ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

α*-Normal Spaces

Jitendra Kumar and B. P. Singh

Department of Mathematics

S.S.M.V. (P.G.) College Shikarpur-203395 and J. V. Jain College, Saharanpur -247001(U.P.) India

Abstract: In this paper, we established and study a new class of spaces, called α^* -normal spaces. The relationships among normal, α -normal and α^* -normal spaces are investigated. Moreover, established some functions related with α^* -normal spaces and obtain some preservation theorems of α^* -normal spaces.

Keywords: α^* -open, α -open, α^* -normal, α -normal spaces.

2010 AMS Subject Classification: 54A05, 54C08, 54C10, 54D15.

1. Introduction

In 1937, Stone [11] established the concept of regular-open sets. In 2014, Thakur C. K. Raman et al. [12] established the concepts of α^* -generalized and α^* -separation axioms in topological spaces and obtained their properties. In 2020, Hamant Kumar [4] established the concepts of ii-normal spaces and its properties.

2. Preliminaries

2.1 Definition. A subset A of a topological space X is said to be

- 1. regular open [11] if A = int(cl(A)).
- 2. **\alpha-open [9]** if cl(int (cl(A))) \subset A.
- 3. *a**-open [12] if $F \subset \alpha$ -int(A) whenever F is α g-closed and $F \subset A$.

The complement α^* -closed set is α^* -open set.

4. The complement of regular open (resp. α *-open, α -open) set is said to be regular closed (resp. α *-closed, α -closed). The intersection of all α *-closed sets containing A is called the α *-closure of A and denoted α *-cl(A). The union of all α *-open subsets of X which are contained in A is called the α *-interior of A and denoted by α *-int(A). The family of all regular open (resp. regular closed, α -closed, α *-closed) sets of a space X is denoted by R-O(X) (resp. R-C(X), α -C(X), α *-C(X))).

We have the following implications for the properties of subsets :

open
$$\Rightarrow$$
 α -open \Rightarrow α^* -open

Where none of the implications is reversible as can be seen from the following examples.

2.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then

1) closed sets in X are X, ϕ , {d}, {c, d}, {a, c, d}, {b, c, d}.

2) α -open sets in X are ϕ , X, {a}, {b}, {a, b}, {a, b, c} {a, b, d}.

3) α^* -open sets in X are ϕ , X, {a}, {b}, {a, b}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}. Here we see that {b, c} is α^* -open but neither α -open nor open.

2.3. Example. Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, X\}$. Then

1) closed sets in X are X, ϕ , {d}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.

2) α -open sets in X are ϕ , X, {a}, {b}, {a, b}, {a, c}, {a, b, c}, {a, b, d}.

3) α^* -open sets in X are X, ϕ , {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Here {a, b, d} is α -open as well as α^* -open but not open.

3. α*-Normal Spaces

3.1. Definition. A topological space X is said to be α^* -normal if for every pair of disjoint closed subsets H, K, there exist disjoint α^* -open sets U, V of X such that $H \subset U$ and $K \subset V$.

3.2. Definition. A topological space X is said to be α -normal [1] if for every pair of disjoint

closed subsets H, K, there exist disjoint α -open sets U, V of X such that $H \subset U$ and $K \subset V$.

3.3. Definition. A topological space X is said to be **quasi** α *-normal [7] if for every pair of disjoint π -closed subsets H, K, there exist disjoint α *-open sets U, V of X such that H \subset U and K \subset V.

3.4. Definition. A topological space X is said to be **almost** α^* -normal [6] if for any two disjoint closed subsets A and B of X, one of which is regular closed there exist disjoint α^* -open sets U and V of X such that A \subset U and B \subset V.

3.5. Definition. A topological space X is said to be **mildly** α *-normal [8] if for any two disjoint regular closed subsets A and B of X, there exist disjoint α *-open sets U and V of X such that A \subset U and B \subset V.

3.6. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \phi$ and $B = \{c\}$. Also $U = \{a\}$ and $V = \{b, c, d\}$ are disjoint α^* -open sets such that $A \subset U$ and $B \subset V$. Hence X is normal as well as α^* -normal because every open set is α^* -open set.

3.7. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. The pair of disjoint closed subsets of X are A = $\{a\}$ and B = $\{b, c\}$. Also U = $\{a\}$ and V = $\{b, c\}$ are open sets such that A \subset U and B \subset V. Therefore X is normal as well as almost normal.

3.8. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is almost normal but it is not normal.

3.9. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. The pair of disjoint closed subsets of X are $A = \{b\}$ and $B = \{c\}$. Also $U = \{a, b\}$ and $V = \{c\}$ are disjoint α^* - open sets such that $A \subset U$ and $B \subset V$. Hence X is α^* -normal. **3.10. Example.** Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}, X\}$. The pair of regularly disjoint closed subsets of X are $A = \{b, d\}$ and $B = \{c\}$. Also $U = \{a, b, d\}$ and $V = \{c\}$ are disjoint α^* - open sets U and V such that $A \subset U$ and $B \subset V$. Hence X is mildly α^* -normal.

