
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c274

Facial Image Generation of Anime characters
1Yogita T Hambir, 2Pranav Bhaskar, 3Rohit Kumar, 4Sourabh Kumar, 5Tirth Patel

Dept. of Computer Engineering

Army Institute of Technology, Pune, India

Abstract: Back in 2014, Ian Goodfellow dreamt up the idea of Generative Adversarial Net-works (GANs), since then a lot of work
has been done in the field of Automatic facial image generation. There are already some papers regarding the anime character
generation using different GAN algorithms with good results but not so efficient. In this work, we explored the StyleGAN2 for
training our clean and well-suited data-set and obtained an efficient and promising result.For public convenience, we built a
website that will allow users to obtain required anime character by giving few characteristics.
Index Terms – Deep Learning, Generative Model, Anime

I. INTRODUCTION

The automated generation of cartoon/anime characters allows for the development of custom characters without the need for
technical skills. It will easily provide cartoon designers or anime character designers with their custom design. It will save a lot of
time. A clean data set from the anime characters database and STYLEGAN2 model is used in order to obtain the promising result.
Generative Adversarial Networks (GANs) offers a very powerful unsupervised learning. It consists of a system of two competing
neural networks and is able to analyse, capture and copy variation within a data set. Some applications of anime character
generator includes manga, magazines, anime series etc.

Figure 1. StyleGAN Generator Model Architecture
Taken from: A Style-Based Generator Architecture for Generative Adversarial Networks.

II. LITERATURE SURVEY

GAN since their introduction in 2014 have shown outstanding results in various fields from image generation to feature transfer.
It can be broken down into three parts :
Generative : To build a generative model, which is nothing but a probabilistic model that explains how data is produced.
Adversarial : The teaching of a model takes place in a competitive setting.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c275

Networks : Deep neural networks are used for training purposes.

We used STYLEGAN2 which came into picture in 2018 when a STYLEGAN paper got published by NVIDIA. This proposed an
architecture that allows them to control various aspects in the obtained samples. It also follows the Progressive GAN concept,
which entails training the networks at smaller resolution at initial, and then larger layers are progressively introduced after the
network has stabilized. The preparation time is cut in half and the training is more consistent as a result of this. StyleGAN enhances
the results by including a mapping network that encodes the input vectors into an intermediate latent space, and then uses
different aspects to monitor the various levels of information.

III. PROPOSED SYSTEM

The amount of effort invested in the pre-processing of data sets in the previous systems was less. The images were often face
cropped. Face cropping removed other important features from the image too as can be seen in the image. Similarly, including a
feature vector for the generation of image can save a lot of effort in guessing latent space afterwards when expecting a specific
kind of face.

Figure 2. Image from dataset

Figure 3. Cropped image without margin (left) and generated tags for image without margin (right)

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c276

Figure 4. Cropped image with margin (left) and generated tags for image with margin (right)

Figure 5. Images cropped without margin (top) miss few features such as hair ornaments
which are visible in images with margin (bottom)

IV. TRAINING REQUIREMENTS

A. Data
The minimum size for a data-set depends on the domain’s complexity and whether transfer learning is used or not. The default
settings of StyleGAN yield a 1024 px generator with 27.2M parameters, which is a broad model and can theoretically consume a
large amount of images (millions), so there is not too much like that. In reality, a minimum of 5000 appears to be required for
training and generating decent quality anime faces from scratch. For learning a particular character while using the anime face
style GAN.

B. Compute
GPUs with 11 GB VRAM are required to suit appropriate mini-batch sizes. That only trains n = 4 at 512px, and moving below which
it will be even slower. So, 1080ti Nvidia and upper versions would be fine. (Open-CL/AMD is reportedly working on running
StyleGAN models, and one active training report is available.)

C. Data preparation
The most challenging aspect of running StyleGAN is to accurately plan the data-set. Unlike other GAN implementations like we do
with PyTorch, StyleGAN does not support reading a file path as an input; it can only read its specific .tfrecord format that stores
each image at each acceptable decision as raw arrays. Therefore, the input files should be uniformly converted by the special
data-set tool.py to the .tfrecord format, and will take up 19 more discs.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c277

V. ALGORITHMIC EXPOSURE

 A. Generator architecture
G Params OutputShape WeightShape

--- --- --- ---

latents_in - (?, 512) -

labels_in - (?, 59) -

lod - () -

dlatent_avg - (512,) -

G_mapping/latents_in - (?, 512) -

G_mapping/labels_in - (?, 59) -

G_mapping/LabelConcat 30208 (?, 1024) (59, 512)

G_mapping/Normalize - (?, 1024) -

G_mapping/Dense0 524800 (?, 512) (1024, 512)

G_mapping/Dense1 262656 (?, 512) (512, 512)

G_mapping/Dense2 262656 (?, 512) (512, 512)

G_mapping/Dense3 262656 (?, 512) (512, 512)

G_mapping/Dense4 262656 (?, 512) (512, 512)

G_mapping/Dense5 262656 (?, 512) (512, 512)

