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Abstract— secure data storage and retrieval is the best 
research directions in cloud. Though lots of searchable 
encryption scheme have been proposed some of them support 
efficient retrieval over the documents. Which are encrypted 
based on their attributes. In this paper a hierarchical attribute 
based encryption scheme is designed for a data collection. A 
set of documents is encrypted together if they share an 
integrated access structure. Compared with the CP policy 
attribute based encryption schemes, both the cipher text 
storage space and time costs of encryption and decryption are 
saved. Then, an index structure named attribute based retrieval 
features tree is constructed for the document collection based 
on the TF-IDF model and the documents attributes. A depth 
first search algorithm for the attribute based retrieval features 
tree is designed to better the search efficiency which can be 
further improved by parallel computing. Except for the 
documents collections in our scheme can be applied to other 
data sets by modifying the attribute based retrieval features 
tree slightly. A thorough analysis and series of experiments 
performed to illustrate the security and efficiency of the 
proposed scheme. 
 
Index Terms-Cloud, Document retrieval, file hierarchy, 
attribute-based encryption. 

 
I.  INTRODUCTION 

 
Lots of people and organizations are motivated to outsource 

their local document management systems to the cloud which 

is a promising information technique to process the explosive 

expanding of data. Cloud computing can collect and 

reorganize a huge amount of IT resources and evidently, the 

cloud servers can provide more secure, flexible, various, 

economic and customize services compared with the local 

management systems. For all the advantages of cloud 

services, leaking the sensitive information, such as personal 

information, company financial data and government 

documents to the public is a big threat to the data owners. In 

addition to make full use of the documents on the cloud the 

data users has to access them flexibly and efficiently. 

Consequently, a big challenge of outsourcing the data to the 

cloud is how to protect the confidentiality of the data properly 

while maintaining their search ability. 
 

An instinctual approach is encrypt the data first and then 

outsourcing the encrypted data to the cloud. A large number 

of searchable data encryption scheme have been proposed in 

the literatures including single keyword Boolean search 

scheme single keyword ranked search schemes and multi 

keyword Boolean search schemes. However, all these 

schemes cannot support effective, flexible and efficient data 

search because of their simple functionalities, Privacy-

preserving multi-keyword ranked document search schemes 

are more promising and Practical. However, all the data in 

these scheme are organized by a coarse grained access 

control mechanism that is each permitted data user can 

access all the encrypted data. As an Example, the whole IEEE 

Explore Digital Library can be accessed by all the authorized 

organizations (e.g. the universities, school) at present and this 

can’t satisfy the data owners and users in the future.  
In this paper, a new circumstance is considered. A data user 

may be want to access part of the library (e.g. computers and 

data related papers etc.) and intuitively she wants to pay less 

money compare with the data users who want to access the 

whole library. In different words, in the data collection, each 

document can be accessed only by a set of specific data users. 

In this case, we need to design a fine grained access control 

mechanism for the data and it is more reasonable compared 

with the current method.  
To make the data users able to access part of IEEE Explore 

Digital Library on demands, a possible approach is encrypting 

the documents through attribute-based encryption (ABE) 

schemes before outsourcing them to the cloud. Meanwhile, the 

permitted data users are assigned with a set of attributes. A 

data user can decrypt file if and only if her attributes match the 

files attributes. Recently, cipher text- policy attribute-based 

encryption (CP-ABE) is a hot research area and it can provide 

fine-grained, one to many and flexible access control. In these 

scheme each document is encrypted individual and their 

encryption efficiency can be better by employing hierarchical 

attribute based encryption schemes. However, these scheme 

can’t be employed directly to solve our problem properly. 

First, existing schemes focus on encrypting a single access 

tree. 
 
However, it is impossible that all the documents in IEEE 

Explore Digital Library share a single access tree and how to 

construct a set of optimized retrieve trees for the document col-

lection is a big challenge. Second, in most existing schemes, 

when the documents are mapped to a set of shared retrieve trees, 

the data users need to store a huge number of secret keys which 

will be study in Section IV.B. Apparently, this is a heavy burden 

for the data users especially for an extremely large document 

collection and how to decrease the amount of secret keys for the 

data users is another challenge. Except for access control, 

document search efficiency is also a challenge for a large 

document collection. To our knowledge, most existing schemes 

can’t support time-efficient retrieval over the documents which 

are organized under attribute-based access control mechanism. 
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To support the previously discussed service, we first design 

an algorithm to generate hierarchical retrieve trees for the 

document collection. The proposed algorithm take on the 

greedy strategy to build the access trees incrementally and 

each access tree grow by continuously splitting the nodes in 

the tree. Then we design a cipher text policy attribute based 

hierarchical document collection encryption scheme called 

CP-ABHE. In the suggested scheme, a set of documents can 

share a same integrated access tree and be encrypted together 

rather than being encrypted individually. In this way, both the 

cipher text storage space and time costs of the 

encryption/decryption are saved. The security of the proposed 

scheme is proved theoretically, and its capability is also 

evaluated by simulation. 
 

To support exact and efficient document search over the 

encrypted documents, a complicated index structure is then 

constructed for the document collection. We first map the 

documents to document vectors based on the TF-IDF model 

and in addition, the attributes of the documents are also taken 

into thought. The similar function between the document 

vectors is thoroughly design and the vector are organize based 

on their relative similarity in the attribute based retrieval 

features tree. Specifically, the similar vectors compose micro 

cluster which are then, aggregated with each other to generate 

macro clusters until all the vectors belong to one cluster. The 

attribute based retrieval features vector of the node in the tree 

are used to describe the inherent properties of the cluster 

represented by the node. At last a depth first search algorithm 

for the attribute based retrieval features tree is designed to 

both the search efficiency and accuracy. 
 

The main contributions of this paper are summarized 
as follows:  

• A practical hierarchical attribute-based document muster 

encryption scheme is proposed in which the documents are 

organized and controlled based on attributes. The proposed 

scheme can greatly decrease the storage and computing load.  
• We map the documents to vectors in which both the 

keywords and associated attributes are considered. The ARF 

tree is proposed to organize the document vectors and support 

time-efficient document accessible. In addition, a depth-first 

search algorithm is designed.  
• A partial simulation is performed to illustrate the 

security, efficiency and effectiveness of our scheme. 
Specifically,  

The proposed encryption scheme perform well in both 
time and storage efficiency. In addition, our scheme also 
provides efficient and accurate data retrieval method.  

The left of this paper is organized as follows, the related 

work is provided in Section II and Section III, and we stated 

the problem and present some preliminary techniques. The 

hierarchical attribute based data encryption scheme is 

designed in Section IV and we present the time efficient 

document retrieval approach based on the attribute based 

retrieval features tree in Section V. The security and 

efficiency analysis of our scheme is provided in Section VI 

and we further evaluate the performance of the proposed 

approach in Section VII. At last, Section VIII concludes this 

paper. 
 

II. RELATED WORK 
 

Our approach is mainly related with two research fields of 

Cloud, i.e, cipher text-policy attribute-based document 
encryption and encrypted document retrieval. The related work 
in these two fields is provided in the following.  

Since Sahai et al. proposed the identity based encryption 

scheme, many ABE schemes have been proposed in which CP-

Attribute based encryption schemes are very promising 

because of their flexibility and scalability. In these CP-

Attribute based encryption schemes, the documents with 

different access structures need to be encrypted individually. 

To improve the encryption and decryption efficiency and 

scalability hierarchy attribute based encryption has been widely 

researched in which a set of documents may share a common 

access structure and can be encrypted together. Wang et al. 

propose a hierarchical attribute-based encryption scheme 

named FH-CP- Attribute based encryption and have proved its 

security theoretically. An advantage of the scheme is that the 

data users can decrypt all the authorized documents by the 

secret key once. Therefore, both the time costs of encryption 

and decryption are saved. Wang et al. design a scheme named 

HABE with the traits of high performance, fine- grained access 

control, scalability and full delegation. HABE is a combination 

of hierarchical identity-based encryption and CP-Attribute 

based encryption. Wan et al. propose hierarchical attribute-set-

based encryption scheme (HASBE) by extending cipher text- 

policy attribute-set-based encryption (ASBE) with a 

hierarchical structure of the data users. The HASBE scheme 

can seamlessly incorporated with hierarchical structure of 

system users by applying a delegation algorithm to ASBE. 

Deng et al. extend Attribute based encryption to CP-HABE to 

support hierarchically distributing and delegating the secret 

keys which can be used in huge organizations. Guo et al. pro-

pose a resilient-leakage hierarchical attribute-based encryption 

scheme to defend against the auxiliary input leakage attack and 

the security of the scheme is detailed analysed. 
 

