
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c856

Efficient Retrieval Over Documents Encrypted

By Attributes in Cloud Computing

Dipak Vare, Akshay Kapadi, Deepak Ratnaparkhi, Vaibhav Kale

Prof. Sunil S. Khatal (Head of Department, Computer Engineering)

Sharadchandra Pawar College of Engineering, Pune

Abstract— secure data storage and retrieval is the best
research directions in cloud. Though lots of searchable
encryption scheme have been proposed some of them support
efficient retrieval over the documents. Which are encrypted
based on their attributes. In this paper a hierarchical attribute
based encryption scheme is designed for a data collection. A
set of documents is encrypted together if they share an
integrated access structure. Compared with the CP policy
attribute based encryption schemes, both the cipher text
storage space and time costs of encryption and decryption are
saved. Then, an index structure named attribute based retrieval
features tree is constructed for the document collection based
on the TF-IDF model and the documents attributes. A depth
first search algorithm for the attribute based retrieval features
tree is designed to better the search efficiency which can be
further improved by parallel computing. Except for the
documents collections in our scheme can be applied to other
data sets by modifying the attribute based retrieval features
tree slightly. A thorough analysis and series of experiments
performed to illustrate the security and efficiency of the
proposed scheme.

Index Terms-Cloud, Document retrieval, file hierarchy,
attribute-based encryption.

I. INTRODUCTION

Lots of people and organizations are motivated to outsource

their local document management systems to the cloud which

is a promising information technique to process the explosive

expanding of data. Cloud computing can collect and

reorganize a huge amount of IT resources and evidently, the

cloud servers can provide more secure, flexible, various,

economic and customize services compared with the local

management systems. For all the advantages of cloud

services, leaking the sensitive information, such as personal

information, company financial data and government

documents to the public is a big threat to the data owners. In

addition to make full use of the documents on the cloud the

data users has to access them flexibly and efficiently.

Consequently, a big challenge of outsourcing the data to the

cloud is how to protect the confidentiality of the data properly

while maintaining their search ability.

An instinctual approach is encrypt the data first and then

outsourcing the encrypted data to the cloud. A large number

of searchable data encryption scheme have been proposed in

the literatures including single keyword Boolean search

scheme single keyword ranked search schemes and multi

keyword Boolean search schemes. However, all these

schemes cannot support effective, flexible and efficient data

search because of their simple functionalities, Privacy-

preserving multi-keyword ranked document search schemes

are more promising and Practical. However, all the data in

these scheme are organized by a coarse grained access

control mechanism that is each permitted data user can

access all the encrypted data. As an Example, the whole IEEE

Explore Digital Library can be accessed by all the authorized

organizations (e.g. the universities, school) at present and this

can’t satisfy the data owners and users in the future.
In this paper, a new circumstance is considered. A data user

may be want to access part of the library (e.g. computers and

data related papers etc.) and intuitively she wants to pay less

money compare with the data users who want to access the

whole library. In different words, in the data collection, each

document can be accessed only by a set of specific data users.

In this case, we need to design a fine grained access control

mechanism for the data and it is more reasonable compared

with the current method.
To make the data users able to access part of IEEE Explore

Digital Library on demands, a possible approach is encrypting

the documents through attribute-based encryption (ABE)

schemes before outsourcing them to the cloud. Meanwhile, the

permitted data users are assigned with a set of attributes. A

data user can decrypt file if and only if her attributes match the

files attributes. Recently, cipher text- policy attribute-based

encryption (CP-ABE) is a hot research area and it can provide

fine-grained, one to many and flexible access control. In these

scheme each document is encrypted individual and their

encryption efficiency can be better by employing hierarchical

attribute based encryption schemes. However, these scheme

can’t be employed directly to solve our problem properly.

First, existing schemes focus on encrypting a single access

tree.

However, it is impossible that all the documents in IEEE

Explore Digital Library share a single access tree and how to

construct a set of optimized retrieve trees for the document col-

lection is a big challenge. Second, in most existing schemes,

when the documents are mapped to a set of shared retrieve trees,

the data users need to store a huge number of secret keys which

will be study in Section IV.B. Apparently, this is a heavy burden

for the data users especially for an extremely large document

collection and how to decrease the amount of secret keys for the

data users is another challenge. Except for access control,

document search efficiency is also a challenge for a large

document collection. To our knowledge, most existing schemes

can’t support time-efficient retrieval over the documents which

are organized under attribute-based access control mechanism.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c857

To support the previously discussed service, we first design

an algorithm to generate hierarchical retrieve trees for the

document collection. The proposed algorithm take on the

greedy strategy to build the access trees incrementally and

each access tree grow by continuously splitting the nodes in

the tree. Then we design a cipher text policy attribute based

hierarchical document collection encryption scheme called

CP-ABHE. In the suggested scheme, a set of documents can

share a same integrated access tree and be encrypted together

rather than being encrypted individually. In this way, both the

cipher text storage space and time costs of the

encryption/decryption are saved. The security of the proposed

scheme is proved theoretically, and its capability is also

evaluated by simulation.

To support exact and efficient document search over the

encrypted documents, a complicated index structure is then

constructed for the document collection. We first map the

documents to document vectors based on the TF-IDF model

and in addition, the attributes of the documents are also taken

into thought. The similar function between the document

vectors is thoroughly design and the vector are organize based

on their relative similarity in the attribute based retrieval

features tree. Specifically, the similar vectors compose micro

cluster which are then, aggregated with each other to generate

macro clusters until all the vectors belong to one cluster. The

attribute based retrieval features vector of the node in the tree

are used to describe the inherent properties of the cluster

represented by the node. At last a depth first search algorithm

for the attribute based retrieval features tree is designed to

both the search efficiency and accuracy.

The main contributions of this paper are summarized
as follows:

• A practical hierarchical attribute-based document muster

encryption scheme is proposed in which the documents are

organized and controlled based on attributes. The proposed

scheme can greatly decrease the storage and computing load.
• We map the documents to vectors in which both the

keywords and associated attributes are considered. The ARF

tree is proposed to organize the document vectors and support

time-efficient document accessible. In addition, a depth-first

search algorithm is designed.
• A partial simulation is performed to illustrate the

security, efficiency and effectiveness of our scheme.
Specifically,

The proposed encryption scheme perform well in both
time and storage efficiency. In addition, our scheme also
provides efficient and accurate data retrieval method.

The left of this paper is organized as follows, the related

work is provided in Section II and Section III, and we stated

the problem and present some preliminary techniques. The

hierarchical attribute based data encryption scheme is

designed in Section IV and we present the time efficient

document retrieval approach based on the attribute based

retrieval features tree in Section V. The security and

efficiency analysis of our scheme is provided in Section VI

and we further evaluate the performance of the proposed

approach in Section VII. At last, Section VIII concludes this

paper.

II. RELATED WORK

Our approach is mainly related with two research fields of

Cloud, i.e, cipher text-policy attribute-based document
encryption and encrypted document retrieval. The related work
in these two fields is provided in the following.

Since Sahai et al. proposed the identity based encryption

scheme, many ABE schemes have been proposed in which CP-

Attribute based encryption schemes are very promising

because of their flexibility and scalability. In these CP-

Attribute based encryption schemes, the documents with

different access structures need to be encrypted individually.

To improve the encryption and decryption efficiency and

scalability hierarchy attribute based encryption has been widely

researched in which a set of documents may share a common

access structure and can be encrypted together. Wang et al.

propose a hierarchical attribute-based encryption scheme

named FH-CP- Attribute based encryption and have proved its

security theoretically. An advantage of the scheme is that the

data users can decrypt all the authorized documents by the

secret key once. Therefore, both the time costs of encryption

and decryption are saved. Wang et al. design a scheme named

HABE with the traits of high performance, fine- grained access

control, scalability and full delegation. HABE is a combination

of hierarchical identity-based encryption and CP-Attribute

based encryption. Wan et al. propose hierarchical attribute-set-

based encryption scheme (HASBE) by extending cipher text-

policy attribute-set-based encryption (ASBE) with a

hierarchical structure of the data users. The HASBE scheme

can seamlessly incorporated with hierarchical structure of

system users by applying a delegation algorithm to ASBE.

