶, 𝑡1 =

1

10
𝐶, 

𝐶1 =
1

2
𝐶, 𝐶2 =

1

2
𝐶, 𝐶𝑔1 =

17

4
𝐶 and 𝐶𝑔2 =

17

4
𝐶, R1 =R2=50KΩ. For simulation purpose, the value of C is taken 1aF. 

 

                                      
 

Fig. 2(c) Simulation set of Buffer                                Fig.2 Simulation result of Buffer (d) input    (e) output 

 

The operation of the buffer will be described as: - the output 𝑉0  value will be high in case the input voltage Vin is low and 

the  𝑉0  value will be low in case the input voltage is high. To achieve this target, we must set the voltages  𝑓𝑜𝑟 𝑉𝑔1 =

0 𝑎𝑛𝑑 𝑉𝑔2  =16mV along with the tuning gate voltages, at present, Vin both for SET1 and SET2. SET1 is in conduction 

mode if  𝑉𝑖𝑛 is set to low and the SET2 is in Coulomb blockade [2, 3, 4, 13, 16, 17]. This results the output voltage V0 is 

 
     Fig.2 (a) an Inverter         Fig.2 (b) Symbol of an Inverter 
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linked to 𝑉𝑏 and therefore the output voltage becomes high. Coulomb blockade troubles the steady flow of current, as the 

high voltage (logic 1) is applied to the input terminal(s), it makes shift the induced charge on each of the islands of the 

two SETs by a fraction of an electron charge and enforces the SET1 in Coulomb blockade and the SET2 in conducting 

mode. So, the output shifts from high to low (logic 0).  

 

In this work we assume the Boolean logic inputs “0” =0 Volts and logic “1”=0.1×
𝑞𝑒

𝐶
 . 

For simulation and other purposes, will consider that C=1aF and Logic “1”= 0.1×
1.602×10−19

1×10−18
=0.1 ×

1.602 × 10−2=16.02 × 10−3 =16.02 ≅ 16 mV. 

 

 

4. LOGIC GATES A ND LINEAR SEPARATION 

 

 Before discussing about different threshold logic gates, one should 

be known about linear condition of a function. We are trying to 

make understand how shall we comment about a linear or non-

linear function? Let us see the input space for two inputs variables 

x1 and x2, and how the basic gates are implemented by linear 

separation. Fig. 3 shows the solution spaces functions of gates 

AND, OR, NOR and XOR with 4 vertices (combinations 00, 01, 

11, 10) as points and green circle-points have the function value 

1,   and the colorless small circles/bubbles points indicate 0(zero) 

value for the function. In Fig. 3 (a) and 3(b) and 3(c), we can 

draw more straight lines ( in other words different weights 

and thresholds) to separate 1-vertices from 0-vertices and 

thus the functions of AND, OR and NOR can be implemented 

,as they are linearly separable,  by a single neuron. This is not true 

for XOR/(XNOR) in Fig. 3(d), since no line can separate the 1 -

vertices of XOR function from its 0-vertices. So, XOR is not being 

a linearly separable function. In two dimensions, a line separates 

points in a plane, whereas a plane is considered as a separator 

of points in three dimensional space. In general, n-1 

dimensional plane (also called hyper plane) is a separator for 

points in n-dimensions. We shall clarify the linearly separable cases by the following three examples. 

 

Definition 1: A switching function is considered as linearly separable iff all of its 1-vertices (like green colored) 

can be separated from all of its 0-vertices with the help of a hyper plane. A neuron bearing 𝑛 −  𝑖𝑛𝑝𝑢𝑡𝑠 works 

on 𝑎𝑛  𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space and a single neuron which is capable of implementing any switching function is 

thought to be linearly separable. 

Example 1:  

A single neuron can implement a switching function 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥1+ 𝑥2 𝑥3 +𝑥1𝑥2, since its 1 -vertices can be 

separated from 0-vertices by a plane as shown in Fig. 4 and its truth table is shown in Table-1. 

                                                                                                                  

 

          Fig. 4 Space of non-linear threshold logic function 

Example 2:  

A single neuron can implement a switching function  𝑓(𝑥1 , 𝑥2, 𝑥3) =𝑥1 + 𝑥2+𝑥 2 𝑥3,    since its 1-vertices can be 

separated from all 0-vertices by a plane as shown in Fig. 5 and its truth table is shown in Table-2. 

 
Fig. 3 Solution spaces of two variables x1 and x2 

     for  (a) AND, (b) OR , (c) NOR and (d) XOR gates  
 

 Fig. 3 Boolean spaces of two variables x1 and x2 

     for  (a) AND, (b) OR , (c) NOR and (d) XOR 

 

Table-1 

𝑥1 𝑥2 𝑥3 f(𝑥1,𝑥2,𝑥3) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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                                           Table-2  

                                                                                                            Truth table of  𝑓(𝑥1 , 𝑥2, 𝑥3) =𝑥1 + 𝑥2+𝑥 2 𝑥3,     

 
 

  Fig. 5 Space of linear threshold logic function                 

 

Example 3:  

A single neuron can implement a switching function  𝑓(𝑥1 , 𝑥2, 𝑥3) =𝑥1𝑥3 + 𝑥2𝑥 3,    since its 1 -vertices can be 

separated from all 0-vertices as shown in Fig. 6 and its truth table is shown in Table-3. 

