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Abstract:  Back in 2014, Ian Goodfellow dreamt up the idea of Generative Adversarial Net-works (GANs), since then a lot of work 
has been done in the field of Automatic facial image generation. There are already some papers regarding the anime character 
generation using different GAN algorithms with good results but not so efficient. In this work, we explored the StyleGAN2 for 
training our clean and well-suited data-set and obtained an efficient and promising result.For public convenience, we built a 
website that will allow users to obtain required anime character by giving few characteristics.  
Index Terms – Deep Learning, Generative Model, Anime 

I. INTRODUCTION 

The automated generation of cartoon/anime characters allows for the development of custom characters without the need for 
technical skills. It will easily provide cartoon designers or anime character designers with their custom design. It will save a lot of 
time. A clean data set from the anime characters database and STYLEGAN2 model is used in order to obtain the promising result. 
Generative Adversarial Networks (GANs) offers a very powerful unsupervised learning. It consists of a system of two competing 
neural networks and is able to analyse, capture and copy variation within a data set. Some applications of anime character 
generator includes manga, magazines, anime series etc. 
 

 
Figure 1. StyleGAN Generator Model Architecture 
Taken from: A Style-Based Generator Architecture for Generative Adversarial Networks. 

II. LITERATURE SURVEY 

GAN since their introduction in 2014 have shown outstanding results in various fields from image generation to feature transfer. 
It can be broken down into three parts : 
Generative : To build a generative model, which is nothing but a probabilistic model that explains how data is produced. 
Adversarial : The teaching of a model takes place in a competitive setting. 
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Networks : Deep neural networks are used for training purposes. 
 
We used STYLEGAN2 which came into picture in 2018 when a STYLEGAN paper got published by NVIDIA. This proposed an 
architecture that allows them to control various aspects in the obtained samples. It also follows the Progressive GAN concept, 
which entails training the networks at smaller resolution at initial, and then larger layers are progressively introduced after the 
network has stabilized. The preparation time is cut in half and the training is more consistent as a result of this. StyleGAN enhances 
the results by including a mapping network that encodes the input vectors into an intermediate latent space, and then uses 
different aspects to monitor the various levels of information. 

III. PROPOSED SYSTEM 

The amount of effort invested in the pre-processing of data sets in the previous systems was less. The images were often face 
cropped. Face cropping removed other important features from the image too as can be seen in the image. Similarly, including a 
feature vector for the generation of image can save a lot of effort in guessing latent space afterwards when expecting a specific 
kind of face. 

Figure 2. Image from dataset 
 
 

 
Figure 3. Cropped image without margin (left) and generated tags for image without margin (right) 
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Figure 4. Cropped image with margin (left) and generated tags for image with margin (right) 
 

 
Figure 5. Images cropped without margin (top) miss few features such as hair ornaments 
which are visible in images with margin (bottom)  

IV. TRAINING REQUIREMENTS 

A. Data 
The minimum size for a data-set depends on the domain’s complexity and whether transfer learning is used or not. The default 
settings of StyleGAN yield a 1024 px generator with 27.2M parameters, which is a broad model and can theoretically consume a 
large amount of images (millions), so there is not too much like that. In reality, a minimum of 5000 appears to be required for 
training and generating decent quality anime faces from scratch. For learning a particular character while using the anime face 
style GAN. 
 
B. Compute 
GPUs with 11 GB VRAM are required to suit appropriate mini-batch sizes. That only trains n = 4 at 512px, and moving below which 
it will be even slower. So, 1080ti Nvidia and upper versions would be fine. (Open-CL/AMD is reportedly working on running 
StyleGAN models, and one active training report is available.) 
 
C. Data preparation 
The most challenging aspect of running StyleGAN is to accurately plan the data-set. Unlike other GAN implementations like we do 
with PyTorch, StyleGAN does not support reading a file path as an input; it can only read its specific .tfrecord format that stores 
each image at each acceptable decision as raw arrays. Therefore, the input files should be uniformly converted by the special  
data-set tool.py to the .tfrecord format, and will take up 19 more discs. 
 
