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Abstract:   There are many methods that are so far developed to classify hyperspectral images. Different from traditional spectral-

spatial classification frameworks where the spectral feature extraction (FE), spatial FE, and classifier training are separated, these 

processes are integrated into a unified network in our model. In this project we are proposing a model using stationary wavelet 

transform (SWT), principal component analysis (PCA) and convolutional neural networks (CNN) for HSI classification. SWT is 

used to extract the meaningful features from the hyperspectral Data. PCA selects a subset of transformed coefficients for 

classification by reducing redundancy which can be also called as dimension reduction (DR) and reshapes the image data to into 

2D from 3D. A CNN will be designed to classify the selected transformed coefficients and predict the accurate output. In this 

project, we are planning to use popular online hyperspectral image dataset to show better accuracy when compared with other frame 

works which are already in implemented. 

 

Index Terms - Convolutional neural network (CNN), dimension reduction (DR), feature extraction (FE), hyperspectral 

image (HSI), Principal component analysis (PCA), Stationary wavelet transform (SWT). 

I. INTRODUCTION 

Hyperspectral image (HSI) classification is more challenging because it contains hundreds of bands in it. In order to 

alleviate this problem, dimensionality reduction methods are proposed, which can be divided into feature selection [16] and feature 

extraction (FE)[15] methods. The main aim of feature selection is to preserve the most representative and crucial bands from the 

original data set and discard those making no contribution to the classification [2]. By designing suitable criteria, feature selection 

methods can eliminate redundancies among adjacent bands and improve the discriminability of different targets [2]. The FE, on the 

other hand, is used to find an appropriate feature mapping to transform the original high-dimensional feature space into a low-

dimensional one. After reducing the dimensions to the required values, we apply for the spatial classification and spectral 

classification to an Image. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with 

the purpose of finding objects, identifying materials, or detecting processes [8]. Engineers build hyperspectral sensors and 

processing systems for applications in astronomy, agriculture, molecular biology, biomedical imaging, geosciences, physics, and 

surveillance. 

Apart from the Hughes phenomenon, the complex spatial distribution and the spectral heterogeneity of the objects also 

make it difficult to achieve a high classification accuracy in HSI. Recent works try to incorporate the spatial feature into 

consideration. Those approaches include gray- level co-occurrence matrix, wavelet transform, Gabor filter, and so on. Among these 

spatial features, mathematical morphological features have received a great attention. Combining opening and closing operations 

with structural elements of different sizes, morphological profiles (MPs) are built and applied to the high-resolution satellite 

imagery in. Considering the high dimensionality of hyperspectral data, the extended MPs (EMPs) are proposed, and MPs are 

computed on the first several principal components of hyperspectral data rather than the original bands, which are then fed into a 

support vector machine (SVM) classifier [8]. The disadvantage of hand-crafted features like EMPs lies on the dependence on 

the prior information (empirical spatial filter parameters) of the designers, resulting in a poor adaptation to different data sets. 

Besides, handcrafted features are regarded as shallow features, lacking of robustness when confronted with complex circumstances, 

where the imaging environment varies so sharply that images may change a lot even within a short interval. From the perspective 

of deep learning, the components of an image are hierarchical. Specifically speaking, pixels are first assembled to form edges; 

edges are then assembled to form parts; parts are finally assembled to form different objects. Therefore, the essential theory of 

deep learning is to learn deep features in a hierarchical way [8]. Compared with the shallow features, high-level features have 

the capability to represent more abstract and complex structure information, thus possessing a greater robustness and  invariance 

toward local changes of the image. In the remote sensing area, the neural network-based methods have been utilized to deal 

with many challenging tasks. Typical deep neural network models include stacked auto encoders (SAEs), deep belief networks 

(DBNs), and convolutional neural net- works (CNNs) based on which a series of methods have been proposed, aiming at the HSI 

classification task In order to alleviate this problem, the CNN-based methods are introduced into the HSI classification task. In 

a 3-D CNN model is proposed, where the convolution operation is applied on the hyperspectral cube to extract deep features. 
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However, 3-D CNN fails to take full advantage of spectral information, bringing about the over smoothing phenomenon, which 

will cause the misclassification for small objects and class boundaries [9]. Zhao and Du proposed a spectral–spatial feature-based 

classification (SSFC) method, using the balanced local discriminant embedding and CNN to extract spectral and spatial features, 

respectively, which are then combined together and fed into the SVM or logistic regression classifier. The SSFC method can be 

summarized as. However, in this framework, FE and classifier training are separated. Both processes have their own objective 

functions and the classifier training may not help to optimize the features under such a condition. The performances of FE and 

classifier training will also influence the classification results of the whole framework, making it hard to obtain a stable accuracy. 