In addition to encrypting the document we also attempt to 

search the encrypted document efficient and accurate. 

Consequently multi keywords ranked data retrieval over 

encrypted documents collections is also strong related with our 

scheme. In Cao et al. first proposed a basic privacy preserving 

multi keyword ranked search scheme based on secure K-

Nearest Neighbour algorithm. A set of strict privacy 

requirements are established and then two scheme are proposed 

to improve the security and search experience. However, an 

apparent drawback of this scheme is that the search efficiency 

is linear with the cardinality of the data collection and 

consequent it can’t be used to process extremely large 

document databases. Xia et al. design a keyword balanced 

binary tree to organize the document vectors and propose a 

Greedy Depth First Search algorithm to improve the search 

efficiency. Moreover the index tree can be updated dynamic 

with an acceptable communication load. However, the 

document vectors are chaotically organized in the tree and the 

search efficiency can be further improved. Chen et al. take the 

relationships of documents into consideration and a 

hierarchical-clustering-based index framework is designed to 

improve the search efficiency. In addition a verification 

scheme is also integrated into their scheme to correctness of the 

results. Though the index structure can obtain sub linear search 

efficiency it can’t return the accurate search results. Fu et al. 

present a personalized multi keyword ranked search scheme in 

which an 
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Interest model of the data users is integrated into the data 

retrieval system to support personalized search and better 

users search experience. The interest model of a data user is 

built based on her search History with the help of word net 

in order to depict her behaviours in fine grit level. However, 

this scheme can’t support dynamic update operation 

because the document vector are constructed based on the 

statistical information of data in the collection. In addition 

though a MDB tree is employed to improve the search 

efficiency of the tree is hard to predict Li et al propose a 

new attribute based encryption scheme (KSF-OABE) which 

can implement keyword search function. Though the design 

goal of KSF- OABE is some similar with our scheme it 

cannot hierarchically encrypt a document collection and 

support efficient multi keyword data retrieval. 
 

III. PROBLEM STATEMENT AND PRELIMINARIES 
 

In this section we stated the problems and provide the 
related preliminary techniques. For convenience and some 
notations are first defined as follows:  

• F− The plaintext document collection of N files, denoted 

as F = { F1, F2,· ·,· FN .} Each document is treated as a 

Sequence of keywords. Note that, each file Fi ≤(1 i≤ N) has a 

Unique identifier fi (≤1 ≤i N)in the whole 

document collection.  
• A− The attribute dictionary, denoted as A =  

{ A1, A2, ·,· ·An . } Each document and data user 

is associated with a set of attributes in. A  
• C− The cipher text off. In this paper is symmetrically  

encrypted by content secret keys ck = {ck1, ck2, ·· · , ckN } , 
i.e., C i = Ecki (Fi ), i = 1, 2, ··· , N and all the cipher texts of 

the files compose .C  
• I− The index structure of F. Each document is mapped to 

a documents vectors and the vectors are organized in an 
attribute based retrieval features tree.  

• W− The keyword dictionary, denoted as W =  
{ w1, w2, · ·, · wm , } which is used to generated 
the document vectors and query vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. System model.  
 

 
• WQ − A subset of W Represent the keywords in 

a query.  
• Q− The document query request of a user. Each query 

contains multiple keyword which are describe the interested 

documents. In addition the attributes of the data user are also 

added into Q to check the legality of a document. We say that 

a document has legitimate attributes if the document attribute 

set is a subset of the data user attribute set and this will be 

discussed in Section IV.A.  
• SR− The result of a search request, i.e. a set of encrypted 

document which are the top k relevant document to the 
request under the constraint of a data user attribute. 

 

A. System Model and Design Goals 
 

In this paper, we attempt to design a fine grained access control 

mechanism for the encrypted document which also support 

efficient document search. The search result of a query is defined 

as the top-k relevant encrypted documents with legitimate 

attributes. The process of executing a document query is 

presented in Fig. 1 and it is composed of five stages: 


 
The data owner is responsible for collecting and pre-

processing the data and then obtains a set of high quality files F 
He sets the attributes for each document and then hierarchically 

encrypt the data collection based on attributes. In addition an 

index vectors is extracted from each document based on the 

documents content and attributes. An index structure I is 
constructed based on the index vectors of the document. At 

final both the encrypted documents and encrypted index 

structure are sent to the cloud. The cloud server is responsible 

for store the encrypted data and executing data search based on 

the index structure. 

 
When a data user wants to search a set of interested 

document, she first needs to register herself as an authorized 
data user at the certificate authority (CA) centre. Then, if 
possible, several attributes selected from Aare assigned to the 
data user By CA and a corresponding secret key associated 
with these attributes and sent to the data user. At final the data 
user can send a query request to the cloud server. 
 

If a query is comes from data-user, the cloud server first 
communicates with the CA to check the legitimate the data user 
and her attributes. If the data user is permitted the cloud searches 
the index structure to obtain the 
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search result SR. Then the corresponding encrypted document 
 

are extracted from the encrypted document collection C and 

 

sent  to  the  data  user.  At  last,  the  data  user  decrypts the 
documents by her secret key. Note that, the legality checking 

 

functionality is optional which can be employed to improve 

the security level of the whole system. With legality checking, 

the data users who did not register themselves in the CA 

center cannot search the interested documents through the 

cloud server. However, the security of the system does not 

greatly decrease without this functionality and it can be 

explained by the fact that the illegal data users cannot decrypt 

the documents returned by the cloud server because they 

don’t have the secret keys. 
 

In this paper, we assume that the CA centre and the cloud 
 

are trustable. Specifically, the CA centre can distribute 
proper attribute to the document users and the cloud server can 
Execute all the instructions honestly. We further assume that 

 

the  data  users are  greedy and  attempt  to  obtain as  many 
 

Plaintext files as possible. The data users try to collude with 
 

Other users to decryption the encrypt documents. We mainly 
 

restrict our attention to the process of encryption, document 
search and decryption, and the design goals of our scheme are 

 

presented as follows: 
 

• Flexibility: The documents can be encrypted and 

decrypted flexibly based on their attributes. In general, we 

hope that the proposed scheme can get logarithmic 

encryption and decryption time efficiency. 
 

• Compatibility: For a data user with an attribute set, 

she needs to store only one secret key and the key can be used 

to decrypt all the documents that have legal attributes.  
• Accuracy: The search results are accurate according to 

the data users’ search request. 
 

• Efficiency: Our scheme aims to achieve logarithmic 

search efficiency over the encrypted files in general and at 

least sub-linear search efficiency in the worst case. 
 

B. Document/Query Vector 

 

In this paper, the vector of a document is composed of two 

parts including a normalized content vector and an attribute 

 

 

 

vector. To build the content vector, each document is treated 

as a stream of keywords and we use the normalized term 
frequency (TF) vector to quantize the documents [40]. For 
each keyword wi in keyword dictionary W, we denote the 

number of times that this keyword appears in the document Fj 
 

by f j,wi and the TF value of keyword wi in Fj is defined 

= ln(1 + f j,w ). We construct the content vector. 
  j,wi   i      

this vector by         

T Fj
∗       

,wi 

   
    

= 
√      

 T Fj,wi Σwk ∈ W (T F ∗,w i)2   , i = 1, 2, · · · , m  
      j      

At last, the normalized content vector for Fj is denoted as  

Vj (=T Fj,w1 , T Fj,w2 , ···,T Fj,wm ). The inverse document  
frequency (IDF) value of the keyword wi is defined as IDFwi  
= ln(  N ) where N  is the number of 

       documents in the   
 

 

contain the keyword wi . Further, the query vector of a query 
 

j 

 

attributes in the similar manner. At last, we adopt the widely used “TF-IDF” 
measurement to calculate the relevance score between a document Fj and a query Q as 

 

follows: 
 

RScore(Fj , Q) = RScore(Vj , VQ ) = Vj · VQ (2) 
 

It can be observed that the attribute vectors are not employed 

when calculating the relevance scores between a document and 

a query. This is reasonable considering that we need to return 

the legal documents of the query rather than the documents that 

have similar attributes with the query. 

 

C. Attribute-Based Retrieval Feature and ARF Tree 
 

To improve the search efficiency of multi-keywords 

search process, a height-balanced index tree named ARF tree is 

built based on the document vectors. Specifically, the document 

vectors are organized as clusters according to their similarities. 