Deng et al. extend Attribute based encryption to CP-HABE to

support hierarchically distributing and delegating the secret

keys which can be used in huge organizations. Guo et al. pro-

pose a resilient-leakage hierarchical attribute-based encryption

scheme to defend against the auxiliary input leakage attack and

the security of the scheme is detailed analysed.

In addition to encrypting the document we also attempt to

search the encrypted document efficient and accurate.

Consequently multi keywords ranked data retrieval over

encrypted documents collections is also strong related with our

scheme. In Cao et al. first proposed a basic privacy preserving

multi keyword ranked search scheme based on secure K-

Nearest Neighbour algorithm. A set of strict privacy

requirements are established and then two scheme are proposed

to improve the security and search experience. However, an

apparent drawback of this scheme is that the search efficiency

is linear with the cardinality of the data collection and

consequent it can’t be used to process extremely large

document databases. Xia et al. design a keyword balanced

binary tree to organize the document vectors and propose a

Greedy Depth First Search algorithm to improve the search

efficiency. Moreover the index tree can be updated dynamic

with an acceptable communication load. However, the

document vectors are chaotically organized in the tree and the

search efficiency can be further improved. Chen et al. take the

relationships of documents into consideration and a

hierarchical-clustering-based index framework is designed to

improve the search efficiency. In addition a verification

scheme is also integrated into their scheme to correctness of the

results. Though the index structure can obtain sub linear search

efficiency it can’t return the accurate search results. Fu et al.

present a personalized multi keyword ranked search scheme in

which an

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c858

Interest model of the data users is integrated into the data

retrieval system to support personalized search and better

users search experience. The interest model of a data user is

built based on her search History with the help of word net

in order to depict her behaviours in fine grit level. However,

this scheme can’t support dynamic update operation

because the document vector are constructed based on the

statistical information of data in the collection. In addition

though a MDB tree is employed to improve the search

efficiency of the tree is hard to predict Li et al propose a

new attribute based encryption scheme (KSF-OABE) which

can implement keyword search function. Though the design

goal of KSF- OABE is some similar with our scheme it

cannot hierarchically encrypt a document collection and

support efficient multi keyword data retrieval.

III. PROBLEM STATEMENT AND PRELIMINARIES

In this section we stated the problems and provide the
related preliminary techniques. For convenience and some
notations are first defined as follows:

• F− The plaintext document collection of N files, denoted

as F = { F1, F2,· ·,· FN .} Each document is treated as a

Sequence of keywords. Note that, each file Fi ≤(1 i≤ N) has a

Unique identifier fi (≤1 ≤i N)in the whole

document collection.
• A− The attribute dictionary, denoted as A =

{ A1, A2, ·,· ·An . } Each document and data user

is associated with a set of attributes in. A
• C− The cipher text off. In this paper is symmetrically

encrypted by content secret keys ck = {ck1, ck2, ·· · , ckN } ,
i.e., C i = Ecki (Fi), i = 1, 2, ··· , N and all the cipher texts of

the files compose .C
• I− The index structure of F. Each document is mapped to

a documents vectors and the vectors are organized in an
attribute based retrieval features tree.

• W− The keyword dictionary, denoted as W =
{ w1, w2, · ·, · wm , } which is used to generated
the document vectors and query vectors.

Fig. 1. System model.

• WQ − A subset of W Represent the keywords in

a query.
• Q− The document query request of a user. Each query

contains multiple keyword which are describe the interested

documents. In addition the attributes of the data user are also

added into Q to check the legality of a document. We say that

a document has legitimate attributes if the document attribute

set is a subset of the data user attribute set and this will be

discussed in Section IV.A.
• SR− The result of a search request, i.e. a set of encrypted

document which are the top k relevant document to the
request under the constraint of a data user attribute.

A. System Model and Design Goals

In this paper, we attempt to design a fine grained access control

mechanism for the encrypted document which also support

efficient document search. The search result of a query is defined

as the top-k relevant encrypted documents with legitimate

attributes. The process of executing a document query is

presented in Fig. 1 and it is composed of five stages:


The data owner is responsible for collecting and pre-

processing the data and then obtains a set of high quality files F
He sets the attributes for each document and then hierarchically

encrypt the data collection based on attributes. In addition an

index vectors is extracted from each document based on the

documents content and attributes. An index structure I is
constructed based on the index vectors of the document. At

final both the encrypted documents and encrypted index

structure are sent to the cloud. The cloud server is responsible

for store the encrypted data and executing data search based on

the index structure.

When a data user wants to search a set of interested

document, she first needs to register herself as an authorized
data user at the certificate authority (CA) centre. Then, if
possible, several attributes selected from Aare assigned to the
data user By CA and a corresponding secret key associated
with these attributes and sent to the data user. At final the data
user can send a query request to the cloud server.

If a query is comes from data-user, the cloud server first
communicates with the CA to check the legitimate the data user
and her attributes. If the data user is permitted the cloud searches
the index structure to obtain the

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c859

search result SR. Then the corresponding encrypted document

are extracted from the encrypted document collection C and

sent to the data user. At last, the data user decrypts the
documents by her secret key. Note that, the legality checking

functionality is optional which can be employed to improve

the security level of the whole system. With legality checking,

the data users who did not register themselves in the CA

center cannot search the interested documents through the

cloud server. However, the security of the system does not

greatly decrease without this functionality and it can be

explained by the fact that the illegal data users cannot decrypt

the documents returned by the cloud server because they

don’t have the secret keys.

In this paper, we assume that the CA centre and the cloud

are trustable. Specifically, the CA centre can distribute
proper attribute to the document users and the cloud server can
Execute all the instructions honestly. We further assume that

the data users are greedy and attempt to obtain as many

Plaintext files as possible. The data users try to collude with

Other users to decryption the encrypt documents. We mainly

restrict our attention to the process of encryption, document
search and decryption, and the design goals of our scheme are

presented as follows:

• Flexibility: The documents can be encrypted and

decrypted flexibly based on their attributes. In general, we

hope that the proposed scheme can get logarithmic

encryption and decryption time efficiency.

• Compatibility: For a data user with an attribute set,

she needs to store only one secret key and the key can be used

to decrypt all the documents that have legal attributes.
• Accuracy: The search results are accurate according to

the data users’ search request.

• Efficiency: Our scheme aims to achieve logarithmic

search efficiency over the encrypted files in general and at

least sub-linear search efficiency in the worst case.

B. Document/Query Vector

In this paper, the vector of a document is composed of two

parts including a normalized content vector and an attribute

vector. To build the content vector, each document is treated

as a stream of keywords and we use the normalized term
frequency (TF) vector to quantize the documents [40]. For
each keyword wi in keyword dictionary W, we denote the

number of times that this keyword appears in the document Fj

by f j,wi and the TF value of keyword wi in Fj is defined

= ln(1 + f j,w). We construct the content vector.
 j,wi i

this vector by

T Fj
∗

,wi

=
√

 T Fj,wi Σwk ∈ W (T F ∗,w i)2 , i = 1, 2, · · · , m
 j

At last, the normalized content vector for Fj is denoted as

Vj (=T Fj,w1 , T Fj,w2 , ···,T Fj,wm). The inverse document
frequency (IDF) value of the keyword wi is defined as IDFwi
= ln(N) where N is the number of

 documents in the

contain the keyword wi . Further, the query vector of a query

j

attributes in the similar manner. At last, we adopt the widely used “TF-IDF”
measurement to calculate the relevance score between a document Fj and a query Q as

follows:

RScore(Fj , Q) = RScore(Vj , VQ) = Vj · VQ (2)

It can be observed that the attribute vectors are not employed

when calculating the relevance scores between a document and

a query. This is reasonable considering that we need to return

the legal documents of the query rather than the documents that

have similar attributes with the query.

C. Attribute-Based Retrieval Feature and ARF Tree

To improve the search efficiency of multi-keywords

search process, a height-balanced index tree named ARF tree is

built based on the document vectors. Specifically, the document

vectors are organized as clusters according to their similarities.