To overcome the aforementioned drawbacks, we propose the spectral–spatial unified networks (SSUNs) for HSI 

classification. As shown in, there are two characteristics of the SSUN [8]. FE and classifier training can share a uniform objective 

function, since all the processes are integrated into a whole neural network. In this way, the training error of the classifier will be 

passed to the features through back propagation, which will make the learned features become more discriminative. Second, different 

from the traditional framework where the spectral FE and the spatial FE are separated, we train the spectral features and the spatial 

features simultaneously in the SSUN. the long short-term memory (LSTM) model is adopted as the spectral feature extractor, which 

is an updated version of recurrent neural networks [8]. As to the spatial FE, a multiscale CNN (MSCNN) is proposed in this paper. 

The major contributions of this paper are summarized as follows. 

1) An end-to-end framework named the SSUN is proposed for HSI classification which integrates the spectral FE, spatial FE, and 

classifier training into a unified neural network [8]. 

2) A band grouping-based LSTM algorithm is proposed for spectral FE. Two novel grouping strategies are proposed to better learn 

the contextual features among adjacent bands for the LSTM. Compared with the traditional band-by-band strategy, the proposed 

methods can prevent a too deep network for the HSI [8]. 

3) The MSCNN is proposed for spatial FE. Different from the traditional CNN which only utilizes the deepest convolutional features 

to complete the classification, the proposed MSCNN combines both shallow and deep convolutional layers in the classification. 

This may be a promising way to deal with the information loss during the convolution and pooling operations in the CNN. Besides, 

the MSCNN also has the property of multi-scale, since features in different layers correspond to different scales [8]. 

The rest of this paper is organized as follows. Section II describes the proposed band grouping-based LSTM algorithm in 

detail. Section III presents the SSUN framework. The information o f  data sets used in this study and the experimental results are 

given in Section IV. Conclusions and other discussions are summarized in Section V. 

II. BAND GROUPING-BASED LSTM ALGORITHM 

In this section, we will first make a brief introduction to the LSTM. Then, the proposed grouping strategies for processing the 

spectral information with the LSTM are presented. 
1. LSTM 

The main challenge when training the RNN is the long-term dependence that gradients tend to either vanish or explode 

during the back propagation stage. To mitigate this problem, a gated RNN called the LSTM is proposed in, which has been 

successfully applied to many tasks, such as natural language processing, handwriting recognition, and land cover change detection. 

The core component of the LSTM is the memory cell which replaces the hidden unit in traditional RNNs. As shown in Fig. 1, there 

are four main elements in the memory cell, including an input gate, a forget gate, an output gate, and a self-recurrent connection [1]. 

The input gate can either allow the income signal to update the state of the memory cell or block it. The output gate will 

control. whether the cell state will have an effect on other neurons at the next time step. The forget gate, on the other hand, will 

modulate the self-recurrent connection of the memory cell, making the cell remember or forget its previous state [8]. The forward 

propagation of the LSTM for time step t is defined  as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Illustration of an LSTM model. 

Input Gate: 

I(t)=σ(Wi x(t) + Ui h(t-1) + bi).  (1) 

Forget Gate: 

f(t) = σ(W f x(t) + U f h(t-1)) + b f ). (2) 

Output Gate: 

o(t) = σ(Wox(t) + Uoh(t-1) + bo).                   (3) 

Cell State: 

C(t)=i(t)×g(Wcx(t)+Uc
h(t-1)+bc)+f(t)×c(t-1)    (4) 

LSTM Output: 

H(t) = o(t) × g(c(t)). 
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Here, Wi , W f , Wo, Wc, Ui , U f , Uo, and Uc are weight matrices. bi , b f , bo, and bc are bias vectors. σ(x) 1/(1+exp(-x )) 

is the sigmoid function and denotes the dot product. Similar to traditional RNNs, the LSTM network can be trained by the mini-

batch stochastic gradient descent with the BPTT algorithm[8]. Refer to for more detailed descriptions. 

 
Fig. 2. Grouping strategy 1. Adjacent bands are divided into the same sequence according to the spectral orders. The bands marked with the same color will be 

fed into the LSTM network at each time step. 

