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Abstract: The purpose of this paper is to use some new techniques to obtain 

 new oscillation conditions for equation 

                               
   0,0)()()()(  xkxyxqxyxpxy                                  (1) 

where )(xp  and )(xq are right continuous functions on   kk ,,  is a positive integer,  

and  . denotes the greatest integer function. Our results improve and generalize the known 

 results in the literature. 
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1. INTRODUCTION 

        In this chapter we consider the delay differential equation with piecewise constant 

argument of the form 

                                    
   0,0)()()()(  xkxyxqxyxpxy                                  (1) 

where )(xp  and )(xq are right continuous functions on   kk ,,  is a positive integer, and  .

denotes the greatest integer function. When 0)( xp  (1.1) reduces to 

                                        
   0,0)()(  xkxyxqxy                                        (2) 

          Delay differential equations with piecewise constant arguments represent continuous 

and discrete dynamical systems and combine the properties of both differential and difference 

equations. They have particular importance in control theory and certain biomedical problems. 

There have been many papers concerning these equations; see also [1-16]. Most of these 

papers deal with the constant coefficients case (autonomous equations) or the case when
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0)( xq . In particular, there is little in the way of results for the general case where the 

coefficient b(t) is oscillatory.  

      By a solution of (1) we mean a function )(xy  which is defined on the set        

    ,00,1,...,1, kk   and which satisfies the conditions: 

(i) )(xy is continuous on  ,0 ; 

(ii) The derivative )(xy   exists at each point   ,0x , with the possible exception of the 

points     ,0x , where one side derivatives exist; 

(iii) Equation (1.1) is satisfied on each interval  1, nn  for )0(Nn , where 

 ,,...1,:)( 000  nnnN and 0n  is any integer. 

        A nontrivial solution of (1) is said to be oscillatory if it has arbitrarily large zeros. 

otherwise, it is said to be nonoscillatory. 

         The purpose of this paper is to use some new techniques to obtain new oscillation 

conditions for equations (1) and (2) with oscillating coefficients. Our results improve and 

generalize the known results in the literature. Some examples are also given to demonstrate 

the advantage of our results. 

 

2. MAIN RESULT 

THEOREM 2.1.Assume that 

(i) There exist a sequence of intervals   
1

,
nnn ml  such that  nn ml ,  are integers,

1 nn lm  and klm nn 2  for ...,3,2,1n   and that  

                         0)( xq , for  nnn mlx ,1



 ;                                          (3) 

(ii)   
  





























0

)(sgn1)(ln)( dxdttqdttqexq

kx

x

kx

x

                                               (4) 

    where 

 

   



































.,,,0,0

;,),(

)(

1

11

1





n

nn

n

nn

klmklx

mklxxq

xq
 

       then all solutions of the differential equations (2) Oscillates. 

 PROOF. Assume , for the sake of contradiction, that equation (2) has an eventually 

positive solution )(xy  Then there exists an integer 1j  such that 

                                     .,0)2( jlforxkxy                                                    (5) 

First, we claim that  

                                   
.,1)(





kx

x

jlforxdttq                                                      (6) 

In fact by the definition of )(xq , we have 

                                       ),()( xqxq   for  





jn

nn mlx ,                                       (7) 
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





jn

nn mlxkxyxqxy ],[,0])([)()(                                 (8) 

which implies that )(xy  is nonincreasing on ],[ nn ml  for .jn   We consider four possible 

cases 

CASE 1.  





jn

nn kmklx , . From (8), we have 

  




kx

x

dtkxytqxykxy ,0)()()(  

which, by using the nonincreasing nature of  )(xy  on ],[ nn ml  for ,in   yields 

.)()(])([)()( 




kx

x

kx

x

dttqxydtkxytqxy  

and so 

                                                      





kx

x

dttq 1)(                                                             (9) 

CASE.2. 





jn

nn mkmx ],(   it follows from (9) that 

                                      

1)()()(   
 

 

kx

x

kx

km

m

kmn

n

n

dttqdttqdttq                                (10) 

CASE.3. .),[





jn

nn kllx  From (9), we have 

                                    
 












kx

kl

kl

kl

kx

x n

n

n

dttqdttqdttq

2

1)()()(                                       (11) 

CASE.4. 





jn

nn lmx ],[ 1 . By the definition of )(xq  we have 

                                                

0)( 
kx

x

dttq .                                                         (12) 

combining cases 1-4, we see that (6) holds. 