                         Table-3 

                                                                                                            Truth table of 𝑓(𝑥1, 𝑥2, 𝑥3) =𝑥1𝑥3 + 𝑥2𝑥 3 

               

Fig. 6 Space of a linear threshold logic function 

 

5. Threshold logic equation for OR gate 

For making the threshold logic gate of an OR gate, we draw the truth table Table-4 of OR gate and compare the weights 

of variables 𝑤𝐴 and 𝑤𝐵 of two variables A and B respectively with the threshold value θ. 

  Table-4 
A B F(A,B) 𝜃 

0 0 0 0<𝜃 

0 1 1 𝑤𝐵 ≥ 𝜃 

1 0 1 𝑤𝐴 ≥ 𝜃 

1 1 1 𝑤𝐵 + 𝑤𝐴 ≥ 𝜃 

 

For positive logic we assume weights of A and B are 1 each. Then we write the three equations taken from 4th column of 

Table-4.  

 

𝑤𝐵 > 𝜃…………………………………………. (9) 

𝑤𝐴 > 𝜃………………………………..……….. (10)   

𝑤𝐵 +𝑤𝐴 > 𝜃………………………………. (11) 

 

As 0<𝜃 , 𝜃 must be positive, If we assume 𝑤𝐵=1, 𝑤𝐴=1 and 𝜃=0.5, then the three equations in (9), (10) and (11) are 

satisfied. Hence the Threshold logic equation for OR gate is given in equation (12) and its corresponding threshold logic 

gate is drawn in Fig. 5(a) 

𝑂𝑅(𝐴, 𝐵)  =  𝑠𝑔𝑛{𝐴 + 𝐵 − 0.5}………… (12)  
 

 
Fig. 5(a) Threshold logic OR gate 

𝑥1 𝑥2 𝑥3 𝑓(𝑥1 , 𝑥2, 𝑥3) 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

𝑥1 𝑥2 𝑥3 f(𝑥1 , 𝑥2, 𝑥3) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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For implementing the AND gate we will use the parameters 𝐶1
𝑛 = 𝐶2

𝑛=0.5aF,𝐶3 = 11.7𝑎𝐹, 𝑪𝒃𝟏 = 𝑪𝒃𝟐 =

4.25𝑎𝐹, 𝐶𝑔1 = 𝐶𝑔2 = 0.5𝑎𝐹, 𝐶𝐿 = 9𝑎𝐹,𝐶0 = 8𝑎𝐹, 𝑅𝑗= 105 Ω, 𝑉𝑠 = 16𝑚𝑉 and accordingly after running 

the simulator, the output we get is given in Fig. 5(c). 
 

 

Fig. 5(b) OR gate                                            Fig. 5(c) simulation result of OR gate 

 
6. 2-input AND gate 
 

For making the threshold logic gate of AND gate, we draw the truth table Table-5 of AND gate and compare the 

weights of variables 𝑤𝐴 and 𝑤𝐵 of two variables A and B respectively with the threshold value θ [1,2,3,8]. 
Table-5 

A B F(A,B) 𝜃 

0 0 0 0<𝜃 

0 1 0 𝑤𝐵 < 𝜃 

1 0 0 𝑤𝐴 < 𝜃 

1 1 1 𝑤𝐵 + 𝑤𝐴 ≥ 𝜃 

 
For positive logic we assume weights of A and B are 1 each. Then from the above four inequalities if we assume 𝑤𝐵=1, 

𝑤𝐴=1 and 𝜃=2, then the three inequalities or equations in 4th column in Table-5 are satisfied. Hence the Threshold logic 

equation for AND gate is given in equation (13) and its corresponding threshold logic gate is drawn in Fig. 6(a) 

 

𝐴𝑁𝐷(𝐴, 𝐵) =  𝑠𝑔𝑛{𝐴 + 𝐵 − 2}……………………. (13) 

 

Fig. 6(a) Threshold logic AND gate 

 

For implementing the AND gate we will use the parameters 𝐶1
𝑛 = 𝐶2

𝑛=0.5aF, 𝑪𝒃𝟏 = 𝑪𝒃𝟐 = 4.25𝑎𝐹, 𝐶𝑔1 =

𝐶𝑔2 = 0.5𝑎𝐹, 𝐶𝐿 = 9𝑎𝐹, 𝐶0 = 8𝑎𝐹, 𝑅𝑗= 105 Ω in Fig. 6(a) and accordingly after simulation the result we 

get is given in Fig. 6(c)and the simulation set is shown in Fig. 6(b). 

                                       

      Fig.6 (b) AND Gate                                                Fig.6 (c) Simulation result of AND gate 
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7. Threshold logic equation for 3-input AND gate 

Table-6 
A B C F(A,B,C)=ABC 𝜃 
0 0 0 0 0< θ 

0 0 1 0 𝜃 > 𝑤𝐶  

0 1 0 0 𝜃 > 𝑤𝐵 

0 1 1 0 𝜃 > 𝑤𝐵 +𝑤𝐶  

1 0 0 0 𝜃 > 𝑤𝐴 

1 0 1 0 𝜃 > 𝑤𝐴 + 𝑤𝐶  

1 1 0 0 𝜃 > 𝑤𝐴 + 𝑤𝐵 

1 1 1 1 𝑤𝐴 + 𝑤𝐵 + 𝑤𝐶 ≥ 𝜃 

 
As AND gate is a positive logic we shall assume that all the values of 𝑤𝐴, 𝑤𝐵, 𝑤𝐶 and 𝜃 are positive. If we take 𝑤𝐴 =
1, 𝑤𝐵 = 1,𝑤𝐶=1 and 𝜃 = 2.5 ( or any value in the range 2 <θ≤ 3), then all the inequality equations in the 5th column are 

satisfied. So the Threshold logic equation for 3-input AND gate is 

 