Each node in the tree represents a cluster composed of a set of

document vectors or sub-clusters. An ARF vector is a quintuple

summarization about a cluster. Given P documents
F where j 1, 2, , P, we assume that a cluster C comprises
{ j } = ·· ·

the document vectors of
F , i.e., V ,{ V j∗ }

{ }

where j = 1, 2, ··· , P. Then, the ARF vector of the cluster is

defined as follows: ARF = (P, LS, SS, Vmax , Amin), where

P is the number of document content vectors in the
cluster, ΣLS is the linear sum of the P content vectors, i.e., LS

=
P

 j =V1j , SS is the square sum of the P content

vectors, i.e., SS =
ΣPj

=1

 V
j2

 , V denotes a vector consisting of
m values which are calculatedmaxas follows:

Vmax [i] = max(V1[i], V2[i], · · · , VP [i]), i = 1, 2, · · · , m

(3)

where Vj [i] is the i -th dimensional value of Vj , Amin is the

common attribute set vector of the documents in the
cluster and it can be calculated as follows:

A [i] = V ∗[i] ∧ V ∗[i] ∧ · · · ∧ [i], i = 1, 2, · · · , n (4)
1 2 P

pair of bits in Vi∗ and V j∗ , logic operation “∨ ” returns 1 if either of the two bits is 1; otherwise, “∨ ”
returns 0. As an example, (1, 0, 0, 1) ∧ (1, 1, 0, 0) = (1, 0, 0, 0); (1, 0, 0, 1) ∨

(1, 1, 0, 0) = (1, 1, 0, 1).

In this paper, a search request of a data user contains both a

set of keywords QW and a set of attributes SU associated with

The data user. Only the documents, whose attributes are

∗ ∗ ∗ ∗

as T F ∗

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c860

matched with S and contents are relevant with Q , are the challenger outputs a random 5-tuple (g, A =
g
a

, B
= returned

U W

to the data user. As a consequence, both the content g
b

, C = g
c
, T = e(g, g)

t
). The adversary must then output a vectors and the

attribute vectors of the documents should be guess v∗ of v.

taken into consideration in document search process. The simi- An adversary, B, has at least an ε advantage in solving the larity

between a pair of documents Fi , Fj with content vectors DBDH problem if
∗ ∗

| Pr [B(g, g
a

, g
b

, g
c

, e(g, g)
abc

) = 1]

i j
c

Sim(Fi , Fj) Length(V

∗
 ∧) a b t

= γ · RScor e(V , V) + (1 − γ) · i j − Pr [B(g, g , g , g , e(g, g)) = 1]| ≥ 2ε

(5) where the probability is over the randomly chosen a, b, c, t ij

i j
and the random bits consumed by B. For the conve-

where 0 ≤γ 1 ≤and RScore(Vi , Vj) is the relevance

(g, g
a

, g
b

, score nience of expression, we denote that P BD H={
between the content vectors of the two documents and it

g
c

, e(g, g)
abc

) }and B DRH (g, g=
a

 {, g
b

, g
c

, e(g, g)
t
) .

}

is calculated as:

Definition 1: The DBDH assumption holds if no proba-

RScore(Vi , Vj) = Vi · Vj bilistic polynomial-time adversary has at least ε advantage in

γ is a preset parameter to adjust the importance degrees of
(6) solving the above game.

document vectors and attribute vectors, Length(V ∗) returns E. Selective-Set Security Game
the number of non-zero elements in vector V ∗ . Based on

an ARF vector, the centroid of a cluster C can be easily
 In this paper, we employ the Selective-Set Security

Game [21], [28], [41] to prove our scheme’s security. The
calculated as:

game is composed of six phases and they are presented as

c = LS/P (7) Follows.

and the similarity between cluster

C and a document Fj is
Init: The adversary declares an access tree with a set of

Attributes S that he wants to be challenged upon.

defined as:

Setup: The challenger runs the Setup algorithm presented

Sim(C, Fj) in Section IV to generate the public parameters which are
 provided to the adversary.

Length(Amin ∧ V j∗)

= γ · RScore(c, Vj) + (1 − γ) · Length(A min

where 0 ≤ γ ≤ 1 and RScore(c, Vj) is calculated as:

RScore(c, Vj) = c · Vj

Further, the radius of cluster C is defined as follows:
√

R= P 2 Σ
j =1

∨V)(8)

(9)

Query Phase 1: The adversary is allowed to issue queries to

with attribute

) algorithm.

Challenge: The adversary provides two different messages
M0 and M1 with equal length to the challenger. The challenger

randomly flips a coin μ∈0{, 1 }and encrypts Mμ with attribute set S. At
last the encrypted message is sent to the

and it also can be calculated(V−) by/Pthe ARF vector as follows:(10)j

√

Adversary.

Query phase 2: The query phase 1 is repeated.

R = (SS − LS
2

 /P)/P (11) Guess: Based on the obtained information, the adversary

Theorem 1 (ARF Additivity Theorem): If we merge two

disjoint clusters with ARF vectors: AR F1 = (P1, L S1,
S S 1, Vmax1, Amin1), AR F2 (P=2 , L S2, S S 2, Vmax2, Amin2),
the ARF vector of the combined cluster is:

ARF=ARF1+ARF2

= (P1 + P2, L S1 + L S2, S S1 + S S2, Vmax , Amin)

where Vmax [i] = max(Vmax1[i], Vmax2[i]), Amin = Amin1 ∧

Amin2 .

Proof: The proof consists of straightforward algebra.

D. DBDH Assumption

Let G0, G1 be two groups of prime order p and g is a

generator of G0. The operator e is a bilinear map between G0

and G1 as specified in Section IV.B. The challenger chooses

at random. Then the challenger flips a fair

binary coin v and if v = 1, it generates a BDH 5-tuple (g, A

= g
a

, B = g
b

, C = g
c

, T = e(g, g)
abc

); otherwise, if v = 0,

We say that our scheme is secure if all the polynomial
time adversaries have at most a negligible advantage in the
game, where the advantage of the adversary is defined as

− |2
1

. Otherwise, we say that the adversary wins

the game.

IV. HIERARCHICAL ATTRIBUTE-BASED

DOCUMENT ENCRYPTION

A. Monotone Hierarchical Access Tree

Let A = { A1, A2, ··· , An } be a set of attributes. A collection
A A A

⊆ 2 is
monotone: Given ∀ B, C , if B ∈ and B ⊆ C ,

then C ∈

A. A monotone access structure of a document is a

monotone collection A comprised of non-empty subsets of A,
i.e., A ⊆ 2

A
 \{∅ }. The sets in A are called authorized sets and

the sets not in A are called unauthorized sets. In this paper, we

restrict our attention to monotone access structure which is

practical considering the characteristics of the problem stated

previously.

set S∗ , where S ¢ S∗ . The secret keys are generated by the

challenger through the KeyGen(M S K , S∗

obtain the secret keys of any access structure A∗

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c861

Fig. 2. Assumption of access control mechanism.

Fig. 3. Examples of access trees.

In this paper, we assume this a file associated with many

attributes can be only accessed by the data user who possess

all the basic attributes of the file. As an example shown in Fig.

2, the whole data set is divided into three category including

computer, network and data related data. Some documents

may own two or many attributes such as the documents in

region A, B, C and D. Under our assumption the crossing

region A can be accessed by the data users who own all the

three roles of computer, network researcher and data

researcher; region B can be accessed by the data users who

own the roles of data and computer researcher region C can be

accessed by the data users who owner the roles of data and

network researcher region D can be accessed by the data users

who own the roles of network and computer researcher.

Apparently, under our assumption the access structure of a

document is monotone. Take example region B a data user

who owns the attribute of data and computer researcher can

access B and then any other data users who have at least these

two attributes can also access region B.