3.11. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a\}$ and $B = \{b\}$. Also $U = \{a\}$ and $V = \{b\}$ are disjoint α^* -open sets such that $A \subset U$ and $B \subset V$. Hence X is quasi α^* -normal.

By the definitions and examples stated above, we have the following diagram:

normal $\Rightarrow \alpha$ -normal $\Rightarrow \alpha^*$ -normal

3.9. Theorem. For a topological space X, the following are equivalent :

(a) X is α^* -normal.

(b) For any pair of open sets U and V whose union is X, there exist α^* -closed

sets A and B such that $A \subset U$ and $B \subset V$ and A union B = X.

(c) For any closed set F and each open set E, there exists an α^* -open set G such that $F \subset G \subset \alpha^*$ -cl(G) $\subset E$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (a).

(a) \Rightarrow (b). Let U and V be any pair of open sets in a α^* -normal space X = U union V. Then X – U and X – V are disjoint closed sets of X. By assumption, there exist disjoint α^* -open sets U₁, V₁ such that X –U \subset U₁ and X – V \subset V₁. Let A = X – U₁ and B = X – V₁. Then A and B are α^* -closed sets such that A \subset U, B \subset V and A union B = X.

(b) \Rightarrow (c). Let F is a closed set and E is an open set containing F. Then X – F and E be open sets whose union is X. Then by (b), there exist α^* -closed sets F₁ and F₂ such that F₁ \subset X – F and F₂ \subset E and F₁ union F₂ = X. Then F \subset X – F₁ and X– E \subset X – F₂ and (X – F₁) \cap (X – F₂) = ϕ . Let U = (X – F₁) and V = (X – F₂). Then U and V are disjoint open sets such that F \subset U \subset X – V \subset E. As X – H is α^* -closed set, we get α^* -cl(U) \subset X – H and F \subset U $\subset \alpha^*$ cl(U) \subset E.

(c) \Rightarrow (a). Let C₁ and C₂ are any two disjoint closed sets of X. Put $E = X - C_2$ then $C_2 \cap E = \phi$. C₁ \subset E, where E is an open set. Then by (c), there exists a α^* -open set U of X such that C₁ \subset U $\subset \alpha^*$ -cl(U) \subset E. It follows that C₂ \subset X $- \alpha^*$ -cl(U) = V, say, then V is α^* -open and G \cap H = ϕ . Therefore C₁ and C₂ are separated by α^* -open sets U and V. Hence X is α^* -normal.

4. Some functions with α*-normal spaces

4.1. Definition. Let (X, τ) be a topological space. A subset $L \subset X$ is said to be an α^* -neighbourhood (briefly α^* -nhd) of a point x belongs to X if there exists an α^* -open set M such that x belongs to $M \subset L$.

4.2. Definition. A function $f: X \to Y$ is said to be

1) **R-map [3]** if $f^{-1}(A)$ be a regular open in topological space X for each regular open set A of Y.

2) completely continuous [2] if $f^{-1}(A)$ be a regular open in X for each open set A of Y.

3) **rc-continuous** [5] if for every regular closed set B in Y, then $f^{-1}(B)$ be a regular closed in X.

4.3. Definition. A function $f: X \to Y$ is said to be

1) softly α^* -open if f(G) belongs to α^* -O(Y) for every G belongs to α^* -O(X).

2) softly α^* -closed if f(G) belongs to α^* -C(Y) for every G belongs to α^* -C(X).

3) **almost** α^* -irresolute if for each p belongs to X and every α^* -neighbourhood N of f(x), α^* -cl(f⁻¹(N)) is a α^* -neighbourhood of p.

4.4. Theorem. A function $f: X \to Y$ be a softly α^* -closed iff for every subset A in Y and for every α^* -open set G in X containing $f^{-1}(A)$, there exists an α^* -open set H containing A such that $f^{-1}(H) \subset U$.

Proof. Let f is softly α^* -closed set. Let A be a subset of Y and G belongs to α^* -O(X) containing f⁻¹ (A). Put H = Y – f(X – G), then H is a α^* -open set of Y such that A \subset H and f $^{-1}$ (H) \subset U.

4.5 Lemma. For a function $f: X \to Y$, the following are equivalent:

1) f is almost α^* -irresolute.

2) $f^{-1}(V) \subset int \alpha^*(int-cl(f^{-1}(V)))$ for each V belong to int-O(Y).

4.6. Theorem. A function $f: X \to Y$ is almost int-irresolute iff $f(int-cl(U)) \subset int-cl(f(U))$ for each U belongs to int-O(X).

Proof. Let U belongs to int-O(X). Let y does not belong to int-cl(f(U)). Then there exists V belongs to int-O(Y) such that $V \cap f(U) = \phi$. Therefore $f^{-1}(V) \cap U = \phi$. Since U belongs to int-O(X), we have $int-\alpha^*(int-cl(f^{-1}(V))) \cap int-cl(U) = \phi$. Then by **Lemma 4.5** $f^{-1}(V) \cap int-cl(U) = \phi$ and so $V \cap f(int-cl(U)) = \phi$. This implies that y does not belong to f(int-cl(U)).