G_mapping/Dense6 262656 (?, 512) (512, 512)

G_mapping/Dense7 262656 (?, 512) (512, 512)

G_mapping/Broadcast - (?, 14, 512) -

G_mapping/dlatents_out - (?, 14, 512) -

Truncation/Lerp - (?, 14, 512) -

G_synthesis/dlatents_in - (?, 14, 512) -

G_synthesis/4x4/Const 8192 (?, 512, 4, 4) (1, 512, 4, 4)

G_synthesis/4x4/Conv 2622465 (?, 512, 4, 4) (3, 3, 512, 512)

G_synthesis/4x4/ToRGB 264195 (?, 3, 4, 4) (1, 1, 512, 3)

G_synthesis/8x8/Conv0_up 2622465 (?, 512, 8, 8) (3, 3, 512, 512)

G_synthesis/8x8/Conv1 2622465 (?, 512, 8, 8) (3, 3, 512, 512)

G_synthesis/8x8/Upsample - (?, 3, 8, 8) -

G_synthesis/8x8/ToRGB 264195 (?, 3, 8, 8) (1, 1, 512, 3)

G_synthesis/16x16/Conv0_up 2622465 (?, 512, 16, 16) (3, 3, 512, 512)

G_synthesis/16x16/Conv1 2622465 (?, 512, 16, 16) (3, 3, 512, 512)

G_synthesis/16x16/Upsample - (?, 3, 16, 16) -

G_synthesis/16x16/ToRGB 264195 (?, 3, 16, 16) (1, 1, 512, 3)

G_synthesis/32x32/Conv0_up 2622465 (?, 512, 32, 32) (3, 3, 512, 512)

G_synthesis/32x32/Conv1 2622465 (?, 512, 32, 32) (3, 3, 512, 512)

G_synthesis/32x32/Upsample - (?, 3, 32, 32) -

G_synthesis/32x32/ToRGB 264195 (?, 3, 32, 32) (1, 1, 512, 3)

G_synthesis/64x64/Conv0_up 1442561 (?, 256, 64, 64) (3, 3, 512, 256)

G_synthesis/64x64/Conv1 721409 (?, 256, 64, 64) (3, 3, 256, 256)

G_synthesis/64x64/Upsample - (?, 3, 64, 64) -

G_synthesis/64x64/ToRGB 132099 (?, 3, 64, 64) (1, 1, 256, 3)

G_synthesis/128x128/Conv0_up 426369 (?, 128, 128, 128) (3, 3, 256, 128)

G_synthesis/128x128/Conv1 213249 (?, 128, 128, 128) (3, 3, 128, 128)

G_synthesis/128x128/Upsample - (?, 3, 128, 128) -

G_synthesis/128x128/ToRGB 66051 (?, 3, 128, 128) (1, 1, 128, 3)

G_synthesis/256x256/Conv0_up 139457 (?, 64, 256, 256) (3, 3, 128, 64)

G_synthesis/256x256/Conv1 69761 (?, 64, 256, 256) (3, 3, 64, 64)

G_synthesis/256x256/Upsample - (?, 3, 256, 256) -

G_synthesis/256x256/ToRGB 33027 (?, 3, 256, 256) (1, 1, 64, 3)

G_synthesis/images_out - (?, 3, 256, 256) -

G_synthesis/noise0 - (1, 1, 4, 4) -

G_synthesis/noise1 - (1, 1, 8, 8) -

G_synthesis/noise2 - (1, 1, 8, 8) -

G_synthesis/noise3 - (1, 1, 16, 16) -

G_synthesis/noise4 - (1, 1, 16, 16) -

G_synthesis/noise5 - (1, 1, 32, 32) -

G_synthesis/noise6 - (1, 1, 32, 32) -

G_synthesis/noise7 - (1, 1, 64, 64) -

G_synthesis/noise8 - (1, 1, 64, 64) -

G_synthesis/noise9 - (1, 1, 128, 128) -

G_synthesis/noise10 - (1, 1, 128, 128) -

G_synthesis/noise11 - (1, 1, 256, 256) -

G_synthesis/noise12 - (1, 1, 256, 256) -

images_out - (?, 3, 256, 256) -

--- --- --- ---

Total 25059810

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c278

B. Discriminator architecture
D Params OutputShape WeightShape

--- --- --- ---

images_in - (?, 3, 256, 256) -

labels_in - (?, 59) -

256x256/FromRGB 256 (?, 64, 256, 256) (1, 1, 3, 64)

256x256/Conv0 36928 (?, 64, 256, 256) (3, 3, 64, 64)

256x256/Conv1_down 73856 (?, 128, 128, 128) (3, 3, 64, 128)

256x256/Skip 8192 (?, 128, 128, 128) (1, 1, 64, 128)

128x128/Conv0 147584 (?, 128, 128, 128) (3, 3, 128, 128)

128x128/Conv1_down 295168 (?, 256, 64, 64) (3, 3, 128, 256)

128x128/Skip 32768 (?, 256, 64, 64) (1, 1, 128, 256)