    𝐴𝑁𝐷(𝐴, 𝐵, 𝐶)  =  𝑠𝑔𝑛{𝐴 + 𝐵 + 𝐶 − 2.5}……… (14) 

 

                           
         Fig. 6(d) Simulation set of 3-input AND gate                   (e) Simulation result of 3-input AND gate 

 

Simulation set of 3-input AND gate is depicted in Fig. 6(d) and the simulation result is shown in Fig. 6(e). As stated 

earlier, the threshold gates those are derived from the generic threshold gate given in Fig.1 require an output buffer for 

the correct operation in a network structure. It is well-known that the applied buffer inverts its own input signal, we modify 

the threshold equation of 𝐴𝑁𝐷(𝐴, 𝐵, 𝐶) such that it determines NAND(A,B,C) = . So when we combine the 

result of   and a buffer in series, a buffered gate obtained calculates 𝐴𝑁𝐷(𝐴, 𝐵, 𝐶). Truth table of 3-input NAND 

gate and the threshold relationships with the weighted sum is given in Table-7. 

 

 

NAND= = 𝑠𝑔𝑛{−𝐴 − 𝐵 − 𝐶 + 2.5} 
                           = 𝑠𝑔𝑛{−𝐴 − 𝐵 − 𝐶 − (−2.5)}………………… (15) 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                  © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882 

 

IJCRT2106314 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c578 
 

Table-7 

Truth table of Threshold NAND gate 
A B C {𝑤𝐴 + 𝑤𝐵 +𝑤𝐶 } 𝜃 = −2.5 F(A,B,C) 

=  

0 0 0 0 0 > −2.5 1 

0 0 1 -1 −1 ≥ −2.5 1 

0 1 0 -1 −1 ≥ −2.5 1 

0 1 1 -2 −2 ≥ −2.5 1 

1 0 0 -1 −1 ≥ −2.5 1 

1 0 1 -2 −2 ≥ −2.5 1 

1 1 0 -2 −2 ≥ −2.5 1 

1 1 1 -3 −3 < −2.5 0 

 

From the Table-7, it is transparent that equation (15) acts as the equation of a 3-input NAND gate.  As a consequence, 

when we combine this NAND gate and the buffer in series, a 3-input AND gate providing correct output is obtained. 

8. Threshold logic equation for OR  and NOR Gate 

We are interested in implementing a 2- input NOR gate to be derived from the generic threshold gate given in Fig.1. 

To implement the 2- input NOR gate, we require a threshold logic 2-input OR gate which will be connected with a 

buffer in series. Comparing with the generic threshold gate based general equation given in equation (2), we can 

think of a gate of two variables A and B of function F(A,B) as.     

𝐹(𝐴, 𝐵) = 𝑠𝑔𝑛{𝑤𝐴 . 𝐴 + 𝑤𝐵 . 𝐵 − 𝜃}……………….(16) 

For a positive logic we should assume that all the values of 𝑤𝐴, 𝑤𝐵 and 𝜃 are positive. If we take 
𝑤𝐴 = 1, 𝑤𝐵 = 1 and θ =0.5 ( or any value in the range 0 < 𝜃 ≤ 1), then the above equation becomes   

 

𝐹(𝐴, 𝐵) = 𝑠𝑔𝑛{𝐴 +  𝐵 − 0.5} ……………….. (17). 

 

And if we construct the truth table of it we get the Table-8. 

 

Table-8 
A B {𝐴,𝑤𝐴 +

𝐵.𝑤𝐵 } 

𝜃 = 0.5 𝐹(𝐴, 𝐵) 

0 0 0 0 < 0.5 0 

0 1 1 1 ≥ 0.5 1 

1 0 1 1 ≥ 0.5 1 

1 1 2 2 ≥ 0.5 1 

  

The Table -8 satisfies the condition of an OR gate, so equation (17) is written as 

𝑂𝑅(𝐴, 𝐵)  =  𝑠𝑔𝑛{𝐴 + 𝐵 − 0.5}………… (18) 

 

As already discussed that buffer inverts itself i.e., inverts its own input signal, we modify the threshold equation of 

OR(𝐴, 𝐵) such that it determines NOR(A,B). So when we combine the result of OR(A,B) with a buffer or inverter, a new 

threshold logic buffered gate we get that calculates the value of NOR (A, B) and the equation of the NOR logic gate will 

be 

 

𝑁𝑂𝑅(𝐴, 𝐵) =  

                       = 𝑠𝑔𝑛{−𝐴 − 𝐵 − (−0.5)}……. (19) 

 

Here the value of the threshold voltage −0.5 may be any value in the range of −1 >  𝜃 ≥ 0. 
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Table-9 
A B {𝑤𝐴 +𝑤𝐵 } 𝜃 = −0.5 𝐹(𝐴, 𝐵) 

0 0 0 0 ≥ −0.5 1 

0 1 −1 −1 < −0.5 0 

1 0 −1 −1 < −0.5 0 

1 1 −2 −2 < −0.5 0 

  

From the Table -9 it is observed that F (A, B) satisfies all the conditions of an NOR gate, so the equation (19) we 

derived is correct.  