Let t be a monotone hierarchical access tree represent an

integrated access structure for a set of data. The collection of

all the access trees is called the access structure of the whole

data collection. In this paper each non leaf node of the tree

represent a threshold AND gate and associates with a set of

attribute which are represented by the leaf nodes. For

convenience some function are defined as follows: The

number of the child nodes of a non-leaf node x is denoted as

num. The function att (x) denotes the associated attributes with

the node x and in addition, att (Fi) also returns the attribute set

associated with document Fi all node in the tree is assign with

a numerical identifier and the function index x returns the

identifier of node x In addition index (Fi) returns the identifier

of fi Note that, each non-leaf node has a unique numerical

identifier and the leaf nodes that represent the same attribute

in different access tree share a equal numerical identifier. All

node in an access tree may contain some files identifiers and

the corresponding files will be encrypted by this node.
The function file(x) returned the file identifiers contained in

node x. as say node y in the access tree t matches a set of

attributes s and only if the attribute set of Y equals to s. As

shown in Fig. 3a Y match s if and only if s = {A1, A2, A3} and

we denote it as TY (S) =0. If here no node in the tree can match

S we check whether a node

In this tree can cover S. We say that node X covers S if
X cannot match S and the leaf child nodes of X
composed a superset of s.here denote T X (S) = 1 if node
X covers S. As shown in Fig. 3a node Y covers S if =S
{A1, A2} and node X covers S if S A4=, {A5, A6.}

We constructed the access structure of a data collection in

incremental way and an access tree is constructed by

continuously splitting the tree in a top down approach. In the

initial, we sort the data in decent order based on the number of

their attributes. Actually, the attribute set of the first document

must be a root node of an access tree and the identifier of the

document is inserted to the root node. Given a set of access

trees we discuss how insert a new document Fi s identifier into

them. The attribute set of the new document att(Fi) can be

divided into three categories i.e. Being matched by a node in

the access trees being covered by a node in the access trees or

neither being matched or covered by a node in the access trees.

We first has to scan the access trees until finding a node that

matches att(Fi). If the node exists the identifier of the new

document index (Fi), is inserted to the node. Otherwise we

need to rescan the access trees until find node X that can cover

att (Fi) If the node exists, a new node Z is built in the tree to

match att(Fi) and insert index(Fi) into Z . Specifically node Z

is inserted to the access tree as a child node of X and the leaf

nodes related with at (Fi) is inserted into node Z. Meanwhile,

we need to delete the leaf nodes from node X. As an example,

if insert {A4, A5 into} the tree presented in Fig. 3a the updated

access tree is shown in Fig. 3b. At final if att(Fi) neither is

matched or covered by a node in the trees we build a new

access tree for Fi and insert index(Fi) into the root node. The

above process is iterated until all the document identifiers are

inserted into the access trees. All the access trees composed,

the access structure of the whole document collection.

The pseudo-code of incrementally collecting the

hierarchical access trees for a document collection is

presenting in Algorithm 1. Based on Algorithm 1, a set of

integrated access trees are constructed for the document. Note

that all the nodes in an access tree compose a monotone

access structure and each access tree contains several

document identifiers. All the document in a tree can be

encrypted together which will be discussed in Section IV.B.

The identifier of the node x in an access tree is assigned as

follows,
1. If x associated with attribute Ai is a leaf node,

its numerical identifier is I.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c862

Fig. 4. The flow chart of document encryption and decryption.

Algorithm 1 BuildingAccessStructure

Input: Document collection F = {F , F ,1 ··· 2, F }
withN attribute sets {att(F1), att(F2), ··· , att(FN)}

Output: A set of access trees ST

1: Sort the files in F in descending order based on the number
of their a tt ributes and obtain F ∗ = { F1∗ , F2∗ , · · · , FN∗ } ;

2: S=Tnull;

3: for i = 1 N: do
4: S = att (Fi∗);

5: Scan the access trees in order;
6: for the scanned access tree T in ST do

7: if node Y in T matches S, i.e., TY (S) = 0 then
8: Insert the id entifie r of F ∗ i int o node Y ;

9: break;
10: else if node X in coversTS , i.e., X (S) 1 thenT=

11: Build a new node Z and let the created node Z be

the child of X , and further the leaf nodes associated

with S are inserted to Z ; meanwhile, the leaf nodes

are deleted from X ;
12: Insert the identi fier of F ∗ into the newnode Z;

i

13: break;
14: end if

15: end for
16: ifthe identifierof F∗ hasnotbee ninserte d intoana ccess

i

tree then
17: Build a new access tree for

F ∗ based on its

i

attributes

 and insert the identifier of F ∗
i to the root node;

18: Insert the tree to S ;

T

19: end if

20: end for

2. If x is a non-leaf node and associated with a set of
ordered attributes {Ai , A j··,· , Ak } (i < j <·· · < k), its

numerical identifier is ij ···k .

In this way, each non-leaf node in the access structure has a
unique identifier and apparently the leaf nodes associated with
a same attribute share a same identifier.

B. Hierarchical Document Encryption

We first describe the system model of hierarchical attribute-
based document encryption scheme as shown in Fig. 4. The

data owner first selects a set of content keys ck =

{ck1, ck2 , · · · , ckN } which are used to encrypt the

documents

in F Symmetrically. Then, the content keys are hierarchically

encrypted by the attributes assigned by the data owner. The

encrypted documents, access structure and encrypted matter

keys are outsourced to the cloud server. In addition, the index

structure of the document collection is also stored in the cloud

server to support document search and it will be discussed in

Section V. Once the encrypted search results are sent to the

data users, they decrypt the content keys by their secret keys

and further decrypt the documents based on the decrypted

content keys. In the following, we mainly discuss how to

encrypt the content keys in detail.

We first introduce the conceptions of bilinear map and
Lagrange interpolation which are involved in our scheme.
Let G0 and G1 be two multiplicative cyclic groups of prime order

p. Let g be a generator of
G

→ G1 with the following properties:
a b

1. Bilinearity: For all u,v ∈ G0) =
anda, b ∈ Z , e(u,v

e(u,v)
ab

.
1. Non-degeneracy: e(g, g) /= 1.
2. Distributivity: For u ,v,w G0∈ and a, b, c Zp, ∈

e(u
a
,v

b
w

c
) e(u=

a
,v

b
)e(u

a
, w

c
).

In addition, G0 is a bilinear group if the group operations

in G0 and the bilinear map : e G×0 G0 →G1 are both
efficiently computable. The Lagrange Coefficient Oi,S for

i Z∈ and a set, S, of elements in Z is defined as (x) O=p p
 x − j

G
, } →

j S j i i− .jIn addition, a hash function H 0, 1 : { 0

is employed to map the string attributes to a random

group element in G0.

The detailed process of encrypting the documents is pre-
sented in the following:

1) Setup: Each document in Fis assigned with a set of
attributes and the access structure of the document collection

is constructed based on Algorithm 1. A set of content keys ck
=ck{1, ck2, , ck··N ·are randomly} selected for the files
in Fwhich are used to encrypt the files symmetrically. Then the setup algorithm chooses a bilinear group
G0 with g as a generator, a bilinear map e : G0 × G0 → G1 and two random numbers α, β ∈ Zp . The
public key is published as:

PK = (G0, g, h = g
β

 , e(g, g)
α

)

and the master secret key MSK is (β, g
α

).

2) Encrypt(PK, ck, ST): For each attribute Ai in A, we first randomly
select a unique secret number si ∈ Zp.
s i Z∈ p. Then we choose a secret number skx for each node

x in the access trees. In each access tree, these secret numbers
for the nodes are chosen in a bottom-up manner, starting from
the leaf nodes to the root node. The number skx of the leaf node x
associated with attribute Ai is set as si . Then for the non-leaf node

x with a set of child nodes S x, the secret number

skx is computed as skx = Σ skz Oi,S ∗ (i ndex (x)) where

= {in
x

= i ndex (z), S
∗

numerical identifierx of node x . By iterating the above process,

each node in the access structure can be assigned with a
secret number.

Then, the content keys are encrypted by the secret numbers

of the nodes in the access trees. As presented in Algorithm 1,

each node x contains a set of file identifiers { fm , · · · , f}n

which can be returned by f ile(x). We encrypt all the

2. 0 and e be a bilinear map, e : G0 ×

G0

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c863

corresponding content keys { ckm, · · · , ckn} by the same secret

number skx . Specifically, for each access tree T in ST , let Y be

the set of leaf nodes in T . All content keys related with areT
encrypted together and the ciphertext is constructed as

follows: T , fi ∈ f ile(x) : Cx= g , Ci =
 ∗ skx ˜
ck · e(g, g)

α·

sk

 ,∀ y ∈ Y : C = hsk , Cy∗ = H (att (y))sk) Note

that, several leaf nodes y1, y2, · · · , yd of different access trees

T1, T2, · · · , Td may share a same attribute Ai and in this

2 case, C 1 = C 2 = · · · = Cd = hsi , Cy∗ = Cy∗ =· · ·=
1

Cy∗ d = H(Ai)
s
 .i Therefore, in the ciphertext of the whole

document collection, on ly |A(i| .e., the number of attributes) records of Cy and Cy
∗
 need to be stored.