 
 
 
 
 
 

http://www.ijcrt.org/


www.ijcrt.org                                                               © 2021 IJCRT | Volume 9, Issue 6 June 2021 | ISSN: 2320-2882 

IJCRT2106274 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c277 
 

V. ALGORITHMIC EXPOSURE 

 A. Generator architecture 
G                             Params    OutputShape         WeightShape      

---                           ---       ---                 ---              

latents_in                    -         (?, 512)            -                

labels_in                     -         (?, 59)             -                

lod                           -         ()                  -                

dlatent_avg                   -         (512,)              -                

G_mapping/latents_in          -         (?, 512)            -                

G_mapping/labels_in           -         (?, 59)             -                

G_mapping/LabelConcat         30208     (?, 1024)           (59, 512)        

G_mapping/Normalize           -         (?, 1024)           -                

G_mapping/Dense0              524800    (?, 512)            (1024, 512)      

G_mapping/Dense1              262656    (?, 512)            (512, 512)       

G_mapping/Dense2              262656    (?, 512)            (512, 512)       

G_mapping/Dense3              262656    (?, 512)            (512, 512)       

G_mapping/Dense4              262656    (?, 512)            (512, 512)       

G_mapping/Dense5              262656    (?, 512)            (512, 512)       

G_mapping/Dense6              262656    (?, 512)            (512, 512)       

G_mapping/Dense7              262656    (?, 512)            (512, 512)       

G_mapping/Broadcast           -         (?, 14, 512)        -                

G_mapping/dlatents_out        -         (?, 14, 512)        -                

Truncation/Lerp               -         (?, 14, 512)        -                

G_synthesis/dlatents_in       -         (?, 14, 512)        -                

G_synthesis/4x4/Const         8192      (?, 512, 4, 4)      (1, 512, 4, 4)   

G_synthesis/4x4/Conv          2622465   (?, 512, 4, 4)      (3, 3, 512, 512) 

G_synthesis/4x4/ToRGB         264195    (?, 3, 4, 4)        (1, 1, 512, 3)   

G_synthesis/8x8/Conv0_up      2622465   (?, 512, 8, 8)      (3, 3, 512, 512) 

G_synthesis/8x8/Conv1         2622465   (?, 512, 8, 8)      (3, 3, 512, 512) 

G_synthesis/8x8/Upsample      -         (?, 3, 8, 8)        -                

G_synthesis/8x8/ToRGB         264195    (?, 3, 8, 8)        (1, 1, 512, 3)   

G_synthesis/16x16/Conv0_up    2622465   (?, 512, 16, 16)    (3, 3, 512, 512) 

G_synthesis/16x16/Conv1       2622465   (?, 512, 16, 16)    (3, 3, 512, 512) 

G_synthesis/16x16/Upsample    -         (?, 3, 16, 16)      -                

G_synthesis/16x16/ToRGB       264195    (?, 3, 16, 16)      (1, 1, 512, 3)   

G_synthesis/32x32/Conv0_up    2622465   (?, 512, 32, 32)    (3, 3, 512, 512) 

G_synthesis/32x32/Conv1       2622465   (?, 512, 32, 32)    (3, 3, 512, 512) 

G_synthesis/32x32/Upsample    -         (?, 3, 32, 32)      -                

G_synthesis/32x32/ToRGB       264195    (?, 3, 32, 32)      (1, 1, 512, 3)   

G_synthesis/64x64/Conv0_up    1442561   (?, 256, 64, 64)    (3, 3, 512, 256) 

G_synthesis/64x64/Conv1       721409    (?, 256, 64, 64)    (3, 3, 256, 256) 

G_synthesis/64x64/Upsample    -         (?, 3, 64, 64)      -                

G_synthesis/64x64/ToRGB       132099    (?, 3, 64, 64)      (1, 1, 256, 3)   

G_synthesis/128x128/Conv0_up  426369    (?, 128, 128, 128)  (3, 3, 256, 128) 

G_synthesis/128x128/Conv1     213249    (?, 128, 128, 128)  (3, 3, 128, 128) 

G_synthesis/128x128/Upsample  -         (?, 3, 128, 128)    -                

G_synthesis/128x128/ToRGB     66051     (?, 3, 128, 128)    (1, 1, 128, 3)   

G_synthesis/256x256/Conv0_up  139457    (?, 64, 256, 256)   (3, 3, 128, 64)  

G_synthesis/256x256/Conv1     69761     (?, 64, 256, 256)   (3, 3, 64, 64)   

G_synthesis/256x256/Upsample  -         (?, 3, 256, 256)    -                

G_synthesis/256x256/ToRGB     33027     (?, 3, 256, 256)    (1, 1, 64, 3)    