 

2. Band Grouping-Based LSTM Algorithm 

Previous studies have shown that the deep architecture possesses better generalization ability when dealing with the complicated 

spectral structure. By feeding the entire spectral vector into the SAE or DBN, deep spectral features can be learned automatically in 

an unsupervised way. While existing methods focus on the integrality of spectra, the LSTM network pays more attention to the 

contextual information among adjacent sequential data [8]. Therefore, how to divide the hyperspectral vector into different sequences 

in a proper way is crucial to the performance of the network [2]-[6]. A natural idea is to consider each band as a time step and 

input one band at a time. However, hyperspectral data usually have hundreds of bands, making the LSTM network too deep to train 

in such a circumstance. Thus, a suitable grouping strategy is needed [9]. 

Let n be the number of bands and τ be the number of time steps in the LSTM. Then, the sequence length of each time step is 

defined as m floor(n/τ ), where floor(x) denotes rounding down x [4]. For each pixel in the HSI, let z,z1, z2, . . .  zi , . . .  zn be the spectral 

vector, where zi is the reflectance of the ith band. The transformed sequences are then denoted by x,x1, x2, . . .  xi , . . .  xτ , where 

xi is the sequence at the ith time step. In what follows, we use two grouping strategies in this paper. 

Grouping Strategy 1: 

x(1) = [z1, z2, . . .  zm ] 

x(2) = [zm+1, zm+2, . . .  z2m ]. . .   

x(i)
 = [z(i−1)m+1, z(i−1)m+2, . . .  zim ] 

x(τ) = [z(τ−1)m+1,z(τ−1)m+2,...zτm]----(6) 

where x(i) is the sequence at time i[8]. As shown in Fig. 2, strategy 1 focuses on the local features and makes the signals. 

 

Fig. 3. Grouping strategy 2. Every group in this case will cover a large spectral range. The bands marked with the same color will be fed into the LSTM network 

at each time step. 

 

inside a group continuous without any intervals. Each group concentrates on a narrow spectral range. The spectral distance 

between different time steps will be relatively longer under such circumstances [8]. 

Grouping Strategy 2: 

x(1)
 = [z1, z1+τ , . . .  z1+τ(m−1)] 

x(2)
 = [z2, z2+τ , . . .  z2+τ(m−1)] 

x(i) = [zi , zi+τ , . . .  zi+τ(m−1)] 

x(τ ) = [zτ , z2τ , . . .  zτ m]------------ (7)  

 

3. MATERIALS AND METHODS 

  The materials and methods related to our discussion has three functions and is concerned to Stationary Wavelet 

Transform, Principal Component Analysis and Convolutional Neural Networks [2]. 

 

A. Stationary Wavelet Transform (SWT): 

       Stationary wavelet transform helps to identify the image edge features coefficients. By this image edge features 

we can differentiate the parts in the image and this will make Feature Extraction much easier [2],[8],[19].  

 

B. Principal Component Analysis (PCA): 

             Principal Component Analysis (PCA) is a Widely using dimensionality -reduction method. This is often used 

to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still 

contains most of the information of the large set [20].  
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C. Convolutional Neural Network (CNN): 

              A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take in an input image, 

assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate 

one from the other. 

 
 

III. SSUN (SPECTRAL AND SPATIAL UNIFIED NETWORK) 

Spectral FE and spatial FE are very important processes for the HSI classification. Previous works usually extract the 

spectral features and spatial features independently. Besides, the FE and classifier training are also separated from each other. Then 

both spectral FE, spatial FE, and classifier training will have their own objective functions, making the whole framework more 

complicated. In this section, we will introduce the proposed SSUN framework, which integrates the  spectral FE, spatial FE, and it 

will classifier training into a unified neural network. the true label, and m is the size of training set. The whole network is trained in 

an end-to-end manner, where all the parameters are optimized by the mini-batch stochastic gradient descent algorithm at the same 

time. The implementation details of the proposed SSUN are shown in Algorithm 1. 

 

Algorithm 1:-  Proposed SSUN Framework 

Input:  
1) A HSI with ground-truth.  

2) The number of time steps τ , the number of reserved principal components (PCs) p, the size of patches w.  

Step 1: For each pixel in the HSI, divide the hyperspectral vector into τ sequences by (6) or (7) as the spectral features.  

Step 2: Apply PCA to the HSI and reserve the first p PCs.  

Step 3: Around each pixel in the dimension reduced HSI, extract a patch with the size of w × w × p as the spatial features.  

Step 4: Initialize the weights in the network with random values which are subject to Gaussian distribution with a mean of 0 and a 

standard deviation of 0.1. The bias terms are initialized with 0.  

Step 5: Input the training samples to the network and optimize it with the mini-batch stochastic gradient descent algorithm.  

Step 6: For each pixel in the HSI, input the corresponding spectral and spatial features to the network to complete the classification 

of the whole image.  