64x64/Conv0 590080 (?, 256, 64, 64) (3, 3, 256, 256)

64x64/Conv1_down 1180160 (?, 512, 32, 32) (3, 3, 256, 512)

64x64/Skip 131072 (?, 512, 32, 32) (1, 1, 256, 512)

32x32/Conv0 2359808 (?, 512, 32, 32) (3, 3, 512, 512)

32x32/Conv1_down 2359808 (?, 512, 16, 16) (3, 3, 512, 512)

32x32/Skip 262144 (?, 512, 16, 16) (1, 1, 512, 512)

16x16/Conv0 2359808 (?, 512, 16, 16) (3, 3, 512, 512)

16x16/Conv1_down 2359808 (?, 512, 8, 8) (3, 3, 512, 512)

16x16/Skip 262144 (?, 512, 8, 8) (1, 1, 512, 512)

8x8/Conv0 2359808 (?, 512, 8, 8) (3, 3, 512, 512)

8x8/Conv1_down 2359808 (?, 512, 4, 4) (3, 3, 512, 512)

8x8/Skip 262144 (?, 512, 4, 4) (1, 1, 512, 512)

4x4/MinibatchStddev - (?, 513, 4, 4) -

4x4/Conv 2364416 (?, 512, 4, 4) (3, 3, 513, 512)

4x4/Dense0 4194816 (?, 512) (8192, 512)

Output 30267 (?, 1) (512, 59)

scores_out - (?, 1) -

--- --- --- ---

Total 24030843

VI. RESULT

After passing the images in the dataset through preprocessing and extracting their feature vectors, these are the selected (59/500)
features which can be used as labels and be appended to the input vector(randomly generated).

impLabels = [’pink hair’, ’blush’, ’open mouth’, ’hair ornament’, ’short hair’, ’looking at viewer’, ’flower’, ’aqua eyes’, ’long
hair’, ’blue eyes’, ’collarbone’, ’school uniform’, ’green eyes’, ’braid’, ’hair clip’, ’red eyes’, ’blue hair’, ’ribbon’, ’bow’, ’hair
ribbon’, ’pink eyes’, ’silver hair’, ’white hair’, ’red hair’, ’twin tails’, ’black hair’, ’tears’, ’hair flower’, ’smile’, ’blonde
hair’, ’choker’, ’bare shoulders’, ’gloves’, ’hair bow’, ’brown hair’, ’brown eyes’, ’yellow eyes’, ’orange hair’, ’animal
ears’, ’jewelry’, ’cleavage’, ’bangs’, ’pointy ears’, ’earrings’, ’purple eyes’, ’purple hair’, ’hairband’, ’green hair’, ’hat’, ’cat
ears’, ’:d’, ’glasses’, ’fang’, ’lips’, ’necktie’, ’black eyes’, ’ponytail’, ’tongue’, ’blunt bangs’]

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c279

Figure 8. Results of image generated in different iterations

VII. CONCLUSION

We have proposed a simple system which will help consumers to generate their customized anime characters for their respective
applications.

REFERENCES

[1] Ian Goodfellow, Generative adversarial nets, 2014.
[2] Karras, Tero and Timo Aila, A style-based generator architecture for generative adversarial networks, 2019.
[3] Phillip, Image-to-image translation with conditional adversarial networks, 2017.
[4] Zhu, Jun-Yan, Unpaired image-to-image translation using cycle-consistent adversarial networks, 2017.
[5] Salimans Tim, Improved techniques for training gans, 2016.
[6] Jin Yanghua, Towards the automatic anime characters creation with generative adversarial networks, 2017.
[7] Arjovsky, Martin, Soumith Chintala, and Léon Bottou, Wasserstein gan, 2017.
[8] Miyato Takeru, Spectral normalization for generative adversarial networks, 2018.
[9] Zhang Han, Self-attention generative adversarial networks, 2018.
[10] Berthelot, David, Thomas Schumm, and Luke Metz, Began: Boundary equilibrium generative adversarial networks, 2017.
[11] Lucic Mario, Are gans created equal? a large-scale study, 2018.
[12] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. "The unreasonable effectiveness of deep features
as a perceptual metric", 2018.
[13] Martin Arjovsky and Léon Bottou, "Towards principled methods for training generative adversarial networks", 2017.
[14] tdrussell, "https://github.com/tdrussell/IllustrationGAN", 2016.
[15] Mattya, chainer-dcgan, "https://github. com/mattya/chainer-DCGAN", 2015.
[16] Hiroshiba, Girl friend factory, http://qiita.com/Hiroshiba/items/ d5749d8896613e6f0b48,2016
[17] Jie Lei, "https://github.com/ jayleicn/animeGAN", 2017.
[18] Mattya, chainer-gan-lib, "https://github.com/pfnet-research/chainer-gan-lib", 2017.
[19] Yanghua Jin, Jiakai Zhang, "Towards the High-quality Anime Characters Generation with Generative Adversarial Networks",
2017.

http://www.ijcrt.org/