G_synthesis/images_out        -         (?, 3, 256, 256)    -                

G_synthesis/noise0            -         (1, 1, 4, 4)        -                

G_synthesis/noise1            -         (1, 1, 8, 8)        -                

G_synthesis/noise2            -         (1, 1, 8, 8)        -                

G_synthesis/noise3            -         (1, 1, 16, 16)      -                

G_synthesis/noise4            -         (1, 1, 16, 16)      -                

G_synthesis/noise5            -         (1, 1, 32, 32)      -                

G_synthesis/noise6            -         (1, 1, 32, 32)      -                

G_synthesis/noise7            -         (1, 1, 64, 64)      -                

G_synthesis/noise8            -         (1, 1, 64, 64)      -                

G_synthesis/noise9            -         (1, 1, 128, 128)    -                

G_synthesis/noise10           -         (1, 1, 128, 128)    -                

G_synthesis/noise11           -         (1, 1, 256, 256)    -                

G_synthesis/noise12           -         (1, 1, 256, 256)    -                

images_out                    -         (?, 3, 256, 256)    -                

---                           ---       ---                 ---              

Total                         25059810                         
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B. Discriminator architecture 
D                    Params    OutputShape         WeightShape      

---                  ---       ---                 ---              

images_in            -         (?, 3, 256, 256)    -                

labels_in            -         (?, 59)             -                

256x256/FromRGB      256       (?, 64, 256, 256)   (1, 1, 3, 64)    

256x256/Conv0        36928     (?, 64, 256, 256)   (3, 3, 64, 64)   

256x256/Conv1_down   73856     (?, 128, 128, 128)  (3, 3, 64, 128)  

256x256/Skip         8192      (?, 128, 128, 128)  (1, 1, 64, 128)  

128x128/Conv0        147584    (?, 128, 128, 128)  (3, 3, 128, 128) 

128x128/Conv1_down   295168    (?, 256, 64, 64)    (3, 3, 128, 256) 

128x128/Skip         32768     (?, 256, 64, 64)    (1, 1, 128, 256) 

64x64/Conv0          590080    (?, 256, 64, 64)    (3, 3, 256, 256) 

64x64/Conv1_down     1180160   (?, 512, 32, 32)    (3, 3, 256, 512) 

64x64/Skip           131072    (?, 512, 32, 32)    (1, 1, 256, 512) 

32x32/Conv0          2359808   (?, 512, 32, 32)    (3, 3, 512, 512) 

32x32/Conv1_down     2359808   (?, 512, 16, 16)    (3, 3, 512, 512) 

32x32/Skip           262144    (?, 512, 16, 16)    (1, 1, 512, 512) 

16x16/Conv0          2359808   (?, 512, 16, 16)    (3, 3, 512, 512) 

16x16/Conv1_down     2359808   (?, 512, 8, 8)      (3, 3, 512, 512) 

16x16/Skip           262144    (?, 512, 8, 8)      (1, 1, 512, 512) 

8x8/Conv0            2359808   (?, 512, 8, 8)      (3, 3, 512, 512) 

8x8/Conv1_down       2359808   (?, 512, 4, 4)      (3, 3, 512, 512) 

8x8/Skip             262144    (?, 512, 4, 4)      (1, 1, 512, 512) 

4x4/MinibatchStddev  -         (?, 513, 4, 4)      -                

4x4/Conv             2364416   (?, 512, 4, 4)      (3, 3, 513, 512) 

4x4/Dense0           4194816   (?, 512)            (8192, 512)      

Output               30267     (?, 1)              (512, 59)        

scores_out           -         (?, 1)              -                

---                  ---       ---                 ---              

Total                24030843                                       

VI. RESULT 

After passing the images in the dataset through preprocessing and extracting their feature vectors, these are the selected (59/500) 
features which can be used as labels and be appended to the input vector(randomly generated). 
 
impLabels = [’pink hair’, ’blush’, ’open mouth’, ’hair ornament’, ’short hair’, ’looking at viewer’, ’flower’, ’aqua eyes’, ’long 
hair’, ’blue eyes’, ’collarbone’, ’school uniform’, ’green eyes’, ’braid’, ’hair clip’, ’red eyes’, ’blue hair’, ’ribbon’, ’bow’, ’hair 
ribbon’, ’pink eyes’, ’silver hair’, ’white hair’, ’red hair’, ’twin tails’, ’black hair’, ’tears’, ’hair flower’, ’smile’, ’blonde 
hair’, ’choker’, ’bare shoulders’, ’gloves’, ’hair bow’, ’brown hair’, ’brown eyes’, ’yellow eyes’, ’orange hair’, ’animal 
ears’, ’jewelry’, ’cleavage’, ’bangs’, ’pointy ears’, ’earrings’, ’purple eyes’, ’purple hair’, ’hairband’, ’green hair’, ’hat’, ’cat 
ears’, ’:d’, ’glasses’, ’fang’, ’lips’, ’necktie’, ’black eyes’, ’ponytail’, ’tongue’, ’blunt bangs’] 
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Figure 8. Results of image generated in different iterations 

VII. CONCLUSION 

We have proposed a simple system which will help consumers to generate their customized anime characters for their respective 
applications. 
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