 

   
Fig 7(a) TLG based NOR gate                               Fig, 7(b) Simulation result of NOR gate 

 

For implementing the buffered Boolean logic NOR gate we will use the parameters logic input “0”=0V, logic “1” = 

16mV, 𝐶1
𝑛 = 𝐶2

𝑛=0.5aF,𝐶3 = 11.7𝑎𝐹,  𝑪𝒃 = 𝑪𝒃𝟏 = 𝑪𝒃𝟐 = 4.25𝑎𝐹,    𝐶𝑔1 = 𝐶𝑔2 = 0.5𝑎𝐹,   𝐶𝐿 =

9𝑎𝐹,𝐶0 = 9𝑎𝐹, 𝑅𝑗= 105 Ω, 𝑉𝑠 = 𝑉𝑏  = 16𝑚𝑉 and accordingly after simulation the result we get is given in 

Fig. 7(b).  

 

9. XOR Gate 

The logic function of XOR gate is defined as Y=A.B̅ +A̅.B, where A and B are two variables. Space plot diagram of Y 

in 2D space is shown in Fig. 8. From this, we observe that no linear separating line that is separating the green and 

colorless bubbles can be drawn. So the Boolean logic function is not linearly separable. Therefore we would not be able 

to draw a threshold logic gate that represents the equation Y=A.B̅ +A̅.B. 

 

Fig.8 Space plot of Y=A.B̅ +A̅.B 

Now for representing the Boolean function Y=A.B̅ +A̅.B by a threshold logic gate first we express P = (A.B̅) with the 

help of threshold gate-based equation as given in equation (13). 

P = sgn {A+ B̅−2}……………………..… (20) 

As we know B + B̅ =1 or B̅= − B + 1, the equation (20) can be written as equation (21). 

P = sgn { A −  B − (1) }…………………… (21) 

                                         

           Fig. 9(a) Threshold gate of P = A.B̅                     Fig. 9(b) Threshold gate of A.B̅ using double buffers 
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Table-10 

Truth table of equation (21) 

A B P 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

 

We can modify the threshold equation of P as we know that the buffer inverts its input signal, so that it calculates P̅=sgn 

{−A+B − (−0.5) } and its corresponding truth table is given in Table-11. 

 

Table-11 

Truth table of P̅ 

 

                                   
            Fig. 10 Threshold logic gate of P̅                 Fig. 11 Complement of Fig.10 

 

Now we are to express the Boolean expression Y=A.B̅ +A̅.B. We assume P= A̅.B, So Y=A.B̅ +A̅.B = P + A̅.B 
 

Y = P + A̅.B …………………………… (22)  

For finding out the threshold gate logic of equation (22), we draw the truth Table-12 with the assistance of Table-11 and 

from which we solve the equations to get the weight values.  

 

0<𝜃…………………………. (23) 

𝑊2 ≥ 𝜃……………………… (24) 

𝑊1 +𝑊3 ≥ 𝜃…………………… (25) 

𝑊1 +𝑊2< 𝜃…………………….. (26) 

 

From the equation (23), we have θ is greater than 0, so it may be 1 or 

2 or 3. 

From equation (24) it is transparent that 𝑊2 must be equal to or 

greater than θ. For minimum value condition we can take as: 

 θ = W2= 1………………… (27) 

 

In equation (26) if we put 𝑊1 = −1  and W2= 1 then the equation is satisfied, so we take 𝑊3 = 2 

Next in equation (28) if we put  𝑊2 = −1 , 𝑊1 = 2 and θ =1 then it is satisfied. So a solution set is { 𝑊1 ,𝑊2 , 𝑊3 ; 𝜃} 

= { -1, 1, 2 ; 1} 

 

Y=sgn{𝑊1.A + 𝑊2.B + 𝑊3.P −(θ)}…………………………(28) 

 

Hence the Threshold equation for the Y or an for XOR is    

                      Y = sgn { − 𝐴 + 𝐵 +  2𝑃 − (1)}…………….. (29) 

And its corresponding Threshold logic gate is depicted in Fig. 12.  

For correct operation, we are to apply a buffer in series to obtain an XNOR which is shown in Fig. 12. If we again add 

another buffer in series we obtain an XOR gate as shown in Fig. 12 as well. 

 

Fig. 12 XOR/ XNOR gate of two inputs 

A B P̅ 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

Table-12 

A B P Y 𝜃 
0 0 0 0 0<𝜃 

0 1 0 1 𝑊2 ≥ 𝜃 

1 0 1 1 𝑊1 +𝑊3 ≥ 𝜃 

1 1 0 0 𝑊1 +𝑊2< 𝜃 
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10. Regarding Full Adder 
Sum of a Full adder is S=a⊕b⊕c0=a̅bc0+ab̅c0+abc̅0+abc0 which is not linearly separable, because the solution space can’t 

be separated by a plane into two parts of green-colored and colorless circle points indicating 1-points and 0-points 

respectively as shown in Fig. 13(a) below. 

 

                                     
Fig.13 (a) space plot diagram of S       Fig, 13(b) space plot of c1=ab+bc0+c0a 

Table-13 

From the carry equation C1=ab+bc0+c0a if we draw the space solution 

diagram, it would be clear that the 1-points are linearly separable 

from 0-points. Therefore the 𝐶1can be turned into a linear threshold 

gate. Consider the equation below, 

 

𝐶1=sgn {a+b+𝐶0-θ}………………………….(30) 

 

As 𝐶1 is a positive logic, we must take the weights as low integer value 

i.e., w1=w2=w3=1. From the row (1) of the Table-13, the value of θ 

must be positive. Since we have taken w1=w2=w3=1 and 

w1=w2=w3< θ (from the rows (2), (3) and (5)), we take the minimum 

integer value of θ equal to 2. After analyzing logically, we have taken the parameter values as: w1=w2=w3=1 and θ = 2. 