If V belongs to int-O(Y), then $M = X - \text{int-cl}(f^{-1}(V))$ belong to int-O(X). By hypothesis, $f(\text{int-cl}(M)) \subset \text{int-cl}(f(M))$ and so $X - \text{int-}\alpha^*(\text{int-cl}(f^{-1}(V))) = \text{int-cl}(M) \subset f^{-1}(\text{int-cl}(f(M))) \subset$ $f^{-1}(\text{int-cl}(f(X - f^{-1}(V))) \subset f^{-1}(\text{int-cl}(f(Y - V)) = f^{-1}(Y - V) = X - f^{-1}(V)$. Hence, $f^{-1}(V)$ $\subset \text{int-}\alpha^*(\text{int-cl}(f^{-1}(V)))$. By Lemma 4.5, f is almost int-irresolute.

4.7. Theorem. If $f: X \to Y$ is a softly α^* -open continuous almost α^* -irresolute function from α^* -normal space X onto a space Y, then Y is α^* -normal.

Proof. Let F_1 be closed subset of Y and F_2 be an open set containing F_1 . Then by continuity of f, $f^{-1}(F_1)$ is closed and $f^{-1}(F_2)$ is an open set of X such that $f^{-1}(F_1) \subset f^{-1}(F_2)$. Since X is α^* -normal, there exists α^* -open set G in X such that $f^{-1}(F_1) \subset U \subset \alpha^*$ -cl(G) $\subset f^{-1}(F_2)$ by **theorem 3.9**. Then, $f(f^{-1}(F_1)) \subset f(U) \subset f(\alpha^*$ -cl(U)) $\subset f(f^{-1}(F_2))$. Since f is softly α^* -open

almost α^* -irresolute surjection, we obtain $F_1 \subset f(U) \subset \alpha^*$ -cl(f(U)) $\subset F_2$. Then by **Theorem 3.9**, the space Y is α^* -normal.

4.8. Theorem. If $f : X \to Y$ is a softly α^* -closed continuous function from α^* -normal space X onto a space Y, then Y is α^* -normal.

Proof. Let F_1 and F_2 be disjoint closed sets. Then $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are closed sets. Since X is α^* -normal, then there exist disjoint α^* -open sets G and H such that $f^{-1}(F_1) \subset G$ and f^{-1}

(F₂) \subset H. By **Theorem 4.4**, there exist α^* -open sets A and B such that F₁ \subset A and F₂ \subset B, f⁻

 $^{1}(A) \subset G$ and $f^{-1}(B) \subset H$. Also, A and B are disjoint. Hence, Y is α^{*} -normal.

4.9. Theorem. A function $f : X \to Y$ is said to be α -closed [10] if for every closed set in X, f(G) is α -closed set in Y.

4.10. Theorem. If $f: X \to Y$ is a α^* -closed continuous surjection and X is normal, then Y is α^* -normal.

Proof. Let F_1 and F_2 be disjoint closed sets of Y. Then $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are closed sets of X by continuity of f. Since X is normal, then there exist disjoint open sets G and H such that $f^{-1}(F_1) \subset G$ and $f^{-1}(F_2) \subset H$. By **Theorem 4.3**, there exist α -open sets U and V in Y such that $F_1 \subset U$ and $F_2 \subset V$. Since each α -open set is α *-open, U and V are disjoint α *-open sets containing F_1 and F_2 , respectively. Hence, Y is α *-normal.

REFERENCES

1. A. V. Arhangelskii and L. Ludwig, On α -normal and β -normal spaces, Comment. Math. Univ. Carolin., 42(3) (2001), 507-519.

2. S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J., 14 (1974), 131-141.

3. D. Carnahan, Some properties related to compactness in topological spaces, Ph.D. thesis, university of Arkansas, 1973.

4. Hamant Kumar, ii-normal spaces in topological spaces, *Journal of Emerging Technologies* and *Innovative Research (JETIR)*, **7**(2020), no.8, 1510-1520.

5. D. S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar, 46 (1-2) (1985), 83-92.

6. Jitendra Kumar and Hamant Kumar, Almost α^* -Normal spaces and $g\alpha^*$ -Closed sets, Internat. Journal of Research and Analytical Reviews, **6**(2019), no.1, 368-373.

7. Jitendra Kumar and Anuj Kumar, Quasi α^* -Normal spaces, Internat. Journal of Research and Analytical Reviews, 7(2020), no.4, 594-600.

8. Jitendra Kumar and B. P. Singh, Mildly α^* -Normal spaces and rg α^* -Continuous Functions, Internat. Journal of Creative Research Thoughts, **8**(2020), no.11, 2019-2025.

9. O. Njastad, On some classes of nearly open sets, Pacific J. Math.

15(1965), 961-970.

10. T. Noiri, almost continuity and some separation axioms, Glansic Math., 9(3), (1974), 131-135.

M. H. Stone, Applications of the theory of Boolean rings to general topology. Trans.
Amer. Math. Soc. 41(1937), 375-381.

 Thakur C. K. Raman, Vidyottama Kumari and M. K. Sharma, α*-open sets and α*-separation axioms in topological spaces, IOSR J. of Math. (IOSR-JM), **10**(2014), no.3, 32-36.