Each node in the tree represents a cluster composed of a set of 

document vectors or sub-clusters. An ARF vector is a quintuple 

summarization about a cluster. Given P documents 
F where j 1, 2, , P, we assume that a cluster C comprises 
{ j }  = ·· ·    

the document  vectors of 
F , i.e., V ,{ V j∗ } 

{ } 
       

where j = 1, 2, ··· , P. Then, the ARF vector of the cluster is 

defined as follows: ARF = (P, LS, SS, Vmax   , Amin ), where 

P is the number of  document content vectors in the 
cluster, ΣLS is the linear sum of the P content vectors, i.e., LS 

= 
P

 j =V1j , SS is the square sum of the P content 
 

vectors, i.e., SS = 
ΣPj

 
=1

 V 
j2

 , V denotes a vector consisting of 
m values which are calculatedmaxas follows: 

 

Vmax [i ] = max(V1[i ], V2[i ], · · · , VP [i ]), i = 1, 2, · · · , m 

(3) 
 

where Vj [i ] is the i -th dimensional value of Vj , Amin is the 

common attribute set vector of the documents in the 
cluster and it can be calculated as follows: 

A [i ]  = V ∗[i ] ∧ V ∗[i ] ∧ · · · ∧ [i ], i = 1, 2, · · · , n (4) 
1 2 P 

 

pair of bits in Vi∗ and V j∗ , logic operation “∨ ” returns 1 if either of the two bits is 1; otherwise, “∨ ” 
returns 0. As an example, (1, 0, 0, 1) ∧ (1, 1, 0, 0) = (1, 0, 0, 0); (1, 0, 0, 1) ∨ 

 

(1, 1, 0, 0) = (1, 1, 0, 1). 
 

In this paper, a search request of a data user contains both a 

set of keywords QW and a set of attributes SU associated with 

The data user. Only the documents, whose attributes are 
 

 

∗ ∗ ∗ ∗ 

as  T F ∗ 
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matched with S  and  contents are relevant with Q  , are the  challenger outputs a random 5-tuple (g, A = 
g
a

, B 
= returned 

U     W         

to the data user. As a consequence, both the content g
b

, C = g
c
, T = e(g, g)

t
 ). The adversary must then output a vectors and the   

attribute vectors of the documents should be guess v∗ of v.           

taken into consideration in document search process. The simi- An adversary, B, has at least an ε advantage  in solving the larity 

between a pair of documents Fi , Fj with content vectors DBDH problem if         
∗  ∗        

| Pr [B(g, g
a

, g
b

, g
c

, e(g, g)
abc

) = 1 ] 

     

i j       
c 

    
Sim(Fi  , Fj )    Length(V 

∗
 ∧  )     a b  t   

= γ · RScor e(V , V ) + (1 − γ ) ·   i j   − Pr [B(g, g , g , g , e(g, g)  ) = 1]| ≥ 2ε 
  

(5) where the probability is over the randomly chosen a, b, c, t ij 
      

   

i j      
and the random bits consumed by B. For the conve- 

  

where  0 ≤γ 1 ≤and RScore(Vi , Vj  ) is the relevance 

 

(g, g
a

, g
b

, score nience of expression, we denote that P  BD H={  
between the content vectors of the two documents and it  

g
c

, e(g, g)
abc

) }and B DRH  (g, g=
a

 {, g
b

, g 
c

, e(g, g)
t
 ) . 

 
} 

is calculated as:         
       

Definition 1: The DBDH assumption holds if no proba-         

RScore(Vi , Vj ) = Vi · Vj     bilistic polynomial-time adversary has at least ε advantage in 

γ is a preset parameter to adjust the importance degrees of 
(6) solving the above game.       

          

document vectors and attribute vectors, Length(V ∗) returns        E. Selective-Set Security Game       
the number of non-zero elements in vector V   ∗   . Based on           

an ARF vector, the centroid of a cluster C can be easily 
 In this paper, we employ the  Selective-Set Security 
 

Game [21], [28], [41] to prove our scheme’s security. The 
calculated as:        

       

game is composed of six phases and they are presented as         

c = LS/P      (7) Follows.         

and the similarity between cluster 
 

C and a document Fj  is 
Init: The adversary declares an access tree with a set of 

 
Attributes S that he wants to be challenged upon. 

  

defined as: 
         

       
Setup: The challenger runs the Setup algorithm presented         

Sim(C, Fj )        in Section IV to generate the public parameters which are 
        provided to the adversary.        

Length( Amin ∧ V j∗ )  

 

 

= γ · RScore(c, Vj ) + (1 − γ) · Length( A min 
 

where 0 ≤ γ ≤ 1 and  RScore(c, Vj  ) is calculated as: 
 

RScore(c, Vj ) = c · Vj 
 

Further, the radius of cluster C is defined as follows: 
√ 

 

R= P 2 Σ 
j =1 

 

∨V  )(8) 

 

 

(9) 

Query Phase 1: The adversary is allowed to issue queries to 
 

with attribute 

 

) algorithm. 
 

Challenge: The adversary provides two different messages 
M0 and M1 with equal length to the challenger. The challenger 
 

randomly flips a coin μ∈0{, 1 }and encrypts Mμ with attribute set S. At 
last the encrypted message is sent to the 

 

and it also can be calculated(V−) by/Pthe ARF vector as follows:(10)j 

√ 
 

Adversary. 
 

Query phase 2: The query phase 1 is repeated. 

R = (SS − LS
2

 /P)/P (11) Guess: Based on the obtained information, the adversary 
 

Theorem  1  (ARF Additivity Theorem):  If we merge two 
 

disjoint  clusters with ARF  vectors: AR F1 = (P1, L S1, 
S S 1, Vmax1, Amin1), AR F2 (P=2 , L S2, S S 2, Vmax2, Amin2), 
the ARF vector of the combined cluster is: 

 

ARF=ARF1+ARF2 
 

= (P1 + P2, L S1 + L S2, S S1 + S S2, Vmax   , Amin ) 
 

where Vmax [i ] = max( Vmax1[i ],  Vmax2[i ]), Amin = Amin1 ∧  

 

Amin2 . 
 

Proof: The proof consists of straightforward algebra. 

 

D. DBDH Assumption 

Let G0, G1 be two groups of prime order p and g is a 

generator of G0. The operator e is a bilinear map between G0 

and G1 as specified in Section IV.B. The challenger chooses 
 

at random. Then the challenger flips a fair 
 

binary coin v and if v = 1, it generates a BDH 5-tuple (g, A 
 

= g
a

, B = g
b

, C = g
c

, T = e(g, g)
abc

); otherwise, if v = 0, 

 
 

We say that our scheme is secure if all the polynomial 
time adversaries have at most a negligible advantage in the 
game,  where  the advantage of  the adversary is  defined  as 

− |2
1 

. Otherwise, we say that the adversary wins 
       

the game. 

 

IV. HIERARCHICAL ATTRIBUTE-BASED 
 

DOCUMENT ENCRYPTION 
 

A. Monotone Hierarchical Access Tree 
 

Let A = { A1, A2, ··· , An } be a set of attributes. A collection 
A A A 

⊆ 2 is 
monotone: Given ∀ B, C , if B ∈ and B ⊆ C ,  

then C ∈ 

A. A monotone access structure of a document is a 

monotone collection A comprised of non-empty subsets of A, 
i.e., A ⊆  2

A
 \{∅ }. The sets in A are called authorized sets and  

the sets not in A are called unauthorized sets. In this paper, we 
 

restrict our attention to monotone access structure which is 

practical considering the characteristics of the problem stated 
 

previously. 

set S∗ , where S ¢  S∗ .  The secret keys  are generated by the  

challenger through the KeyGen( M S K  ,  S∗  

obtain the secret keys of any access structure A∗ 

http://www.ijcrt.org/


www.ijcrt.org                                                              © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882 

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c861 
 

 
 
 
 
 
 
 
 
 

 
Fig. 2. Assumption of access control mechanism. 

 
 
 
 
 
 
 
 

 
Fig. 3. Examples of access trees.  

 
 
 

In this paper, we assume this a file associated with many 

attributes can be only accessed by the data user who possess 

all the basic attributes of the file. As an example shown in Fig. 

2, the whole data set is divided into three category including 

computer, network and data related data. Some documents 

may own two or many attributes such as the documents in 

region A, B, C and D. Under our assumption the crossing 

region A can be accessed by the data users who own all the 

three roles of computer, network researcher and data 

researcher; region B can be accessed by the data users who 

own the roles of data and computer researcher region C can be 

accessed by the data users who owner the roles of data and 

network researcher region D can be accessed by the data users 

who own the roles of network and computer researcher. 

Apparently, under our assumption the access structure of a 

document is monotone. Take example region B a data user 

who owns the attribute of data and computer researcher can 

access B and then any other data users who have at least these 

two attributes can also access region B. 