Second, we claim that there exists a sequence of real numbers  i  such that 


i
i

lim  

and that 

                                             




 )(

)(
suplim

i

i

i y

ky




                                                   (13) 
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in fact, it follows from (4) that 






kx

x
x

dttq 0)(suplim , which, together with (10)-(12), yields 

that there exists a sequence of integers   ...21  nnkni  and  kmklx
ii nni  ,  and 

0c such that 






kx

x

i

i

cdttq 2)(    ...3,2,1i  

Thus, there exists   ,...2,1,,  ikxx iii   such that 

                                                      

cdttq
i

ix




)( and 




kxi

i

cdttq


)(                                  (14) 

From (8), we have 

                                               
 

i

ix

ii dtkxytqxyy



 0])([)()()(                           (15) 

and 

                                                                






kx

ii

i

i

dtkxytqykxy


 0])([)()()(                                           (16) 

Using the nonincreasing nature of )(xy in ],[
ii nn ml , from (14)-(16), we get 

0)()(  kcyxy ii   and 0)()(  ii xcyy  , 

or 

2

1

)(

)(

cy

ky

i

i 





,             ,...3,2,1i  

which implies that the second claim holds. 

It is the time to complete the proof of theorem 2.1 

Set 
)(

)(
)(

xy

xy
x


  for klx j  . Then 0)( x for 






jn

nn mlx ],[ , and 

                                             

,,)(exp)()( j

x

kx

ltdttxqx 













 



                                     (17) 
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or 

                                 

j

x

kx

kx

x

kx

x

lxdttdttqxqdttqx 



























  



 

,)(exp)()()()(
][

                   (18) 

it is easy to show that 

                 ,sgn1ln)()()( ueuuyuueu y    for 0u  and Ry                      (19) 

where 0)0(   and 0)( u  for 0u   

            We consider the two possible cases. 

CASE.1.  





jn

nn xqmlx )(:,  is right continuous because )(xq is right continuous, and so






kx

x

dttq 0)( implies that 0)( xq . Employing inequality (19) in (18), we get 

   




 
















kx

x

x

kx

kx

x

kx

x

dttqdttqexqdttxqdttqx
][

)(sgn1)(ln)()()()()(   

CASE.2.   0)(., 1 




 xqlmx
jn

nn  and so 

   




 
















kx

x

x

kx

kx

x

kx

x

dttqdttqexqdttxqdttqx
][

)(sgn1)(ln)()()()()(   

combining case 1, case 2, we obtain for jlx   

   




 
















kx

x

x

kx

kx

x

kx

x

dttqdttqexqdttxqdttqx
][

)(sgn1)(ln)()()()()(       

Thus, for 1i

  
dxdttqdttqexqdtdxtxqdtdxtqx

i

in

i

in

i

in kl

x

kx kl

kx

x

kx

xkl

kx

x

     
  

 




















 


][

)(sgn1)(ln)()()()()(

                                                                                                                                                       (20) 

By interchanging the order of integration, we find that 
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  




 


i

in

i

in kl

kx

xkl

x

kx

dtdxtqxdxdttxq



 )()()()(
][

 

substituting it into (20), we have 

dxdttqdttqexqdtdxtqx
i

in

i

i kl

kx

x

kx

xk

kx

x

   


 
























 )(sgn1)(ln)()()(
 

it follows that (6) that 

dxdttqdttqexqdxx
i

in

i

i kl

kx

x

kx

xk

  


 





















 )(sgn1)(ln)()(
 

or 

dxdttqdttqexq
y

ky i

in kl

kx

x

kx

xi

i

  


 






















)(sgn1)(ln)(

)(

)(
ln  

taking the superior limit as i , by using (13), we get 














  





 

dxdttqdttqexq
kl

kx

x

kx

x
in

)(sgn1)(ln)(
 

This contradicts (4) and completes the proof. 

THEOREM 2.2.  Assume that 0)( xq  for 0x and 

                                      














  

  

dxdttqdttqexq

kx

x

kx

x0

)(sgn1)(ln)(
                           (21) 

Then all solutions of the differential equation (2) oscillate. 

      The conclusion of theorem 2.2 follows from a similar argument to that in Theorem 2.1. 

We omit the details here. 
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THEOREM 2.3. Assume that 

(i) There exists a sequence of intervals   
1

,
nnn ml  such that nn ml , are integers, 

1 nn lm  and klm nn 2  for ,...,2,1n  and that 

0)( xq For  





1

,
n

nn mlx   

(ii) 












  

  

dxdttadttaexa

kx

x

kx

x0

)(sgn1)(ln)(  

where 

 

 

 








































































klmklt

mjkltdttaxq

jiiklikltdttaxq

xa

n

nn

nnn

x

jl

nnn

x

il

nn

n


1

11 ,,0,0

;,,)(exp)(

1,...1,0,1,,)(exp)(

)(
 

 

and nj is an integer such that nnnn mjklm 1  

Then all solutions of equation (1) oscillate. 