1) KeyGen(MSK, S): The key generation algorithm takes a set of attributes S as input and output a secret key that identifies the set. We first chose a random r ∈ Zp, andthen
random r j∈ Zp for each attribute A j ∈ S. Then the keys are computed as follows:

SK = (D = gα · hr , ∀ A j ∈ S : Dj = gr · H(A j)r j , D∗ j = r jh)
2) Decrypt(CT, SK): We employ a recursive algorithm

DecryptNode(CT, SK, x) to decrypt the content keys.

This algorithm takes a ciphertext CT , a private key SK
which is associated with a set of attributes S, and a node x

fromT as input.
If the node x is a leaf node, let A=i att(x), and if Ai∈ S, the algorithm is defined as follows:

Decrypt Node(CT, SK, x) =
e(Di

,
 ∗

Cx
)

∗
e(Di , Cx)

= e(g
r
 · H(Ai)

ri
 , h

skx
)

e(h
r

i , H(Ai)
sk

)

e(g
r
 , h

sk
x)e(H(Ai)

r
 ,i h

sk
x)

= e(h
r

i , H(Ai)
sk

)
x

= e(g, g)rβ·skx

If A i /∈ S, we define DecryptNode(CT , SK, x) =.⊥

When x is a non-leaf node, the algorithm is operated

recursively. Specifically, it processes as follows: we denote

the set of x ’s children nodes by Sx . For each node z ∈ Sx ,

it calls DecryptNode(CT, SK, z) and stores the output as Fz .

If at least one Fz =⊥ , the function DecryptNode(CT, SK, x)
returns ⊥ . Otherwise, we denote i = i ndex (z), S∗ =
 x
{index(z), z ∈ Sx } and compute

 O i,S∗ (ind ex (x))
 Fx = z x

z ∈ FS x

= (e(g, g)rβ·sk)O x∗ (index (x))
z∈ Sx

= (e(g, g)rβ· Σz∈ Sx skz · Oi,Sx∗ (index (x))

= e(g, g)rβ·skx

If a data user with a set of attributesβ·k S that satisfies the sub-tree T x , the data
 ˜

user can calculate =A Fx= e(g, g) xand then each conte∗nt key cki encr̃ yptedskb y

node x with skx
 /(e(C ,D)/A)=

/(e(g , x

can be decrypted by computing C i C i x
gα · hr

)/e(g, g)rβ·sk
 x) = cki . At last, all the documents encrypted

Fig. 5. Comparison of CP-ABE, FH-CP-ABE and our scheme.

by cki can be decrypted. Otherwise, the data

user cannot decrypt the documents.

Note that, in the encryption phase, the secret numbers of the

nodes are chosen in a bottom-up manner which is totally

different from existing schemes such as CP-ABE and FH-CP-

ABE. An advantage of this manner is that all the same

attributes in different access trees share a same secret number

and this can significantly improve the flexibility of encryption,

decryption and secret keys distribution. As an example, shown

in Fig. 5, three files F1, F2, F3 are associated with attribute sets
{ A1, A2 } ,{ A1, A2, A3 } and {A1, A3 }, respectively. In CP-ABE,
the three files are encrypted individually and attribute A1 is

related with three random secret number s11, s12, s13, A2 is
related with s , s , A is related with random secret number

21 22 3

s31, s32. In FH-CP-ABE, file F1, F2 share an access structure

and they are encrypted jointly. File F3 is encrypted

individually. In this case, attribute A1 is related with two secret

number s11, s12. Attribute A2 is related with s2 and attribute A3 is

related with s31, s32. In our scheme, each attribute is related

with only one secret number.

V. EFFICIENT RETRIEVAL OVER ENCRYPTED

DOCUMENT COLLECTION

In this section, an efficient retrieval scheme over encrypted

document collection is designed and we first describe the
process of constructing the ARF tree. Then a depth-first
searching algorithm of the ARF tree is designed and in
addition, it can be operated in a parallel manner flexibly.

Given a collection of documents F = { F1, F2,· ·,· FN }, each
document needs to be scanned for one time and the number of each
keyword is recorded. Then a normalized vector for

the document is created based on the keyword word list. W
as discussed in Section III.B. The attribute vector of a
document can be built based on attribute dictionary A and the

associated attributes appointed by the data owner. Organizing

the document vectors properly can radically improve the

search efficiency. In some encrypted document recovery

schemes [17], [18], the document content vectors are ordered

randomly, and the search difficulty is O(N), where N is the

number of documents. To improve search efficiency, in some

other schemes [15], [16], the vectors are arranged based on their

relative comparisons and they can obtain sub- linear search

efficiency. However, the search accuracy cannot be sure. In our

scheme, the similarity between a pair of documents
is calculated based on both the content vectors and attribute

vectors. The planned scheme can always obtain the accurate

search results with at least a sub-linear search productivity.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c864

Fig. 6. An ARF tree.

For convenience sake, we first describe the structure of an

ARF tree briefly. An ARF tree is presented in Fig. 6 and it can

be observed that the ARF tree is a height-balanced multi-way

tree. An ARF tree has three main parameters including

branching factors K1, K2 and threshold T which are preset by

the data owner. A leaf node Li contains at most K1 document

vectors and it is defined as follows:

Li = (ARF, child1, ··· , child j), 1 ≤ j ≤ K1

where ARF is the ARF vector of the cluster, child j is a cursor

to the j -th document vector in the cluster. Each leaf node

represents a micro cluster collected of a set of document

vectors. Each non-leaf node NLi contains at most K2 child

nodes and it is defined as follows:

NLi

= (ARF, AR F1, child1, ··· , ARFj , child j), 1 ≤ j ≤ K2

where ARF is the ARF vector of the whole gathering

characterized by NLi , ARFj is the ARF vector of the j -th

sub-cluster and child j is a pointer to the child node

representing the sub- cluster. Therefore, a non-leaf node

represents a cluster made up of all the sub-clusters

represented by its child nodes. Further, the cluster of a leaf

node must satisfy a threshold requirement: the radius of the

cluster which can be calculated by (11) has to be less than T .
We construct the ARF tree in an incremental manner which is similar to the construction process of the CF tree [42]. The process of inserting a document Fj with vector {Vj , V j

∗ } into the ARF tree
is presented as follows:

• Identifying the appropriate leaf node: Starting from the

root, Fj recursively descents the ARF tree by choosing the

most similar child node according to the similarity scores

between Fj and the sub-clusters as defined in (8) until it

reaches a leaf node.
• Modifying the leaf node: When Fj reaches a leaf node Li

, it tests whether Li can “absorb” {V j , V j
∗

 } without violat ing the constraints of K1 and T

. If so, Vj{ , Vj is∗ } inserted into Li and the ARF vector of Li is updated based on Theorem 1 as discussed in Section III.C. If not, we must split Li to two
leaf nodes. Node splitting is done by choosing the farthest pair of document vectors based on (5) as seeds, and then redistributing the remaining document
vectors based on the closest criteria. The ARF vectors of the two new leaf nodes need to be recalculated.

• Modifying the path from the root node to the leaf node: After inserting { V j , V j∗ } into a leaf node, we need to update the ARF vector for all the nodes on the path to the leaf node Li .