Output: A two dimensional matrix which records the labels of the HSI[8]. 

 

 

IV. RESULTS AND DISCUSSION 
  

4.1 Results of Descriptive Statics of Study Variables 

Data Description and Experimental Design In our experiments, classical hyperspectral dataset, Indian Pines, is utilized to 

evaluate the performance of the proposed method. The data set is gathered by the Airborne Visible/ Infrared Imaging Spectrometer 

(AVIRIS) sensor over the Indian Pines test site in Northwestern Indiana [11]-[12]. After the removal of the water absorption bands, 

the image consists of 200 spectral bands with 145 × 145 pixels. It has a spectral coverage from 0.4 to 2.5 μm and a spatial resolution 

of 20 m. The false-color composite of the Indian Pines image and the corresponding ground truth map are shown in Fig.4. The 

training and test set are listed in Table I. The experiments are conducted in three parts. The first two parts analyze the LSTM and 

the MSCNN, respectively [2]. The third part reports the performance of the proposed SSUN and comparing methods [8]. All the 

experiments in this paper are randomly repeated 25 times with random training and test data. In each repetition, we first randomly 

generate the training set from the reference data. Then, the remaining reference samples make up the test set. The OA and Kappa 

coefficient are utilized to quantitatively estimate different methods. Both the average value and the standard deviation are reported. 

 

4.1.1  Figures and Tables 

 

FIG. 4. FALSE-COLOR IMAGE AND GROUND-TRUTH MAP FOR THE INDIAN PINES DATA SET. 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                   © 2021 IJCRT | Volume 9, Issue 5 May 2021 | ISSN: 2320-2882 

IJCRT2105138 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b297 
 

TABLE I 

Number  of  training  and  test  samples  used in the Indian pines data set 

# Class Training Testing 

1 Alfalfa 30 16 

2 Corn-notill 1278 150 

3 Corn-mintill 680 150 

4 Corn 137 100 

5 Grass-pasture 333 150 

6 Grass-trees 580 150 

7 Grass-pasture-mowed 20 8 

8 Hay-windrowed 328 150 

9 Oats 15 5 

10 Soybean-notill 822 150 

11 Soybean-mintill 2305 150 

12 Soybean-clean 443 150 

13 Wheat 150 55 

14 Woods 1115 150 

15 Buildings-Grass-Trees-Drives 336 50 

16 Stone-Steel-Towers 43 50 

 Total 8615 1634 

 

FIG. 5. CLASSIFICATION MAPS FOR THE INDIAN PINES DATA SET. (A) FALSE-COLOR IMAGE. (B) GROUND-TRUTH MAP. (C) RAW. (D) PCA. (E) LSTM  (F) MSCNN. (G) 

SSUN. 
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Table II  

Classification results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

In this project, we are planning for a model for classifying hyperspectral images using SWT, PCA and CNN. Instead of directly 

applying the raw image to the CNN, priority is made to extract the SWT coefficients which provide better spectral information. 

PCA is applied to reduce the dimension of resulting coefficients. CNN works on the reduced coefficients to provide a classification 

map. Experiments are conducting on a standard hyperspectral image dataset (Indian pines) to validate the model and it is expected 

that SWT-PCA-CNN model will achieve a classification accuracy of 98.13% Which is better than its counterparts that are already 

in existing with other models. 
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Class RAW PCA LSTM MSCNN SSUN 

1 83.12 83.54 81.17 99.79 100 

2 73.86 67.79 76.22 96.68 94.96 

3 76.79 72.74 72.95 98.61 96.36 

4 
83.11 

80.87 82.97 99.73 96.85 

5 94.73 93.88 87.26 99.39 98.01 

6 97.75 96.02 91.03 99.27 99.55 

7 87.91 87.91 82.08 100 99.58 

8 98.1 97.9 97.3 99.96 100 

9 96 80.66 93.66 100 100 

10 83.47 73.23 84.86 97.85 98.15 

11 68.18 62.04 71.25 95.67 97.65 

12 82.11 74.45 82.82 99.17 99.62 

13 99.33 98.3 96.45 100 100 

14 93.21 93.4 91.69 99.19 99.59 

15 57.93 46.54 59.66 98.78 99.22 

16 95.34 91.39 93.02 99.37 100 

OA(%) 79.68±0.87 74.72±0.99 81.71±1.54 96.82±0.99 98.13±1.05 

Kappa 

*100 

76.68±0.97 71.05±1.18 78.46±1.12 95.15±0.55 96.27±0.99 

Runtime 4.93±0.06 0.95±0.03 39.9±0.32 55.03±0.38 104.36±0.60 
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