PROOF. First, we claim that all solutions of differential equation (1) oscillate if and only if 

all solutions of the differential equation 

                                      
   ,0,0)()(  xkxzxaxz                                   (22) 

oscillate, where 

                             

  )0(,1,,)(exp)()( Nnnnxdttpxqxa

x

kn














 



                   (23) 

Indeed, let 𝑥(𝑡) be a solution of equation (1)then for any )0(Nn , equation (1) can be written 

as  

   0)(exp)(exp)()(exp)(
00


































































knx

kn

x

dttpkxydttpxqdttpxy  

Let 

   

 1,,)(exp)()(,)(exp)()(
0




























 



nnxdttpxyxzdttpxqxa

xx

kn

 .         (24) 

Then, we obtain for   )0(,1, Nnnnx  . 

   0,0)()(  xkxzxaxz  
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It follows from (24) that all solutions of equation (1) oscillates if and only if all solutions of 

(22) oscillate.  

The conclusion of the theorem follows from the above claim and Theorem 2.1 immediately 

from Theorem 2.2 and the proof of Theorem 2.3, we have the following theorem. 

THEOREM 2.4.Assume that 0)( xq  for 0x  and  

                                      














  

  

dxdttadttaexa

kx

x

kx

x0

)(sgn1)(ln)(                                    (25) 

where 

                                    

  )0(,1,,)(exp)()( Nnnnxdttpxqxa

x

kn














 



                             (26) 

Then the solutions of the differential equation (1) oscillate. 

EXAMPLE 2.1.Consider the equation  

                             
   0,01)()(

2

1
)( 


 xxyxqxy

x
xy                                (27) 

where 

  )0(,1,,
3

sin
2

1
)( Nnnnxxp

x

n
xq 







 

and 
3

)32(4 3/33/1 
p .  

 

Let 36,6  nmnl nn . Then condition (i) in Theorem 2.3 holds, and by simple calculation 

we obtain 

 

   






































0

0

76,361,0,0

,36,16,
3

sin

)(

n

n

nnx

nnxxp

xa



  

 

it is not difficult to see that 

dxdttadttaexa

x

x

x

x

   














 6

0

1 1

)(sgn1)(ln)(  

                                               

   


















 3

2

32

1

1

3
sinln

3
sin

3
sinln

3
sin dxtdtpexpdxtdtpexp

x

x

x


 

                                                

 
,0

4

3227
ln

2

3
3

3
3







pp
 

and so 














  

  

dxdttadttaexa

x

x

x

x0

1 1

)(sgn1)(ln)(    
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Thus, by theorem 2.3, all solutions of equation (27) oscillate. 

REMARK 2.1.It should be noted that 0)( xq  for   ,...2,1,6123  kkxk and so the 

coefficient )(xq is oscillatory. Thus, the above example does not satisfy the know oscillation 

conditions in the literature. 

EXAMPLE 2.2.Consider the equation 

                                   0,01)()(
2

1
)( 


 xxyxqxy

x
xy                             (28) 

where 

 

 
  ;29,...,1,0,1500,500,

)1(500,30500,0
2

1500

)( 












 iililx

llx
x

pil

xq  

)0(Nl and .130/29  pe   

It is easy to see that for )0(Nl , 

 
 









,)1(500,30500,0

;30500,500,
)(

llx

llxp
xa  

and 

  0ln)(sgn1)(ln)( 3029

500

0

1 1














  

 

aepdxdttadttaexa

x

x

x

x

 

It follows that 














  

  

dxdttadttaexa

x

x

x

x0

1 1

)(sgn1)(ln)( . 

Therefore, by theorem 2.4, all solutions of equation (28) oscillate. 

REMARK 2.2.Let  

 































11

)(exp)(,)(exp

n

n

x

n

n

n

n

n dxdttpxqbdttpa  

Then it is not difficult to see that 

                                             

 




 














1

1

1 )(exp)(

n

n

x

n

nn dxdttpxqab  










,499,...31,30,500,0

;29,...,1,0,500,1

jjln

iilnp
 

where )0(Nl ,and so 

,1)(exp)(suplimsuplim

1

1

1 












  









adxdttpxqab

n

n

x

n
n

nn
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,
4

1
0)(exp)(infliminflim

1

1

1 












  









n

n

x

n
n

nn
n

dxdttpxqab  

and when   2/5330/29  pe , for any integer 0l  

1...suplim 72

0 0

211 















 




aaaaabab
l

i

i

j

jnjnnn
n

. 

Therefore, all known results in the literature (see[6,10,11,16]) cannot be applied to (28) 
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