In the absence of a split, this simply involves updating ARF

vectors based on Theorem 1. A leaf node split involves us to

insert a new leaf node to the parent node. If the parental node

has space for the new leaf node, we just need to insertion the

new leaf node into it and then update ARF vector for the

parent node. In general, however, we may have to split the

parent node as well, and so up to the root. If the root is

divided, the tree height increases by one.
Except for K1, K2, and T , the parameter γ can also affect the

structure of the ARF tree. If γ is set to 1, the documents will be

arranged based on their matter only and the attendant attributes

are unnoticed. On the contrary, if we set γ as 0, the attributes

of the documents decide the ARF tree and the content of the

documents are not employed. In general, we can set γ as a

number between 0 and 1 to balance the important degrees of

documents’ contents and attributes.
Another challenge is searching the top-k relevant documents

whose attributes are covered by the data users. We design a

depth-first search algorithm for the ARF tree and the pseudo-

code is presented in Algorithm 2. For convenience, some

symbols and functions are first defined as follows:
• kth Score - The smallest relevance score in current result

list RList which stores the most k relevant legal accessed

document vectors with VQ and the corresponding relevance

scores in order.
• RScore(u, VQ) - The relevance score between the cluster

represented by node u and a query vector VQ is defined as
RScore(u, VQ) = ·c VQ where c is the center of the cluster.
Stack• - We employ the variable Stack to store the nodes
which need to be searched in the future. In addition,
Stack.push(u) inserts node u into Stack and Stack.pop() returns
the latest inserted node.

∗ •Length(V ∗) - T∗h is function retur∗ns the number of non-zero eleme∗nts i∗ n attribute vec∗tor V ∗ . For two at tribute vecto rs V ∗ a1nd

V , we can test whether V is covered by V by checking whether Leng th(V ∧ V) = Length(V).
2

∗

∧ V2

∗
1

∗

), V1
∗

2
∗
 1 2 1

If Length(V∗ 1
) = Length(∗ V1

 is covered by V2 ; otherwise, V1 is not covered by V .2

 As shown in line 1 to line 9 in Algorithm 2, we first need to
initialize RList by finding the most similar leaf node. Then, as
shown in line 10 to line 22, the paths in the tree needed to be
searched are selected by criteria RScore(Vu,max , VQ) >
kthScor e and Length(Au,min ∧ VQ∗) = Length(Au,min).
This is reasonable considering that if RScore(Vu,max , VQ) ≤

kthScor e for a cluster, it is impossible that any document vector
in the cluster can be a candidate of the search result because the
elements in VQ and Vmax are naturally nonnega-tive. In addition, if
Length(Au,min

for a cluster, all the attributes of the documents in the cluster
cannot match that of the data user. Therefore, this cluster is
also unnecessary to be searched. However, if a leaf node is
searched, the result list

∧ ∗V Q) / =Length (A)

RList needs to be updated. In this
way, quite many paths are pruned and hence the search

efficiency greatly improves. Once the top-k relevant

documents are located in the ARF tree, the subsequent

encrypted documents are sent to the data user. Apparently,

these permissible documents can be decrypted by the data user

and then the document query process is finished.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c865

Algorithm 2 DepthFirstSearch

Input: an ARF tree with root r , a query vector VQ , an attribute vector VQ∗ of the data user
Output: The most k relevant legal document vectors

1: u ← r ;
2: while u is not a leaf node do
3: for all the child nodes v of node u do

4: Calculate the relevance scores between v with VQ
by RScore(v, VQ);

5: Check whether the attribute set Av,min by

comparing Length(Av ,min
is covered by VQ∗

Av,min); ∗)∧ (VQ and Length

6: u the most← relevant chi ld node whose attribu tes are covered by VQ

∗
 ;

7: end for

8: end while

9: Select the most relevant k document vectors in the leaf
node u whose attributes are covered by VQ∗ and construct RList;

10: Stack.push(r);
11: while Stack is not empty do

12: u ← Stack.pop();
13: if the node u is not a leaf node then

14: if RScore(Vu,max, VQ) > kth Score and

Length(Au,min ∧ VQ∗) = Length(A) then
15: Sort the child nodes of u in ascent order based on the relevant scores with VQ whose attribute sets are covered by VQ∗ ;

16: Push the children of u into Stack in order, i.e., the

most relevant child is latest inserted into Stack;
17: end if

18: else
19: Calculate the relevance scores between the document vectors in the leaf node with VQ and compare their

∗ ;attributesw ithVQ

20: Update RList;

21: end if

22: end while

23: return RList

We can further improve the search efficiency by operating

the searching process in parallel. In the search process, all the

processors need to share the same result list RList. Assume
that there is a set of processors P = { p , p ,· · · , p } and
given 1

is
2 l

a search request, an idle processor pi used to find most
relevant leaf node on the tree and initialize RList. Then, all the
necessary search paths are selected based on

user and they are decrypted by the secret key of the data user.

Though the document retrieval efficiency is greatly better

based on the ARF tree, a companying challenge is how to protect

the privacy of the document vectors in the index structure and

query vectors. Fortunately, this problem has been widely

discussed and researched [15]–[17], [37]. In this paper, we

strictly employ the method in [18] to protect the security of the

document vectors while preserving the searchability.

VI. SECURITY ANALYSIS

In the document retrieval system, the cloud server and CA

center are assumed to be trustable. In this section, we focus on

the security of the proposed hierarchical document encryption

scheme and its security mostly includes two aspects including

document privacy and content keys confidentiality. The

documents are encrypted based on symmetric encryption.

schemes (e.g., AES) with content keys and their security is out

of the scope in this paper. In this section, we analyze the

security of the content keys which are encrypted by the

proposed hierarchical encryption scheme. We provide the

Decisional Bilinear Diffie-Hellman [28], [41], [43] assumption

(DBDH) in Section III.D and Selective-Set Security Game is

given Section III.E. In this section, we reduce the security of

the content keys to the hardness of the DBDH and prove the

security of the proposed scheme under the Selective- Set

Security Game.
Theorem 2: Under the DBDH assumption, no polynomial

time adversary can win the Selective-Set Security Game.
Proof: Suppose there exists an polynomial adversaryAdv

that can break our scheme with an advantage ε. We can design
a simulator Bthat can play the DBDH game with an

advantage
ε
2. The game is executed as follows:

First, the challenger chooses G0, G1, g, a, b, c, t and a
bilinear map e as specified in Section IV.B. Then he randomly

flips a fair binary coin v and if v =1 , T e(g=, g)
abc

, i.e.,(g,

A g
a
, B g

b
,=C g

c
, T e(g=, g)

abc
) = =

P B D H ; otherwise, if v = 0, T =
t a∈

e(g, g) , i.e., (g, A = g ,
B = g

b
, C = g

c
, T = e(g, g)

t
) ∈ R B D H . The challenger sends (g, A, B, C, T) (=g , g

a
, g

b
, g

c
, T) to the simulator

criteria VQ · Vmax > kthScor e and Length(Amin =
Length(Amin). If the search process can be continued on q
search paths and there are more than q idle processors, any q
processors are selected and each processor is responsible for searching a child
path. If there is q∗ (q ∗ < q) idle processors, they search the latest inserted q ∗ children paths in Stack. Once an idle processor appears, it continue to search
the node generated by Stack.pop(). At last, the most relevant k encrypted files
(i.e., the search result SR) are sent to the data

∧ VQ

∗
)

B . The simulator Bnow plays the role of challenger in
the security game. Then, the security game are executed
as follows:

Init: The adversaryAdv submits the simulatorBa set of
attributes S that it wants to be challenged upon.

Setup: The simulator ZB sets α = α
∗ + ab where α∗

randomly selected from p and it computes e(g,g) α

e(g, g)
ab

. It further sets h g
β e(g, g)=

= gb = B . At last,
· =

the public key PK is sent to the adversary dv.A
Query Phase 1: The adversaryA dv quer ies B the secret keys SK of any access s tructure A ∗ with a set of att ributes S∗ and S ¢ S∗

 ∗

∈

Z
∗

 α
r = g α∗

+a b
B randomly selects a number r p and set r = r − a. Then it calculates D = g · h

gb(r∗ −a) = gα∗ Z h r ∗ .For each attribute A j ∈ S∗ , ∗

 chooses r j ∈ p and calculates D j = g

is
∗

. The simulator

r j

· H(A)

j = g ∗ A · j
r

j
 and D ∗ j= B r j . At last, the secret

H(A)

key SK is sent to the adversary Adv.