Now, if we put these values in the conditional equations in the 6th column in Table-13, all the equations are satisfied. So, 

one solution set of the parameters is { w1,w2,w3; θ} ={1,1,1;2}. So the threshold equation of Carry c1 will be 

C1= 𝑠𝑔𝑛{𝑎 + 𝑏 +c0−2}………………………….(30a) 

 

According to this solution set, the threshold logic gate can be drawn in Fig.14. 

 
Fig. 14 TLG diagram of 𝑪𝟏 

 

Now for calculating the threshold logic gate of Full adder we shall consider the sum equation S=a̅bc0+ ab̅c0+ abc̅0+ abc0, 

and carry equation c1=ab+bc0+c0a and construct the truth table of sum S, taking the four variables a, b, c0 and c1. The 

truth table is given in Table-14. 

From the row (1) in Table-14, we have the value of θ to be positive. Since S is a positive logic, so its coefficient values 

would be positive. Therefore, we can take them as lowest integers i.e., w1=w2=w3=1. Under these assumptions and 

comparing the equation in rows (2), (3) and (5) from the Table-14, we should take the value of θ as minimum positive 

integer as 1, i.e., θ=1. After that, if we put the value of w4= −2, the all the conditional equations are satisfied. So, one 

solution set is { 𝑤1,𝑤2,𝑤3,𝑤4;  𝜃}  = {1,1,1,−2; 1}. So the threshold equation of Sum (S) will be 

S=𝑠𝑔𝑛{a+b+c0-2c1-1}…………….(30b) 

In accordance with the solution set, the threshold logic gate is drawn in Fig.15. 

 

 

 Inputs output Threshold 

Condition 
Sl. 

No. 
a b c0 c1 θ 

(1) 0 0 0 0 0< 𝜃       

(2) 0 0 1 0 w3< 𝜃 

(3) 0 1 0 0 w2<  𝜃 

(4) 0 1 1 1 w2+w3≥  𝜃 

(5) 1 0 0 0 w1<  𝜃 

(6) 1 0 1 1 w1+w3≥  𝜃 

(7) 1 1 0 1 w1+w2≥  𝜃 

(8) 1 1 1 1 w1+w2+w3≥  𝜃 
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Table-14  

 

 

 
        Fig. 15 Full Adder Circuit 

 
 

Theoretically the above circuit in Fig. 15 is correct at 0K, but when temperature fluctuates then the correctness of the 

output stands on a question mark. For correct operation, one buffer circuit must be appended in series with every Threshold 

Logic Gate. For doing so, first the carry of the Full adder is taken in our justification. Complement of threshold logic of 

carry 𝐶1 is thought of in equation (31). 

 Table-15 

C̅1 =sgn {w1.a+ w2.b+ w3.c0-θ}……………….(31) 

 

From the Table-15, it would be clear that if we take the value of θ equal 𝑡𝑜 −

1.5 and w1= −1, w2= −1 and w3= −1 then all the conditions in 5th column 

of the Table-15 are satisfied. Hence the equation turns to the following. 

C̅1 =sgn {−𝑎 − 𝑏 −c0−(−1.5)}…………………. (32) 

As per the equation (32), we can draw the threshold logic gate with a buffer to 

get 𝐶1 shown in Fig.16. 

 

Fig.16 Carry of a full Adder using buffer 

Now we are to find out the complement of sum 𝑆 = 𝑠𝑔𝑛 {𝑎 + 𝑏 +c0−2c1−1}. 

Consider S̅=sgn {w1.a+w2.b+w3.c0+w4.c1-(θ)} 

Table-16 

Truth table of sum of a full adder 

Inputs sum Threshold Condition 

a b c0 c1 S̅ θ 

0 0 0 0 1 0≥ 𝜃 

0 0 1 0 0 w3< 𝜃 

0 1 0 0 0 w2< 𝜃 

0 1 1 1 1 w2+w3+𝑤4 ≥ 𝜃 

1 0 0 0 0 w1< 𝜃 

1 0 1 1 1 w1+w3+𝑤4 ≥  𝜃 

1 1 0 1 1 w1+w2+𝑤4 ≥  𝜃 

1 1 1 1 0 w1+w2+w3+𝑤4 <  𝜃 

 

 Inputs out

put 

Sum 

 

Threshold Condition 

Sl. 
No. 

a b c0 c1 S 𝛉 

(1) 0 0 0 0 0 0< 𝜃       

(2) 0 0 1 0 1 w3≥ 𝜃 

(3) 0 1 0 0 1 w2≥  𝜃 

(4) 0 1 1 1 0 w2+w3+𝑤4 <  𝜃 

(5) 1 0 0 0 1 w1≥  𝜃 

(6) 1 0 1 1 0 w1+w3+𝑤4 <  𝜃 

(7) 1 1 0 1 0 w1+w2+𝑤4 <  𝜃 

(8) 1 1 1 1 1 w1+w2+w3+𝑤4 ≥  𝜃 

Inputs output Threshold 

Condition 

a b c0 c̅1  

0 0 0 1 0≥ 𝜃       

0 0 1 1 w3≥ 𝜃 

0 1 0 1 w2≥  𝜃 

0 1 1 0 w2+w3<  𝜃 

1 0 0 1 w1≥  𝜃 

1 0 1 0 w1+w3<  𝜃 

1 1 0 0 w1+w2<  𝜃 

1 1 1 0 w1+w2+w3<  𝜃 
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S̅ = 𝑠𝑔𝑛{w1. 𝑎 + w2. 𝑏 + w3. 𝑐0+𝑤4. 𝑐1−(θ)} ……………………………….. (33) 