 

Let t be a monotone hierarchical access tree represent an 

integrated access structure for a set of data. The collection of 

all the access trees is called the access structure of the whole 

data collection. In this paper each non leaf node of the tree 

represent a threshold AND gate and associates with a set of 

attribute which are represented by the leaf nodes. For 

convenience some function are defined as follows: The 

number of the child nodes of a non-leaf node x is denoted as 

num. The function att (x) denotes the associated attributes with 

the node x and in addition, att (Fi) also returns the attribute set 

associated with document Fi all node in the tree is assign with 

a numerical identifier and the function index x returns the 

identifier of node x In addition index (Fi) returns the identifier 

of fi Note that, each non-leaf node has a unique numerical 

identifier and the leaf nodes that represent the same attribute 

in different access tree share a equal numerical identifier. All 

node in an access tree may contain some files identifiers and 

the corresponding files will be encrypted by this node.  
The function file(x) returned the file identifiers contained in 

node x. as say node y in the access tree t matches a set of 

attributes s and only if the attribute set of Y equals to s. As 

shown in Fig. 3a Y match s if and only if s = {A1, A2, A3} and 

we denote it as TY (S) =0. If here no node in the tree can match 

S we check whether a node 

 

 

In this tree can cover S. We say that node X covers S if 
X cannot match S and the leaf child nodes of X 
composed a superset of s.here denote T X (S) = 1 if node  
X covers S. As shown in Fig. 3a node Y covers S if =S 
{A1, A2} and node X covers S if S A4=, {A5, A6.}  

We constructed the access structure of a data collection in 

incremental way and an access tree is constructed by 

continuously splitting the tree in a top down approach. In the 

initial, we sort the data in decent order based on the number of 

their attributes. Actually, the attribute set of the first document 

must be a root node of an access tree and the identifier of the 

document is inserted to the root node. Given a set of access 

trees we discuss how insert a new document Fi s identifier into 

them. The attribute set of the new document att(Fi ) can be 

divided into three categories i.e. Being matched by a node in 

the access trees being covered by a node in the access trees or 

neither being matched or covered by a node in the access trees. 

We first has to scan the access trees until finding a node that 

matches att(Fi ). If the node exists the identifier of the new 

document index (Fi), is inserted to the node. Otherwise we 

need to rescan the access trees until find node X that can cover 

att (Fi) If the node exists, a new node Z is built in the tree to 

match att(Fi ) and insert index(Fi ) into Z . Specifically node Z 

is inserted to the access tree as a child node of X and the leaf 

nodes related with at (Fi) is inserted into node Z. Meanwhile, 

we need to delete the leaf nodes from node X. As an example, 

if insert {A4, A5 into} the tree presented in Fig. 3a the updated 

access tree is shown in Fig. 3b. At final if att(Fi ) neither is 

matched or covered by a node in the trees we build a new 

access tree for Fi and insert index(Fi ) into the root node. The 

above process is iterated until all the document identifiers are 

inserted into the access trees. All the access trees composed, 

the access structure of the whole document collection. 
 

The pseudo-code of incrementally collecting the 

hierarchical access trees for a document collection is 

presenting in Algorithm 1. Based on Algorithm 1, a set of 

integrated access trees are constructed for the document. Note 

that all the nodes in an access tree compose a monotone 

access structure and each access tree contains several 

document identifiers. All the document in a tree can be 

encrypted together which will be discussed in Section IV.B. 

The identifier of the node x in an access tree is assigned as 

follows,  
1. If x associated with attribute Ai is a leaf node, 

its numerical identifier is I. 
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Fig. 4. The flow chart of document encryption and decryption. 

 

 

Algorithm 1 BuildingAccessStructure 
  

Input: Document collection F = {F , F ,1 ··· 2, F } 
withN attribute sets {att(F1), att(F2), ··· , att(FN )} 

Output: A set of access trees ST 
 

1: Sort the files in F in descending order based on the number  
of their a tt ributes  and obtain F ∗ = { F1∗ , F2∗ , · · · , FN∗ } ;  

2: S=Tnull; 

3: for i = 1 N: do 
4: S = att ( Fi∗ );  

 

5: Scan the access trees in order;  
6: for the scanned access tree T in ST do 

7: if node Y in T matches S, i.e., TY (S) = 0 then 
8: Insert the id entifie r of F ∗ i int o node Y ;  

 

9: break; 
10: else if node X in coversTS , i.e., X (S) 1 thenT= 

11: Build a new node Z and let the created node Z be 
 

the child of X , and further the leaf nodes associated 

with S are inserted to Z ; meanwhile, the leaf nodes 

are deleted from X ; 
12: Insert the identi fier of F ∗ into the newnode Z;  

 
i 

13: break; 
14: end if 

15: end for 
16: ifthe identifierof F∗ hasnotbee ninserte d intoana ccess 

i 

tree then 
17: Build a new access tree for   

F ∗ based on its 
    

   
i 

attributes 
    

 and insert the identifier of F ∗ 
i  to the root node; 

18: Insert the tree to S ;   

   
T 

19: end if 

20: end for 

 
 

 

 

2. If x is a non-leaf node and associated with a set of 
ordered attributes {Ai , A j··,· , Ak } (i < j <·· · < k), its 
 

numerical identifier is ij ···k . 
 

In this way, each non-leaf node in the access structure has a 
unique identifier and apparently the leaf nodes associated with 
a same attribute share a same identifier. 

 

B. Hierarchical Document Encryption 
 

We first describe the system model of hierarchical attribute-
based document encryption scheme as shown in Fig. 4. The 

data owner first selects a set of content keys ck = 
 

{ck1, ck2 , · · · , ckN } which are used to encrypt the 

documents 

in F Symmetrically. Then, the content keys are hierarchically 

encrypted by the attributes assigned by the data owner. The 

encrypted documents, access structure and encrypted matter 

keys are outsourced to the cloud server. In addition, the index 

structure of the document collection is also stored in the cloud 

server to support document search and it will be discussed in 

Section V. Once the encrypted search results are sent to the 

data users, they decrypt the content keys by their secret keys 

and further decrypt the documents based on the decrypted 

content keys. In the following, we mainly discuss how to 

encrypt the content keys in detail. 
 

We first introduce the conceptions of bilinear map and 
Lagrange interpolation which are involved in our scheme. 
Let G0 and G1 be two multiplicative cyclic groups of prime order 

p. Let g be a generator of 
G 

→ G1 with the following properties: 
a b 

1. Bilinearity: For all u,v ∈ G0  ) = 
anda, b ∈ Z , e(u,v  

e(u,v)
ab

.  
1. Non-degeneracy: e(g, g) /= 1. 
2.  Distributivity: For u ,v,w G0∈ and a, b, c Zp, ∈ 

e(u
a
,v

b
w

c
) e(u=

a
,v

b
 )e(u

a
, w

c
). 

In addition, G0 is a bilinear group if the group operations 

in G0 and the bilinear map : e G×0 G0 →G1 are both 
efficiently computable. The Lagrange Coefficient Oi,S for 

i Z∈ and a set, S, of elements in Z is defined as (x)  O=p p 
 x − j 

G 
, } → 

j S j i  i− .jIn addition, a hash function H 0, 1 : {  0 

is employed to map the string attributes to a random 

group element in G0. 
 

The detailed process of encrypting the documents is pre-
sented in the following: 

1) Setup: Each document in Fis assigned with a set of 
attributes and the access structure of the document collection 
 

is constructed based on Algorithm 1. A set of content keys ck 
=ck{1, ck2, , ck··N ·are randomly} selected for the files  
in Fwhich are used to encrypt the files symmetrically. Then the setup algorithm chooses a bilinear group 
G0 with g as a generator, a bilinear map e : G0 × G0 → G1 and two random numbers α, β ∈ Zp . The 
public key is published as: 

PK = (G0, g, h = g
β

 , e(g, g)
α

) 

and the master secret key MSK is (β, g
α

).  

2) Encrypt(PK, ck, ST ): For each attribute Ai in A, we first randomly 
select a unique secret number si ∈ Zp.  
s i Z∈  p. Then we choose a secret number skx for each node   

x in the access trees. In each access tree, these secret numbers 
for the nodes are chosen in a bottom-up manner, starting from 
the leaf nodes to the root node. The number skx of the leaf node x 
associated with attribute Ai is set as si . Then for the non-leaf node 
 

x with a set of child nodes S x, the secret number 

skx is computed as skx =   Σ skz Oi,S ∗  (i ndex (x )) where 

 

= {in 
x 

= i ndex (z), S
∗   

numerical identifierx of node x . By iterating the above process,  

each node in the access structure can be assigned with a 
secret number. 
 