B randomly

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c866

WANG et al.: EFFICIENT RETRIEVAL OVER DOCUMENTS ENCRYPTED BY ATTRIBUTES IN CLOUD COMPUTING 2663

TABLE I
COMPARISON OF CP-ABE, FH-CP-ABE AND OUR SCHEME

Challenge: For convenience’s sake, we assume that only VII. PERFORMANCE EVALUATION

one file is encrypted and consequently the ciphertext can be In this section, we evaluate the performance of the hierarchical

simplified as C T = (T , Cx∗ , C
˜
, ∀ y ∈ S∗ : C = B sk , Cy ∗ = document encryption scheme and in addition the search

H(att(y))
s k

y). The adversary Adv submits two messages M0 efficiency of the ARF tree. We first analyze the efficiency the-
and M1 with equal lengths to B. The simulator B randomly Operatically and then conduct experiments to verify the
flips a coin μ ∈ {0, 1 } and encrypts Mμ with attribute set analysis result.

S. Let Cx∗ = gsk = g
c = C. Suppose that the simulator

is given a BDH tuple, that ics T = e(g, g)
abc

. Then we A. Theoretical Analysis

˜ = Mμ · e(g, g) α = Mμ · e(g, g) abc · e(g, g) α∗ c = We compare our hierarchical encryption scheme with CP-
have Ci

Mμ· T· e(g, g)α∗
c

. We see that the ciphertext is a valid ABE scheme in [21] and FH-CP-ABE scheme [28], and some

encryption of Mμ. Otherwise, we have that T = e(g, g)
t
 is a definitions are defined first. We assume that

random element of G1. In that case the ciphertext will give no CGi (i 0=, 1) is the time cost of an operation on the group
information about the simulator’s choice of μ. At last, the CT such as exponentiation or multiplication. Let Z

p be the group

is sent to dAv.

 0{ , 1, ,··p·1 and− C}e be the cost of an bilinear map oper-

Query phase 2: The query phase 1 is repeated.

 ation e. Let N be the number of documents in the collection,

 Guess: The adversary Ad v makes a guess μ∗ of μ based on

ρ be a parameter that associated with Algorithm 1 and ρ N is
the obtained information. At the same time, the simulatorB the number of the nodes in all the access trees. Considering

also makes the corresponding guess of v in playing the DBDH

that a set of file identifiers share a node in the access trees,
game based on the different results the adversaryAdv guessed. ρ is naturally smaller then 1. Let A, Au , ACi be the attribute dictionary, the attributes
 associated with the data user and document F respectively. Let ti be the number of

∗ ∗ interior nodes in the access tree of file Fi . In addition, we define
| ∗

| as the number of

If μ = μ, B outputs guess v = 1 in playing the DBDH game
elements in , ∗ L as∗ the length of an element in ∗ .

and points out that the challenger given 5-tuple to it which is

In the analysis, we assume that the data owner has N

selected from P . If μ∗ μ,/= outputsB guess v∗ = 0 in document files and their content keys are encrypted by CP-

playing the DBDH game and points out that the challenger ABE, FH-CP-ABE and our scheme. Note that, we focus

given 5-tuple to it which is selected from RB D H . on the encryption process of the content keys rather than

 The probability that the simulatorBsuccesses in playing the that of the documents which are encrypted by the content keys

DBDH game between simulator and challenger is calculated symmetrically. We further assume that a data user is responsible

as follows. for decrypting all the documents and the analysis result is

 If v b = c 1, the challenger generates a BDH tuple presented in Table I. For a large document set, we have

a

A

|) and ρ N < N |t1| + · · · + |tN

(g, g , g abc |A| C1|+···+ C |.
 , g , e(g, g)), i.e. (g, A, B , C, T ∈) P B D H . Then (|

|A
N

we see that CT is a valid encryption of Mμ and by definition, in

this case the adversary Adv has a non-negligible advantage ε
to guess the correct μ

∗
 , whose probability of success can be

calculated as Pr [μ∗ = μ|(g, A, B, C, T) ∈ P] =
1

 + ε.
2

a If v = 0, the c hallenger builds a random 5-tuple

(g, g , g
b

,
c

g , e(g, t g)),i.e. (g, A, B, C, T)∈ RBD H . Then

we have that T is a random element of G1. The adversaryAdv

did not get any information about the message Mμ, so there is
no advantage to guess the correct μ∗ . As a consequence, the

adversary can make a correct choice with a probability 1 .
 2

Therefore, theprobability of s uccess for the s imu lator is Pr [μ
∗

= μ|(g, A, B, C, T) ∈ R] =
1

 . 2
At last, the overall advantage of B in playing the DBDH

game can be calculated as 1
 Pr [μ∗ = μ|(g, A, B, C, T)

∈= ε

PBDH] +1

= μ|(g, 2

 BDH]− 1

.
Pr [μ∗

2 2 2

Based on the definition of DBDH assumption, we can infer

As a consequence, our scheme performs better then CP-ABE
in time costs of encryption and decryption, and the sizes of PK ,
SK and CT . The two schemes have same performance in the size
of MSK . In conclusion, our scheme can improve time and
storage efficiency compared with CP-ABE. For a constant

attribute set Aand parameter ρ, the encryption time, decryption

time and size of CT all increase linearly with the number of
documents in our scheme. The sizes of the keys
are independent of the document collection. In addition, our
scheme outperforms FH-CP-ABE in terms of the size of PK

and SK and they have similar performance in terms of MSK . Considering that FH-CP-ABE is designed to encrypt a set of documents with incremental attribute sets, i.e., AC1 ⊇ AC2 ⊇

that our scheme is secure. The theorem is proved.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c867

Fig. 7. Search proportion of KBB tree and ARF tree.

··· ⊇ ACN , it is impossible to accurately predict the time
cost of encryption and decryption and the size of CT for a

document collection with randomly assigned attribute sets. As
a consequence, we will further compare our scheme with FH-

CP-ABE by simulation in Section VII.B.

The association structure of the document collection affects the
search proficiency significantly. The keyword balanced binary

(KBB) tree can provide accurate search result. However, the

document vectors are randomly inserted into the tree and they are

organized chaotically. Some similar vectors may locate very far

in the tree and some totally different vectors may be neighbors

with each other. Therefore, the interior nodes in the tree can

provide very limited knowledge to lead a query vector to the area

with a set of strongly relevant document vectors. On the contrary,

the vectors in the ARF tree are formed strictly giving to their

similarities and similar vector can always compose a group in

spite of the vectors’ input order. The query vector can easily

locate a cluster that contains relevant document vectors. The

search proportion is defined as the proportion that the document

vectors being searched in a search process and it is computed by

the number of the searched nodes to the number of all the nodes

in the tree. A basic comparison between the two trees is presented

in Fig. 7. All the document vectors are randomly created in 2D

and 3D space. To be fair, we ignore the attributes of data user and

documents considering that the KBB tree does not support

attribute limited search. It can be observed that the ARF tree

outperforms KBB tree significantly in both 2D and 3D spaces.

Specifically, the search proportion of ARF tree is about 5% to

10% to that of KBB tree.

B. Experimental Simulation

We organize a thorough experimental evaluation for the

proposed document recovery scheme on a real-world data set:

the Enron Email Data Set. The data set is first treated, and

1,000 records are casually chosen as our testing corpus. We

implement the hierarchical encryption scheme based on CP-

ABE toolkit and Java Pairing-Based Cryptography library.