After solving the conditional equations in 6th column of Table-16, we obtain a solution set as {𝑤1,𝑤2,𝑤3,𝑤4;  𝜃 }  =

 {−1,−1,−1,+2; −0.5} for the equation (33). So the complement of Sum equation will be 

S̅=𝑠𝑔𝑛 {−𝑎 − 𝑏 −c0+2𝑐1 − (−0.5)} ……………………………….. (34) 

As per the equation (34), we can draw the threshold logic gate with a buffer to get S. 

 

Fig. 17 Full Adder using TLG and Buffer 

The full adder based on threshold gate and buffer drawn in Fig. 17 is more stable and correct in comparison with Fig.15. 

Because as soon as we would like to draw a circuit based on TLG we must include a buffer to that TLG for getting correct 

answer. 

When we are going to simulate the full adder we choose the parameters [A linear 7, 8] as below. 

The threshold logic gate input logic “0”=0V, logic “1” = 16mV, C=1aF, C1
P = C2

P = C3
p 
= C1

n =0.5aF, 𝐶𝑏 =

18.5𝑎𝐹, 𝐶𝑗 = 0.25𝑎𝐹, 𝐶𝐿 = 9𝑎𝐹, 𝐶0 = 9.5𝑎𝐹, 𝑅𝑗= 105 Ω, . 𝑉𝑏 = 12.8𝑚𝑉 . 

Simulation set of a Full adder and the simulation results (using SIMON) of the Full adder is depicted in Fig. 18(a) and 

18(b),(c), (d), (e) and (f) respectively. 

 

Fig. 18(a) Full adder (correct) with buffer(s) 
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Fig. 18(b) Simulation result of variable a, (c) of b, 

(d) of c0, (e) of c1 and (f) of sum S of Full adder 

 

11. BCD to excess-3 

The availability of a large variety of codes in the digital system for the same discrete elements of information results in 

the use of different codes by different digital systems. It is sometimes essential to use the output of one system as the 

input to another for reasonable purpose. A converter or its circuit must be inserted between the two systems if each uses 

different codes for the same information. The circuit that makes the two different systems compatible even though each 

uses a different binary code is defined as a code converter. We are interested in making a code converter named BCD-to-

excess-3 by using the threshold logic gates (TLGs). 

Table-17 

Decimal BCD Code Excess-3 

 A B C D w x y z 

(0) ‘0’ 0 0 0 0 0 1 1 

(1) 0 0 0 1 0 1 0 0 

(2) 0 0 1 0 0 1 0 1 

(3) 0 0 1 1 0 1 1 0 

(4) 0 1 0 0 0 1 1 1 

(5) 0 1 0 1 1 0 0 0 

(6) 0 1 1 0 1 0 0 1 

(7) 0 1 1 1 1 0 1 0 

(8) 1 0 0 0 1 0 1 1 

(9) 1 0 0 1 1 1 0 0 

 

w=A+BC+BD=A+B(C+D) ………………….…….. (35) 

x=B’C+B’D+BC’D’=B’(C+D) + BC’D’ 

   =B’(C+D) + B(C+D)’=B XOR (C+D) …………. (36) 

y=CD+C’D’= C XNOR D…………………....…….(37) 

z=D’………………………………………………...(38) 

 

For the equations (35) and (36) we assign P=(C+D) then the two equations become 

 

𝑤 = 𝐴 + 𝐵𝐶 + 𝐵𝐷 = 𝐴 + 𝐵𝑃 …………………….. (39) 
x=B’(C+D) + B(C+D)’=B XOR P ………………… (40) 

 

Now equation (39) is linearly separable, but equations (37) and (40) are not. Now we are taking into consideration 

w=A+BP which is linearly separable as the five green bubble can be separated from the other bubbles by a plane shown 

in space solution diagram in Fig. 19. Where green bubbles indicate the values of 1 of w=A+BP. 
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                                                     Table-18 

  
 

Fig.19 

 

Now we can try to find out the threshold equation of w=A+BC+BD=A+B(C+D).  Noted that C+D is an OR Boolean 

equation and whose threshold logic gate is already shown in Fig. 5(a) yet we are showing it again only changing the 

variables below in Fig. 19(a). 

 
Fig. 19(a) TLG of P= C+D 

 

 Let us assume the threshold logic equation of w is: 

𝑤 = 𝑠𝑔𝑛{ 𝑤1. 𝐴 +  𝑤2. 𝐵 +  𝑤3. 𝑃 − (θ)}………………………………………… (41) 

 

Table-18 

Inputs 

 

Output 

A+BP 

Threshold 

Condition 

A B P w  

0 0 0 0 0< 𝜃       

0 0 1 0 w3< 𝜃 

0 1 0 0 w2<  𝜃 

0 1 1 1 w2+w3≥  𝜃 

1 0 0 1 w1≥  𝜃 

1 0 1 1 w1+w3≥  𝜃 

1 1 0 1 w1+w2≥  𝜃 

1 1 1 1 w1+w2+w3≥  𝜃 

 

After solving the conditional equations in 5th column of Table-18, we obtain a solution set as {w1, w2, w3; θ } = {4, 3, 

2; 3.5} for the equation (41). So the threshold equation of ‘w’ would be 

w=sgn {4A + 3B+ 2P-(3.5)}…………………………………. (42) 

 

According to the equation (42) the threshold logic gate is drawn in Fig. 20. 