Then, the content keys are encrypted by the secret numbers 

of the nodes in the access trees. As presented in Algorithm 1, 

each node x contains a set of file identifiers { fm , · · · , f}n 

which can be returned by f ile(x). We encrypt all the 

2. 0 and e be a bilinear map, e : G0 × 

G0 
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corresponding content keys { ckm, · · · , ckn} by the same secret 

number skx . Specifically, for each access tree T in ST , let Y be 
 
the set of leaf nodes in T . All content keys related with areT 
encrypted together and the ciphertext is constructed as 

follows: T , fi   ∈ f ile(x ) : Cx= g , Ci = 
 ∗ skx ˜ 
ck · e(g, g)

α·
 
sk

 ,∀ y ∈ Y : C  = hsk  , Cy∗ = H (att (y))sk ) Note  

that, several leaf nodes y1, y2, · · · , yd of different access trees 

T1, T2, · · · , Td may share a same attribute Ai and in this 

2  case, C 1 = C 2 = · · · = Cd = hsi ,  Cy∗ = Cy∗ =· · ·= 
1 

Cy∗ d = H( Ai )
s
 .i Therefore, in the ciphertext of the whole 

document collection, on ly |A(i| .e., the number of attributes) records of Cy and Cy
∗
 need to be stored.  

1) KeyGen(MSK, S): The key generation algorithm takes a set of attributes S as input and output a secret key that identifies the set. We first chose a random r ∈ Zp, andthen 
random r j∈ Zp for each attribute A j ∈ S. Then the keys are computed as follows:  

SK = (D = gα · hr , ∀ A j ∈ S : Dj = gr · H( A j )r j , D∗ j = r jh )  
2) Decrypt(CT, SK): We employ a recursive algorithm 

DecryptNode(CT, SK, x ) to decrypt the content keys. 

This algorithm takes a ciphertext CT , a private key SK 
which is associated with a set of attributes S, and a node x 

fromT as input. 
If the node x is a leaf node, let A=i att(x), and if Ai∈ S, the algorithm is defined as follows: 

Decrypt Node(CT, SK, x) = 
e(Di 

,
 ∗ 

Cx 
)

∗   
e( Di , Cx ) 

= e(g
r
 · H( Ai )

ri
 , h

skx
 ) 

e(h
r

i , H( Ai )
sk

 )  

e(g
r
 , h

sk
x )e(H( Ai )

r
 ,i h

sk
x ) 

= e(h
r

i , H( Ai )
sk

 )  
x 

 

= e(g, g)rβ·skx 
 
If A i /∈ S, we define DecryptNode(CT , SK, x) =.⊥   

When x is a non-leaf node, the algorithm is operated 

recursively. Specifically, it processes as follows: we denote 

the set  of x ’s children nodes by Sx  . For each node   z ∈          Sx , 

it calls DecryptNode(CT, SK, z) and stores the output as Fz . 

If at least one Fz =⊥ , the function DecryptNode(CT,   SK, x) 
returns  ⊥ . Otherwise, we denote i  = i ndex (z), S∗ = 
    x 
{index(z), z ∈ Sx  } and compute     

  O i,S∗ (ind ex (x ))  
 Fx = z x   

z  ∈  FS x 

= (e(g, g)rβ·sk  )O x∗ (index  (x  )) 
z∈  Sx 

 

= (e(g, g )rβ· Σz∈ Sx skz · Oi,Sx∗ (index (x )) 

= e(g, g)rβ·skx 
 

If a data user with a set of attributesβ·k S that satisfies the sub-tree T x , the data 
 ˜    

user can calculate =A Fx= e(g, g) xand then each conte∗nt key  cki encr̃ yptedskb y 

node x with skx 
   /(e(C ,D)/A)= 

/(e(g   ,     x 

can be decrypted by computing C i  C i x  
gα · hr

 )/e(g, g)rβ·sk
 x) = cki . At last, all the documents encrypted 

 
 
 
 
 
 
 

 
Fig. 5. Comparison of CP-ABE, FH-CP-ABE and our scheme.  

 

by cki can be decrypted. Otherwise, the data 

user cannot decrypt the documents. 

Note that, in the encryption phase, the secret numbers of the 

nodes are chosen in a bottom-up manner which is totally 

different from existing schemes such as CP-ABE and FH-CP-

ABE. An advantage of this manner is that all the same 

attributes in different access trees share a same secret number 

and this can significantly improve the flexibility of encryption, 

decryption and secret keys distribution. As an example, shown 

in Fig. 5, three files F1, F2, F3 are associated with attribute sets  
{ A1, A2 } ,{ A1, A2, A3 } and {A1, A3 }, respectively. In CP-ABE, 
the three files are encrypted individually and attribute A1 is 

related with three random secret number s11, s12, s13, A2 is 
related with s , s , A is related with random secret number 

21 22 3 

s31, s32. In FH-CP-ABE, file F1, F2 share an access structure 

and they are encrypted jointly. File F3 is encrypted 

individually. In this case, attribute A1 is related with two secret 

number s11, s12. Attribute A2 is related with s2 and attribute A3 is 

related with s31, s32. In our scheme, each attribute is related 

with only one secret number. 

 

V. EFFICIENT RETRIEVAL OVER ENCRYPTED 

DOCUMENT COLLECTION 
 

In this section, an efficient retrieval scheme over encrypted 

document collection is designed and we first describe the  
process of constructing the ARF tree. Then a depth-first 
searching algorithm of the ARF tree is designed and in  
addition, it can be operated in a parallel manner flexibly. 

Given a collection of documents F = { F1, F2,· ·,· FN }, each  
document needs to be scanned for one time and the number of each 
keyword is recorded. Then a normalized vector for 
 
the document is created based on the keyword word list. W 
as discussed in Section III.B. The attribute vector of a  
document can be built based on attribute dictionary A and the 

associated attributes appointed by the data owner. Organizing 

the document vectors properly can radically improve the 

search efficiency. In some encrypted document recovery 

schemes [17], [18], the document content vectors are ordered 

randomly, and the search difficulty is O(N), where N is the 

number of documents. To improve search efficiency, in some 

other schemes [15], [16], the vectors are arranged based on their 

relative comparisons and they can obtain sub- linear search 

efficiency. However, the search accuracy cannot be sure. In our 

scheme, the similarity between a pair of documents  
is calculated based on both the content vectors and attribute 

vectors. The planned scheme can always obtain the accurate 

search results with at least a sub-linear search productivity. 
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Fig. 6. An ARF tree. 

 

For convenience sake, we first describe the structure of an 

ARF tree briefly. An ARF tree is presented in Fig. 6 and it can 

be observed that the ARF tree is a height-balanced multi-way 

tree. An ARF tree has three main parameters including 

branching factors K1, K2 and threshold T which are preset by 

the data owner. A leaf node Li contains at most K1 document 

vectors and it is defined as follows: 
 

Li = ( ARF, child1, ··· , child j ), 1 ≤ j ≤ K1 

 
where ARF is the ARF vector of the cluster, child j is a cursor 

to the j -th document vector in the cluster. Each leaf node 

represents a micro cluster collected of a set of document 

vectors. Each non-leaf node NLi contains at most K2 child 

nodes and it is defined as follows: 
 
NLi 
 

= ( ARF, AR F1, child1, ··· , ARFj , child j ), 1 ≤ j ≤ K2 
 
where ARF is the ARF vector of the whole gathering 

characterized by NLi , ARFj is the ARF vector of the j -th 

sub-cluster and child j is a pointer to the child node 

representing the sub- cluster. Therefore, a non-leaf node 

represents a cluster made up of all the sub-clusters 

represented by its child nodes. Further, the cluster of a leaf 

node must satisfy a threshold requirement: the radius of the 

cluster which can be calculated by (11) has to be less than T .  
We construct the ARF tree in an incremental manner which is similar to the construction process of the CF tree [42]. The process of inserting a document Fj with vector {Vj , V j

∗ } into the ARF tree 
is presented as follows:  

• Identifying the appropriate leaf node: Starting from the 

root, Fj recursively descents the ARF tree by choosing the 

most similar child node according to the similarity scores 

between Fj and the sub-clusters as defined in (8) until it 

reaches a leaf node.  
• Modifying the leaf node: When Fj reaches a leaf node Li 

, it tests whether Li can “absorb” {V j , V  j
∗

 } without violat ing the constraints  of K1 and T 

. If so, Vj{ , Vj is∗ } inserted into Li and the ARF vector of Li is updated based on Theorem 1 as discussed in Section III.C. If not, we must split Li to two 
leaf nodes. Node splitting is done by choosing the farthest pair of document vectors based on (5) as seeds, and then redistributing the remaining document 
vectors based on the closest criteria. The ARF vectors of the two new leaf nodes need to be recalculated. 