The document search process is implemented based on Java

language. All the following experiments are conducted on a
2.6 GHZ Intel Core i5 processor, Windows 7 operating system

with a RAM of 4G.
1) Effectiveness of the Integrated Access Trees: The

attribute set is defined as A = { A, B, · · · , Z } which

Algorithm 3 AttributeGeneration
Input: A = { C1, C2, C3, C4} ,F, pr (0.25 ≤ pr ≤ 1)

Output: The attributes of each document
1: for each document Fi ∈ F do
2: Att = ∅ ;

3: Randomly select a number m from 1,{ 2, 3, 4, 5 ; }
4: Randomly select an attribute An from A and we assume that An ∈ Ck , k = 1, 2, 3, 4;

5: Insert An to Att;
6: for i = 2 : m do
7: Randomly generatea number pr (∗0 ≤ pr ≤ ∗1) and if

p r≤∗ pr , randomly select an attribute Aq from Ck ; otherwise, uniformly randomly select an attribute Aq from A;

8: Insert Aq to Att;

9: end for
10: The attributes in Att is defined as the attributes

of document Fi;

11: end for

is composed of 26 letters. Then, all the attributes are divided
into 4 categories, i.e., C1 A, B, G, and=C2{ ···} =
{ ···} ={ ··· } ={ ··· }
The related attribute of a document is randomly generated

through Algorithm 3. We assume that each document has at

least 1 attribute and at most 5 attributes. As shown in line 5 of

Algorithm 3, the attributes of a document trend to belong to

one attribute category with a larger probability pr. This is

agreeable considering that the attributes are associated with

each other and if a set of attributes are strongly related, they

are likely to belong to a document jointly. For example, if a

document is related with “computer”, it is more likely to be

also related with “network” rather than other attributes such as

“economic” and “finance”.
Parameter pr affects the access trees greatly as offered in

Fig. 8. For a constant pr, the number of the access trees

monotonously increases with the number of files as shown in

Fig. 8(a). When pr is set to 1.0, all the attributes of a file fall in

a sub-category of and in this Acase the number of access trees

is the lowest. Note that, a small number of access trees can

lead a high encryption and decryption efficiency, because

many documents share an access tree and they can be

encrypted together in this case. When we decrease pr from
1.0 to 0.3, the attributes of a file are other and more likely to

be picked from the whole attribute setA at random and the

diversity of the documents’ attributes increases. Consequently,

the number of the access trees increases. In the worst case, i.e.,

pr is set to 0.25 and the attributes of a file are wholly randomly

selected from ,Athe number of access trees is the largest with a

constant number of files. In CP-ABE, each document has an

access tree and the number of all the access trees totals to the

number of files which is much larger than that of the planned

scheme. As shown in Fig. 8(b), the number of nodes in the

access trees has similar pattern with the number of access trees

and the planned scheme always plays better than CP- ABE.

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-

2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c868

Fig. 8. Number of access trees and that of nodes in the trees
with different pr and number of files.

Fig. 9. Distribution of files in the access trees.

We further analyze the sharing of files in the access trees

and reproduction result with N 1, 000 is provided in Fig. 9.

The access trees are first falling sorted according to their sizes,

i.e., the number of nodes in the trees, and then the numbers of

files in the trees are calculated. It can be observed that about

30% to 50% files are covered by the 25 largest trees and about

40% to 80% files are contained by the 50 largest trees. In

addition, the files trend to aggregate with each other to some

more trees with the increasing of When we set pr to 1, more

than 90% files are covered by the largest 100 access trees and,

most of the other trees contain a small number of nodes and

they may cover 1 or 2 files. Without loss of generalization, in

the following, we think that pr equals to 0.9.

Fig. 10. Efficiency of encryption and decryption.

Fig. 11. Storage space of the cipher text CT.

2) Efficiency of Hierarchical Document Encryption: The

time consumptions of encrypting and decrypting the whole

document collection are offered in Fig. 10. In CP-ABE, each

document is encrypted and decrypted independently.

Consequently, the time of both encryption and decryption

rises almost linearly with the number of files. On the

contrary, a set of files in our scheme share an access tree and

they are encrypted and decrypted together. The encryption

and decryption time increases logarithmically with the

number of files. Apparently, the planned scheme is much

more time efficient than CP-ABE. Though the FH-CP-ABE

performs a little better than CP-ABE, it cannot efficiently

encrypt and decrypt a document collection considering that

the number of unified access trees are much larger than that

of our system. The storage space of the cipher text is

presented in Fig. 11. Note that, only the encrypted content

keys are considered in this experiment and the symmetrically

encrypted documents are not believed. The storage space of

CP-ABE linearly increases with the number of files and it can

be clarified by the fact that each file has a content secret key

which is encrypted separately. In our scheme, if a set of files

have similar attribute sets, they may share an access structure

and their content keys are related with each other. In addition,

a set of files can share a same content key if they have the

same attribute sets. Consequently, the planned scheme is

more space-efficient than CP-ABE. Similar to the efficiency

of encryption and decryption, FH-CP-ABE performs better

than CP-ABE and worse than our scheme.

3) Efficiency of Document Retrieval: Except for providing

an efficient document encryption scheme, we also improve

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882

IJCRT2105310 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c869

Fig. 12. Construction time of an ARF tree.

Fig. 13. Search time of a query.

The search productivity matched with MRSE. Note that, in

our replication, the index structures of both MRSE and ARF

are plaintext. The production time of an ARF tree is strongly

related with the number of files and it is offered in Fig. 12.

The index construction times of both the two schemes linearly

growth with the number of files. This can be clarified by the

fact that most time is expended in the process of generating

document vectors (about 3.2 seconds/file). The ARF tree

spends slightly more time than MRSE, because the document

courses need to be inserted into the tree.
Another dimension of our scheme is the search productivity.

In the Enron Email Data Set, the documents have no attribute

which should be appointed by the data owner. In general, the

attributes of the documents are related with their con- shelters.

Though, in Algorithm 3, the attributes of a document are

casually selected, and they may misinform the ARF tree

structure process. Therefore, for accessibility, in the following

we set γ equals to 1 when building the ARF tree. In addition, k

is set as 10 (i.e., 10 encrypted documents are returned for a

query). However, the attributes are employed in the document

search process and the replication result is provided in Fig. 13.

Apparently, the search time in MRSE linearly increases with

the number of files considering that the document routes are

arranged randomly, and all the document paths need to be

checked for one time. However, the ARF tree arranges the

files based their resemblances which greatly improve the

search efficiency. In Particular, quite a number of the search

paths are cut in the search process and ARF tree has

logarithmic time utilization with the No of files.

VIII. CONCLUSION

In this paper, we consider a new encrypted document

retrieval scenario in which the data owner wants to monitor

the documents in fine-grained level. To help this service, we

first design a novel classified attribute-based document

encryption scheme to encrypt a set of documents jointly that

share an integrated access structure. Further, the ARF tree is

proposed to organize the document vectors based on their

parallels. At last, a depth-first search algorithm is designed to

improve the search efficiency for the data users which is

extremely important for large document collections. The

performance of the approach is completely calculated by both

abstract analysis and experiments.
The suggested scheme can be further increased in several

aspects: First, in this paper, we assume that each node in the

access trees represent an “AND” gate and this limits the

springiness of assigning the attributes to the documents. In the

future, we will attempt to introduce “OR” gates into the access

trees. Second, the access structure of the document collection

is generated in a greedy manner and we will check whether it

can be further improved to reduce the number of access trees.

In addition, the withdrawal method of the data users’ attributes

needs to be designed. Third, the update strategy of the ARF

tree should be proposed. Though the ARF tree naturally

supports adding new nodes to the tree, the method of erasing a

node from the tree did not provided. Fourth Part, a new

document collection, in which each file is associated with a set

of proper characteristics, should be developed and a

methodical experiment should be conducted on the collection

to test the love of issue γ on the approach.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang, “Security challenges for

the public cloud,” IEEE Internet Comput., vol. 16, no. 1,
pp. 69–73, Jan. 2012.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical
techniques for searches on encrypted data,” in Proc. IEEE
Symp. Secur. Privacy, 2000, pp. 44–55.

[3] E.-J. Goh, “Secure indexes,” Cryptol. ePrint Arch., San
Francisco, CA, USA, Tech. Rep. 216, 2003. [Online].
Available: http://eprint. iacr.org/2003/216

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: Improved definitions

and efficient constructions,” in Proc. ACM Conf. Comput.

Commun. Secur., 2006, pp. 79–88.
[5] J. Li, Y. Shi, and Y. Zhang, “Searchable ciphertext-policy

attribute-based encryption with revocation in cloud
storage,” Int. J. Commun. Syst., vol. 30, no. 1, pp. 1–13,
2017.

[6] Y. Miao, J. Ma, X. Liu, X. Li, Q. Jiang, and J. Zhang,
“Attribute-based keyword search over hierarchical data in
cloud ,” IEEE Trans. Serv. Comput., to be published.

[7] Sunil S Khatal, Data Security using KAC for Sharing
Scalable Data

http://www.ijcrt.org/
http://eprint/