 

                
Fig. 20 Threshold gate of w=A+B(C+D) 

Till now, we have drawn the threshold logic gate of w=A+B(C+D). So the second step of drawing the Threshold logic 

gate of the equation (36) is described below. We observe that 𝑥 is an XOR function of B and (C+D). (C+D) is an OR 

function. Therefore, Two threshold logic gates (i) OR and (ii) XOR will be applied in series to find out the value of 

equation (36). Explanation of an OR gate and that of an XOR gate have been given in section (5) and (9) respectively. 

Equation of OR gate is given in equation (12). The functional threshold gate of equation (36) i.e,. x =B’(C+D) + 

A B P w 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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B(C+D)’=B XOR (C+D) is depicted in Fig.21 using (i) the complement of OR appended with a buffer and (ii) XOR 

connected with two buffers in series for correct operation. 

 
 

Fig.21 Threshold logic gate of x = B XOR (C+D) 

Our third step is to implement of y = CD+C̅D̅ = (C XNOR D) in equation (37). As Y is an Exclusive-NOR gate which 

has already been discussed in section-9 and the circuit diagram is provided in Fig. 12. So with the help of Fig.12, we 

have drawn the threshold equation of y = CD+C̅D̅ in Fig. 22 below. 

 

 

Fig. 22 Threshold Gate of y=CD+C’D’ 

And the last step is to do the complement of D i.e.,z=D’. To complement ‘D’ only a buffer is sufficient and a buffer is 

drawn in Fig. 2(a) or 2(c). The buffer is represented by a symbol  is shown in Fig. 2(b). The Threshold logic gate 

of a BCD-to-Excess-3 and its simulation result is shown in Fig.23(a) and 23(b) respectively. 

 

   

Fig. 23(a) Threshold logic gate based BCD-to-Excess-3 Converter                           Fig. 23(b) simulated result 
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12. Discussion 

We have discussed about different logic gates, full adder and a converter based on the LTG gates. We are to observe 

about their speed which is slow or fast. For calculating the processing delay of any logic gates, we should involve 

critical voltage 𝑉𝑐  given in equations (6) and (7), as well as the tunnel junction capacitance  𝐶𝑗 . However, assuming the 

atmosphere temperature at T = 0K, the switching/processing delay of a logic gate can be calculated with the help of the 

approaches [8, 9]. 

Delay = −(𝑒|ln (𝑃𝑒𝑟𝑟𝑜𝑟 )|𝑅𝑡) / ( |𝑉𝑗| − 𝑉𝑐)
 …….. (43) 

      where 𝑉𝑗 is the junction voltage and 𝑉𝑐 is the critical threshold voltage and Rt being the junction resistance. 

 

The switching will happen whenever the critical voltage 𝑉𝑐 has the value less than the tunnel junction voltage 𝑉𝑗, i.e., 𝑉𝑐 <

|𝑉𝑗 |, but very near to it. This happens when  𝑉𝑖𝑛1 is logic 1, resulting 𝑉𝑗 =11.8mV for the case of a 2-input NOR gate in 

Fig-7(a), the critical voltage of the tunnel junction voltage 𝑉𝑐 is 11.58mV. Given that the probability of error change 

𝑃𝑒𝑟𝑟𝑜𝑟 =10
−12 and tunnel  resistsnce 𝑅𝑡 = 105Ω. After calculation we get a gate delay equal to 0.07281|ln (𝑃𝑒𝑟𝑟𝑜𝑟 )|ns = 

1.675 ns. In this manner, we can calculate the circuit delays written in Table-19. Whenever an electron passes through the 

tunnel junction, the amount of total energy in the circuit changes after the tunneling events. The difference between the 

energy levels before and after the tunneling event is found to be  

Δ𝐸 = 𝐸𝑏𝑒𝑓𝑜𝑟𝑒 𝑡𝑢𝑛𝑛𝑒𝑙 − 𝐸𝑎𝑓𝑡𝑒𝑟 𝑡𝑢𝑛𝑛𝑒𝑙   

           = −𝑒(𝑉𝑐 − |𝑉𝑗|)
…………………….. (44) 

and it is the amount of switching energy being consumed when a tunnel event occurs in the tunneling circuit. 

We have drawn curves as to the switching delay as a function of the switching error probability in Fig. 24(a) and the 

switching delay as a function of the unit capacitance C shown in Fig. 24(b). 

 

                                  

 Fig. 24(a) Delay vs. Error Probability    Fig. 24(b) Delay Vs. capacitance     Fig. 24(c) Switching energy vs. elements 

 

We have counted the element numbers for each and every case of gates or circuits, their switching delays, and switching 

energy consumptions for the corresponding LTGs (using the same methodology as adopted for the Boolean gates). All 

the calculated parameters are shown in tabular form in Table-19.  

The switching energy vs. elements diagram regarding our present LTG based circuits is shown in Fig. 24(c). 

Next, we have calculated those parameters for all gates, Full adder and BCD–to−Excess-3 counter and those are presented 

in Table-20.  