• Modifying the path from the root node to the leaf node: After inserting { V j , V j∗ } into a leaf node, we need to update the ARF vector for all the nodes on the path to the leaf node Li . 

In the absence of a split, this simply involves updating ARF 

vectors based on Theorem 1. A leaf node split involves us to 

insert a new leaf node to the parent node. If the parental node 

has space for the new leaf node, we just need to insertion the 

new leaf node into it and then update ARF vector for the 

parent node. In general, however, we may have to split the 

parent node as well, and so up to the root. If the root is 

divided, the tree height increases by one.  
Except for K1, K2, and T , the parameter γ can also affect the 

structure of the ARF tree. If γ is set to 1, the documents will be 

arranged based on their matter only and the attendant attributes 

are unnoticed. On the contrary, if we set γ as 0, the attributes 

of the documents decide the ARF tree and the content of the 

documents are not employed. In general, we can set γ as a 

number between 0 and 1 to balance the important degrees of 

documents’ contents and attributes.  
Another challenge is searching the top-k relevant documents 

whose attributes are covered by the data users. We design a 

depth-first search algorithm for the ARF tree and the pseudo-

code is presented in Algorithm 2. For convenience, some 

symbols and functions are first defined as follows:  
• kth Score - The smallest relevance score in current result 

list RList which stores the most k relevant legal accessed 

document vectors with VQ and the corresponding relevance 

scores in order.  
• RScore(u, VQ ) - The relevance score between the cluster  

represented by node u and a query vector VQ is defined as  
RScore(u, VQ ) = ·c VQ where c is the center of the cluster.  
Stack• - We employ the variable Stack to store the nodes  
which need to be searched in the future. In addition,  
Stack.push(u) inserts node u into Stack and Stack.pop() returns  
the latest inserted node. 

∗ •Length(V ∗ ) - T∗h is function retur∗ns the number of non-zero eleme∗nts i∗  n attribute vec∗tor  V ∗ . For two at tribute vecto rs  V ∗ a1nd  

V , we can test whether V is covered by  V by  checking whether Leng th(V ∧  V ) = Length(V ).  
2  

∗ 

∧ V2 

∗ 
1 

∗ 

), V1 
∗ 

2 
∗ 
 1 2 1 

If Length(V∗ 1  
  ) = Length(∗  V1  

  is covered by V2  ; otherwise, V1 is not covered by V .2 

 As shown in line 1 to line 9 in Algorithm 2, we first need to  
initialize RList by finding the most similar leaf node. Then, as 
shown in line 10 to line 22, the paths in the tree needed to be 
searched are selected by criteria RScore(Vu,max , VQ ) > 
kthScor e and Length( Au,min ∧ VQ∗) = Length( Au,min ). 
This is reasonable considering that if RScore(Vu,max  , VQ ) ≤ 

kthScor e for a cluster, it is impossible that any document vector 
in the cluster can be a candidate of the search result because the 
elements in VQ and Vmax are naturally nonnega-tive. In addition, if 
Length( Au,min 

 

for a cluster, all the attributes of the documents in the cluster 
cannot match that of the data user. Therefore, this cluster is 
also unnecessary to be searched. However, if a leaf node is 
searched, the result list  

∧ ∗V Q ) / =Length ( A )  

RList needs to be updated. In this  
way, quite many paths are pruned and hence the search 

efficiency greatly improves. Once the top-k relevant 

documents are located in the ARF tree, the subsequent 

encrypted documents are sent to the data user. Apparently, 

these permissible documents can be decrypted by the data user 

and then the document query process is finished. 
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Algorithm 2 DepthFirstSearch 

Input: an ARF tree with root r , a query vector VQ , an attribute vector VQ∗ of the data user  
Output: The most k relevant legal document vectors 

 
1: u ← r ;  
2: while u is not a leaf node do  
3: for all the child nodes v of node u do  

4: Calculate the relevance scores between v with VQ 
by RScore(v, VQ ); 

 
5: Check whether the attribute set Av,min by 

comparing Length( Av ,min 
is covered by  VQ∗ 

 

Av,min ); ∗ )∧ ( VQ and Length  

 
6: u the most← relevant chi ld node whose attribu tes are covered by  VQ

∗
 ; 

7: end for 

8: end while 

9: Select the most relevant k document vectors in the leaf 
node u whose attributes are covered by VQ∗ and construct RList; 

10: Stack.push(r );  
11: while Stack is not empty do  

12: u ← Stack.pop(); 
13: if the node u is not a leaf node then 

14: if RScore(Vu,max, VQ ) > kth Score and 

Length( Au,min ∧ VQ∗ ) = Length( A ) then  
15: Sort the child nodes of u in ascent order based on the relevant scores with VQ whose attribute sets are covered by VQ∗ ; 

16: Push the children of u into Stack in order, i.e., the 

most relevant child is latest inserted into Stack;  
17: end if 

18: else 
19: Calculate the relevance scores between the document vectors in the leaf node with VQ and compare their 

∗ ;attributesw ithVQ
 

20: Update RList;  

21: end if  

22: end while 

23: return RList  
 

 

We can further improve the search efficiency by operating 

the searching process in parallel. In the search process, all the 

processors need to share the same result list RList. Assume 
that there is a set of processors P = { p , p ,· · · , p } and 
given 1 

is 
2 l 

a  search  request,  an  idle  processor  pi  used  to find  most 
relevant leaf node on the tree and initialize RList. Then, all the 
necessary search paths are selected based on 

user and they are decrypted by the secret key of the data user. 

 

Though the document retrieval efficiency is greatly better 

based on the ARF tree, a companying challenge is how to protect 

the privacy of the document vectors in the index structure and 

query vectors. Fortunately, this problem has been widely 

discussed and researched [15]–[17], [37]. In this paper, we 

strictly employ the method in [18] to protect the security of the 

document vectors while preserving the searchability. 

 

VI.  SECURITY ANALYSIS 
 

In the document retrieval system, the cloud server and CA 

center are assumed to be trustable. In this section, we focus on 

the security of the proposed hierarchical document encryption 

scheme and its security mostly includes two aspects including 

document privacy and content keys confidentiality. The 

documents are encrypted based on symmetric encryption. 
 
schemes (e.g., AES) with content keys and their security is out 

of the scope in this paper. In this section, we analyze the 

security of the content keys which are encrypted by the 

proposed hierarchical encryption scheme. We provide the 

Decisional Bilinear Diffie-Hellman [28], [41], [43] assumption 

(DBDH) in Section III.D and Selective-Set Security Game is 

given Section III.E. In this section, we reduce the security of 

the content keys to the hardness of the DBDH and prove the 

security of the proposed scheme under the Selective- Set 

Security Game.  
Theorem 2: Under the DBDH assumption, no polynomial 

time adversary can win the Selective-Set Security Game.  
Proof: Suppose there exists an polynomial adversaryAdv 

that can break our scheme with an advantage ε. We can design 
a simulator Bthat can play the DBDH game with an 

advantage 
ε
2. The game is executed as follows:  

First,  the  challenger  chooses  G0,  G1, g,  a, b, c,  t  and a 
bilinear map e as specified in Section IV.B. Then he randomly 

flips a  fair  binary coin  v and if v =1 , T e(g=, g)
abc

, i.e.,(g, 

A g
a
, B g

b
,=C g

c
, T e(g=, g)

abc
) = =  

P B D  H ; otherwise, if v  = 0, T = 
t a∈ 

e(g, g)  , i.e., (g, A = g , 
B = g

b
, C = g

c
, T = e(g, g)

t
 ) ∈ R B D H . The challenger sends (g, A, B, C, T ) (=g , g

a
, g

b
, g

c
, T ) to the simulator 

 
criteria VQ  · Vmax  > kthScor e and Length( Amin = 
Length( Amin ). If the search process can be continued on q  
search paths and there are more than q idle processors, any q 
processors are selected and each processor is responsible for searching a child  
path. If there is q∗ (q ∗ < q) idle processors, they search the latest inserted q ∗ children paths in Stack. Once an idle processor appears, it continue to search 
the node generated by Stack.pop(). At last, the most relevant k encrypted files  
(i.e., the search result SR) are sent to the data 

 
∧ VQ

∗
) 

B . The simulator Bnow plays the role of challenger in 
the security game. Then, the security game are executed 
as follows:  

Init: The adversaryAdv submits the simulatorBa set of 
attributes S that it wants to be challenged upon.  

Setup:  The  simulator ZB sets  α =  α
∗ + ab  where α∗  

randomly selected from p  and it computes e(g,g) α 

e(g, g)
ab

. It further sets h g
β   e(g, g)= 

= gb = B . At last, 
·   =  

the public key PK is sent to the adversary dv.A  
Query Phase 1: The adversaryA  dv quer ies  B  the secret keys  SK of any access  s tructure A ∗ with a set of att ributes  S∗ and S ¢  S∗  

 ∗ 

∈ 

Z 
∗ 

 α 
r  = g α∗ 

+a b   
B randomly  selects a number r p and set r = r  − a. Then it calculates  D = g  · h   

gb(r∗ −a) = gα∗  Z h r ∗ .For each  attribute A j  ∈ S∗ ,   ∗ 

 chooses r j ∈  p and calculates D j = g 

 
 
 
 

 

is 
∗ 

 
 

 
. The simulator 

 
r j 

 
· H(A ) 

j =  g ∗  A   · j 
r
 
j
 and D ∗  j= B r j . At last, the secret  

H( A) 

key SK is sent to the adversary Adv. 

B randomly 
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TABLE I  
COMPARISON OF CP-ABE, FH-CP-ABE AND OUR SCHEME  

 
 
 
 
 
 
 
 
 
 
 
 

Challenge: For convenience’s sake, we assume that only VII. PERFORMANCE EVALUATION 

one file is encrypted and consequently the ciphertext can be In this section, we evaluate the performance of the hierarchical 

simplified as C T = (T , Cx∗ , C
˜
, ∀ y ∈ S∗   : C  = B sk  , Cy ∗ =   document  encryption  scheme  and  in  addition  the  search 

H(att(y))
s k

y ). The adversary Adv submits two messages M0 efficiency of the ARF tree. We first analyze the efficiency the- 
and M1 with equal lengths to B. The simulator B randomly Operatically and then conduct experiments to verify the 
flips a coin μ ∈ {0, 1 } and encrypts Mμ with attribute set analysis result.  

S. Let Cx∗ = gsk = g 
c = C. Suppose that the simulator   

is given a BDH tuple, that ics T = e(g, g)
abc

. Then we  A. Theoretical Analysis 

˜ = Mμ · e(g, g) α = Mμ · e(g, g) abc  · e(g, g) α∗ c = We compare our hierarchical encryption scheme with CP- 
have Ci        

Mμ· T· e(g, g)α∗ 
c

. We see  that  the ciphertext  is a valid ABE scheme in [21] and FH-CP-ABE scheme [28], and some 

encryption of Mμ. Otherwise, we have that T = e(g, g)
t
 is a definitions are defined first. We assume that 

random element of G1. In that case the ciphertext will give no CGi (i 0=, 1) is the time cost of   an operation on the group 
information about the simulator’s choice of μ. At last, the CT such as exponentiation or multiplication. Let Z 

p be the group  

is sent to dAv. 
     

   0{ , 1, ,··p·1 and− C}e be the cost of an bilinear map oper-  
 

Query phase 2: The query phase 1 is repeated. 
  

  ation e. Let N be the number of documents in the collection,  
      

 Guess: The adversary Ad v makes a guess μ∗ of μ based on   

ρ be a parameter that associated with Algorithm 1 and ρ N is 
the obtained information. At the same time, the simulatorB the number of the nodes in all the access trees. Considering  

also makes the corresponding guess of v in playing the DBDH 
 

that a set of file identifiers share a node in the access trees,  
game based on the different results the adversaryAdv guessed. ρ is naturally smaller then 1. Let A, Au , ACi be the attribute dictionary, the attributes  
     associated with the data user and document F respectively. Let ti be the number of  

∗ ∗    interior nodes in the access tree of file Fi . In addition, we define 
| ∗ 

| as the number of  

If μ = μ, B outputs guess v = 1 in playing the DBDH game    
elements in , ∗ L as∗ the length of an element in ∗ . 

    

and points out that the challenger given 5-tuple to it which is 
    

In  the analysis, we assume  that  the  data owner has N 

selected from P   . If μ∗ μ,/= outputsB guess v∗ = 0   in document  files and their content  keys are encrypted by CP- 
  

playing the DBDH game and points out that the challenger ABE, FH-CP-ABE and our scheme. Note that, we focus  

given 5-tuple to it which is selected from RB D H .  on the encryption process of the content keys rather than  

 The probability that the simulatorBsuccesses in playing the that of the documents which are encrypted by the content keys 

DBDH game between simulator and challenger is calculated symmetrically. We further assume that a data user is responsible 

as follows.    for decrypting  all the documents  and  the analysis  result is 

 If v  b =   c 1, the challenger generates a BDH tuple  presented in Table I. For a large document set, we have   
 

a 
     

     

A 
   

|) and ρ N < N |t1| + · · · + |tN 

  

(g, g , g  abc  |A| C1|+···+ C |.  
 , g , e(g,  g)   ), i.e. (g, A, B , C, T ∈  )  P B D H . Then  (|  

|A  
N  

we see that CT is a valid encryption of Mμ and by definition, in 

this case the adversary Adv has a non-negligible advantage ε 
to guess the correct μ

∗
 , whose probability  of success can be       

calculated as Pr [μ∗  = μ|(g, A, B, C, T ) ∈ P   ] = 
1

 + ε. 
2 
 

a     If v = 0, the c hallenger builds a random 5-tuple    

(g, g  ,  g
b 

, 
c

g , e(g, t g) ),i.e. (g, A, B, C, T)∈ RBD H .   Then 

we have that T is a random element of G1. The adversaryAdv 

did not get any information about the message Mμ, so there is 
no advantage to guess the correct μ∗ . As a consequence, the            

adversary can make a correct choice with a probability 1 .   
          2  

Therefore, theprobability  of s uccess for the s imu lator is Pr [μ
∗            

= μ|(g, A, B, C, T ) ∈ R   ] = 
1

 .     2       
At last, the overall advantage of B in playing the DBDH 

game can be calculated as 1         
  Pr [μ∗  = μ|(g, A, B, C, T ) 

∈= ε 

 

PBDH  ] +1 
  

= μ|(g, 2 
 

 BDH ]−  1 
 

. 
Pr [μ∗  

  
2   2 2    

Based on the definition of DBDH assumption, we can infer 

 
As a consequence, our scheme performs better then CP-ABE  
in time costs of encryption and decryption, and the sizes of PK , 
SK and CT . The two schemes have same performance in the size 
of MSK . In conclusion, our scheme can improve time and  
storage efficiency compared with CP-ABE. For a constant 

attribute set Aand parameter ρ, the encryption time, decryption 
 
time and size of CT all increase linearly with the number of 
documents in our scheme. The sizes of the keys 
are independent of the document collection. In addition, our 
scheme outperforms FH-CP-ABE in terms of the size of PK 
 
and SK and they have similar performance in terms of MSK . Considering that FH-CP-ABE is designed to encrypt a set of documents with incremental attribute sets, i.e., AC1 ⊇ AC2 ⊇ 

 
that our scheme is secure. The theorem is proved. 
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Fig. 7. Search proportion of KBB tree and ARF tree. 

··· ⊇ ACN , it is impossible to accurately predict the time  
cost of encryption and decryption and the size of CT for a 

document collection with randomly assigned attribute sets. As 
a consequence, we will further compare our scheme with FH-

CP-ABE by simulation in Section VII.B. 
 

The association structure of the document collection affects the 
search proficiency significantly. The keyword balanced binary 
 
(KBB) tree can provide accurate search result. However, the 

document vectors are randomly inserted into the tree and they are 

organized chaotically. Some similar vectors may locate very far 

in the tree and some totally different vectors may be neighbors 

with each other. Therefore, the interior nodes in the tree can 

provide very limited knowledge to lead a query vector to the area 

with a set of strongly relevant document vectors. On the contrary, 

the vectors in the ARF tree are formed strictly giving to their 

similarities and similar vector can always compose a group in 

spite of the vectors’ input order. The query vector can easily 

locate a cluster that contains relevant document vectors. The 

search proportion is defined as the proportion that the document 

vectors being searched in a search process and it is computed by 

the number of the searched nodes to the number of all the nodes 

in the tree. A basic comparison between the two trees is presented 

in Fig. 7. All the document vectors are randomly created in 2D 

and 3D space. To be fair, we ignore the attributes of data user and 

documents considering that the KBB tree does not support 

attribute limited search. It can be observed that the ARF tree 

outperforms KBB tree significantly in both 2D and 3D spaces. 