 

The processing delays for different gates and circuits are different. For 2-input OR switching delay is 0.062|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| 

ns, for 3-input AND gate it is 0.104|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns, for full adder it is 0.134|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns ,and for BCD-to-Excess-3 it is 

0.206|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns. Given that the value of 𝑃𝑒𝑟𝑟𝑜𝑟 equals to 10−12, so the time after which the 1st output of the bit BCD–

to−Excess-3 counter will fan out is 0.206|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns=5.69ns. i.e., after every 5.69 ns, the next output bit will be taken 

from the counter. Therefore clock time/duration of the clock signal should be more than or equal to 5.69 ns provided 

synchronization is essential. In this situation, the speed of the BCD–to−Excess-3 counter will be 1 5.69𝑛𝑠⁄  = 1.75GHz. 
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Table-19 
Gate/Device elements Delay Switching 

Energy 

inverter 09 elements 0.022|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 10.4 meV 

2-input NOR 14 elements 0.072|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 10.7 meV 

2-input OR 14 elements 0.062|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 10.8 meV 

2-input NAND 14 elements 0.080|ln(𝑃𝑒𝑟𝑟𝑜𝑟) |ns 10.7 meV 

2-input AND 14 elements 0.062|ln(𝑃𝑒𝑟𝑟𝑜𝑟) |ns 10.8 meV 

3-input AND 28 elements 0.104|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 21.6 meV 

3-input NAND 28 elements 0.072|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 21.4 meV 

2-input XOR 20 elements 0.102|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 21.2 meV 

3-input OR 28 elements 0.104|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 21.6 meV 

4-input OR 42 elements 0.104|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 32.4 meV 

4-input AND 42 elements 0.104|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 32.4 meV 

RS Flip-flop 24 elements 0.082|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 21.2 meV 

T Flip-flop 23 elements 0.082|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 21.1 meV 

Trig.T Flip-flop 37 elements 0.144|ln(𝑃𝑒𝑟𝑟𝑜𝑟) | ns 31.9 meV 

Carry C1 14 elements 0.062|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 10.8 meV 

Full adder 29 elements 0.134|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 54.0 meV 

w 29 elements 0.134|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 32.4 meV 

x 43 elements 0.206|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 43.1 meV 

y 29 elements 0.134|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 32.4 meV 

z 9 elements 0.022|ln(𝑃𝑒𝑟𝑟𝑜𝑟)| ns 10.4 meV 

BCD-to-Excess-3 110 elements 0.206|ln( 𝑃𝑒𝑟𝑟𝑜𝑟)| ns 118.3 meV 

 

We are interested in comparing the circuit delays of CMOS, SET-based and LTG-based. The processing delay or 

switching delay for a CMOS logic gate like AND, NAND, NOR, XOR is 12ns [18, 19], on the other hand the time 

required for tunneling through a single electron transistor (SET)[6,7] is approximately 4ns [2,3, 4, 5, 18, 19].  

 

Table-20 

Switching delays of SET and LTG 

 

 

 

 

 

 

 

 

 

The XOR gate using conventional logic circuits needs 16 transistors, whereas the same function can be implemented with 

the help of 2 TLGs and 2 buffers[1,2, 3, 5, 8, 10] i.e. number of nodes can be reduced to 2 instead of 16.  

It is considered that that the error probability is 10−12 then the delay for the 3-input OR gate will be 2.87ns and similarly 

the delays for the other gates can be calculated and are all shown in Table-20. It is clear to us that the LTG based circuit 

is faster than the SET based circuit when 𝑃𝑒𝑟𝑟𝑜𝑟=10−12. The comparison of delays for SET and LTG gate based circuits 

is represented by a bar diagram depicted in Fig.25. 

 

 

 
    Fig.25 Delay comparison of SET and LTG 

 

Gate/Device SET-based 

delay 

LTG-based 

delay 

inverter 8 0.60ns 

2-input NOR 4 1.67ns 

2-input OR 4 1.71ns 

2-input NAND 4 2.21ns 

2-input AND 4 1.71ns 

3-input AND 8 2.87ns 

3-input NAND 8 1.98ns 

2-input XOR 4 2.81ns 

3-input OR 8 2.87ns 

4-input OR 12 2.87ns 

4-input AND 12 2.87ns 

RS Flip-flop 8 2.26ns 

T Flip-flop 8 2,26ns 

Trig.T Flip-flop 12 3.98ns 

Carry C1 4 1.71 ns 

Full adder 8 3.70 ns 

w 8 3.70 ns 

x 12 5.69 ns 

y 8 3.70 ns 

z 4 0.60 ns 

BCD-to-Excess-3 12 5.69 ns 
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13. Conclusion 

We have discussed about how an electron tunnels through a single electron transistor and an inverter. A generic Linear 

Threshold logic Gate implementation has been discussed about its construction and from which we have been able to 

derive a family of logic gates like AND, NAND, OR.XOR, Full Adder etc. All the gates along with Full Adder have been 

implemented and are verified by means of simulation using SIMON. The number of elements requiring for logic gates, 

and other circuits, their processing delays, power consumed by them are given in tabular form and their related curves or 

bar diagram are also given in the adjacent figures. By dint of threshold logic equation all the LTG gates have been depicted 

in due places. In single electron tunneling technology, we have observed that the threshold logic gates are at least 2-times 

faster than SET based logic gates. Naturally, the temperature of the atmosphere should be kept at 0K in real operation.  
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