Specifically, the search proportion of ARF tree is about 5% to 

10% to that of KBB tree. 

 
 
B. Experimental Simulation 
 

We organize a thorough experimental evaluation for the 

proposed document recovery scheme on a real-world data set: 

the Enron Email Data Set. The data set is first treated, and 

1,000 records are casually chosen as our testing corpus. We 

implement the hierarchical encryption scheme based on CP-

ABE toolkit and Java Pairing-Based Cryptography library. 

The document search process is implemented based on Java 

language. All the following experiments are conducted on a  
2.6 GHZ Intel Core i5 processor, Windows 7 operating system 

with a RAM of 4G.  
1) Effectiveness of the Integrated Access Trees: The 

attribute set is defined as A = { A, B, · · · , Z } which 

Algorithm 3 AttributeGeneration   
Input: A = { C1, C2, C3, C4} ,F, pr (0.25 ≤ pr ≤ 1) 

Output: The attributes of each document 
1: for each document Fi ∈ F do  
2: Att = ∅  ;  

3: Randomly select a number m from 1,{ 2, 3, 4, 5 ; } 
4: Randomly select an attribute An from A and we assume that An ∈ Ck , k = 1, 2, 3, 4; 

5: Insert An to Att; 
6: for i = 2 : m do 
7: Randomly generatea number pr  (∗0 ≤ pr  ≤ ∗1) and if  

p r≤∗ pr , randomly select an attribute Aq from Ck ; otherwise, uniformly randomly select an attribute Aq from A; 

8: Insert Aq to Att;  

9: end for  
10: The attributes in Att is defined as the attributes 

of document Fi;  

11: end for  
 

 

is composed of 26 letters. Then, all the attributes are divided  
into 4 categories, i.e., C1 A, B, G, and=C2{ ···} =  
{ ···} ={ ··· } ={ ··· }  
The related attribute of a document is randomly generated 

through Algorithm 3. We assume that each document has at 

least 1 attribute and at most 5 attributes. As shown in line 5 of 

Algorithm 3, the attributes of a document trend to belong to 

one attribute category with a larger probability pr. This is 

agreeable considering that the attributes are associated with 

each other and if a set of attributes are strongly related, they 

are likely to belong to a document jointly. For example, if a 

document is related with “computer”, it is more likely to be 

also related with “network” rather than other attributes such as 

“economic” and “finance”.  
Parameter pr affects the access trees greatly as offered in 

Fig. 8. For a constant pr, the number of the access trees 

monotonously increases with the number of files as shown in 

Fig. 8(a). When pr is set to 1.0, all the attributes of a file fall in 

a sub-category of and in this Acase the number of access trees 

is the lowest. Note that, a small number of access trees can 

lead a high encryption and decryption efficiency, because 

many documents share an access tree and they can be 

encrypted together in this case. When we decrease pr from  
1.0 to 0.3, the attributes of a file are other and more likely to 

be picked from the whole attribute setA at random and the 

diversity of the documents’ attributes increases. Consequently, 

the number of the access trees increases. In the worst case, i.e., 

pr is set to 0.25 and the attributes of a file are wholly randomly 

selected from ,Athe number of access trees is the largest with a 

constant number of files. In CP-ABE, each document has an 

access tree and the number of all the access trees totals to the 

number of files which is much larger than that of the planned 

scheme. As shown in Fig. 8(b), the number of nodes in the 

access trees has similar pattern with the number of access trees 

and the planned scheme always plays better than CP- ABE. 
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Fig. 8. Number of access trees and that of nodes in the trees 
with different pr and number of files.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Distribution of files in the access trees. 

 

We further analyze the sharing of files in the access trees 

and reproduction result with N 1, 000 is provided in Fig. 9. 

The access trees are first falling sorted according to their sizes, 

i.e., the number of nodes in the trees, and then the numbers of 

files in the trees are calculated. It can be observed that about 

30% to 50% files are covered by the 25 largest trees and about 

40% to 80% files are contained by the 50 largest trees. In 

addition, the files trend to aggregate with each other to some 

more trees with the increasing of When we set pr to 1, more 

than 90% files are covered by the largest 100 access trees and, 

most of the other trees contain a small number of nodes and 

they may cover 1 or 2 files. Without loss of generalization, in 

the following, we think that pr equals to 0.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Efficiency of encryption and decryption.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Storage space of the cipher text CT. 

 

2) Efficiency of Hierarchical Document Encryption: The 

time consumptions of encrypting and decrypting the whole 

document collection are offered in Fig. 10. In CP-ABE, each 

document is encrypted and decrypted independently. 

Consequently, the time of both encryption and decryption 

rises almost linearly with the number of files. On the 

contrary, a set of files in our scheme share an access tree and 

they are encrypted and decrypted together. The encryption 

and decryption time increases logarithmically with the 

number of files. Apparently, the planned scheme is much 

more time efficient than CP-ABE. Though the FH-CP-ABE 

performs a little better than CP-ABE, it cannot efficiently 

encrypt and decrypt a document collection considering that 

the number of unified access trees are much larger than that 

of our system. The storage space of the cipher text is 

presented in Fig. 11. Note that, only the encrypted content 

keys are considered in this experiment and the symmetrically 

encrypted documents are not believed. The storage space of 

CP-ABE linearly increases with the number of files and it can 

be clarified by the fact that each file has a content secret key 

which is encrypted separately. In our scheme, if a set of files 

have similar attribute sets, they may share an access structure 

and their content keys are related with each other. In addition, 

a set of files can share a same content key if they have the 

same attribute sets. Consequently, the planned scheme is 

more space-efficient than CP-ABE. Similar to the efficiency 

of encryption and decryption, FH-CP-ABE performs better 

than CP-ABE and worse than our scheme. 
 

3) Efficiency of Document Retrieval: Except for providing 

an efficient document encryption scheme, we also improve 
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Fig. 12. Construction time of an ARF tree.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13. Search time of a query. 

 

The search productivity matched with MRSE. Note that, in 

our replication, the index structures of both MRSE and ARF 

are plaintext. The production time of an ARF tree is strongly 

related with the number of files and it is offered in Fig. 12. 

The index construction times of both the two schemes linearly 

growth with the number of files. This can be clarified by the 

fact that most time is expended in the process of generating 

document vectors (about 3.2 seconds/file). The ARF tree 

spends slightly more time than MRSE, because the document 

courses need to be inserted into the tree.  
Another dimension of our scheme is the search productivity. 

In the Enron Email Data Set, the documents have no attribute 

which should be appointed by the data owner. In general, the 

attributes of the documents are related with their con- shelters. 

Though, in Algorithm 3, the attributes of a document are 

casually selected, and they may misinform the ARF tree 

structure process. Therefore, for accessibility, in the following 

we set γ equals to 1 when building the ARF tree. In addition, k 

is set as 10 (i.e., 10 encrypted documents are returned for a 

query). However, the attributes are employed in the document 

search process and the replication result is provided in Fig. 13. 

Apparently, the search time in MRSE linearly increases with 

the number of files considering that the document routes are 

arranged randomly, and all the document paths need to be 

checked for one time. However, the ARF tree arranges the 

files based their resemblances which greatly improve the 

search efficiency. In Particular, quite a number of the search 

paths are cut in the search process and ARF tree has 

logarithmic time utilization with the No of files. 

VIII. CONCLUSION 
 

In this paper, we consider a new encrypted document 

retrieval scenario in which the data owner wants to monitor 

the documents in fine-grained level. To help this service, we 

first design a novel classified attribute-based document 

encryption scheme to encrypt a set of documents jointly that 

share an integrated access structure. Further, the ARF tree is 

proposed to organize the document vectors based on their 

parallels. At last, a depth-first search algorithm is designed to 

improve the search efficiency for the data users which is 

extremely important for large document collections. The 

performance of the approach is completely calculated by both 

abstract analysis and experiments.  
The suggested scheme can be further increased in several 

aspects: First, in this paper, we assume that each node in the 

access trees represent an “AND” gate and this limits the 

springiness of assigning the attributes to the documents. In the 

future, we will attempt to introduce “OR” gates into the access 

trees. Second, the access structure of the document collection 

is generated in a greedy manner and we will check whether it 

can be further improved to reduce the number of access trees. 

In addition, the withdrawal method of the data users’ attributes 

needs to be designed. Third, the update strategy of the ARF 

tree should be proposed. Though the ARF tree naturally 

supports adding new nodes to the tree, the method of erasing a 

node from the tree did not provided. Fourth Part, a new 

document collection, in which each file is associated with a set 

of proper characteristics, should be developed and a 

methodical experiment should be conducted on the collection 

to test the love of issue γ on the approach. 
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