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1. Introduction and Preliminaries 

 

The metric fixed point theory is very important and useful in Mathematics. It can be applied in various areas to find the solution, for 

instant, in computer science, optimization, approximation theory, image processing as well as in economical problems. The first result 

of fixed point theorem is given by  Banach S. [4] by the general setting of complete metric space using which is known as Banach 

Contraction Principle. There are many researchers generalized this contraction principle in different directions 

In 1969, one of the most beautiful generalization of Banach contraction principle [1] is presented by Fan [2] which is known as  best 

approximation theorem.  

Theorem-1 If A is a nonempty convex subset of a Hausdorff locally convex topological vector space B and 𝑆: 𝐴 →  𝐵 is continuous 

mapping, then there exists an element 𝑥 ∈  𝐴 such that 𝑑(𝑥, 𝑆𝑥)  =  𝑑(𝑆𝑥, 𝐴). 

The concept of coupled best proximity point theorem is introduced by  W. Sintunavarat and P. Kumam [4] and proved coupled best 

proximity theorem for cyclic contraction. It should be clear that we can find a best proximity point in place of fixed point, if the fixed 

point does not exist. This best proximity point is much closer to the fixed point. If this distance is equal to zero then the best proximity 

point is called fixed point. Here one of the two things is important for best proximity point either distance must be equal to zero or very 

near to zero. If this condition does not exist then the point is not a best proximity point. In this condition we move to find another 

function which provides the distance must be closed to zero. So our purpose of this article is to generalized the result of [4] also we 

give an example in support of our main theorem. 
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Now we recall some basic definitions and examples that are related to the main results of this article. 

Throughout this article we denote by 𝑁 the set of all positive integers and by 𝑅 the set of all real numbers. For nonempty subsets A and 

B of a metric space (𝑋, 𝑑), we let 

    𝑑(𝐴, 𝐵) =  𝑖𝑛𝑓  { 𝑑(𝑥, 𝑦): 𝑥 ∈  𝐴  𝑎𝑛𝑑  𝑦 ∈  𝐵}   

stands for the distance between A and B. 

A Banach spaces X is said to be 

i. strictly convex if the following implication holds for all  𝑥, 𝑦 ∈ 𝑋: 

    ‖ 𝑥 ‖ = ‖ 𝑦 ‖ =  1  𝑎𝑛𝑑   𝑥 ≠  𝑦  ⇒ ‖
𝑥 + 𝑦

2
  ‖  <  1.    

ii. uniformly convex if for each 𝜖 with  0 <  𝜖 ≤  2, there exists  𝛿 >  0 such that the following implication holds for all 𝑥, 𝑦 ∈

 𝑋: 

       ‖ 𝑥 ‖≤  1, ‖𝑦 ‖≤  1   𝑎𝑛𝑑   ‖𝑥 −  𝑦‖ ≥ 𝜖 ⇒    ‖
𝑥 + 𝑦

2
 ‖  <  1 −   𝛿.  

It is easily to see that a uniformly convex Banach space X is strictly but the converges is not true. 

Definition-2 [7] Let A and B be nonempty subsets of a metric space (𝑋, 𝑑). The ordered pair (𝐴, 𝐵) satisfies the property UC if the 

following holds: 

If { 𝑥𝑛} and { 𝑧𝑛}  are sequences in 𝐴  and { 𝑦𝑛}  is a sequence in 𝐵  such that 𝑑(𝑥𝑛, 𝑦𝑛) →  𝑑(𝐴, 𝐵) and 𝑑(𝑧𝑛 , 𝑦𝑛) →  𝑑(𝐴, 𝐵), then 

𝑑(𝑥𝑛, 𝑧𝑛) →  0. 

Example-3 Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑋, 𝑑). The following are examples of  a pair of nonempty subsets 

(𝐴, 𝐵) satisfying the property UC. 

i. Every pair of nonempty subsets A,B of a metric space (X,d) such that d(A,B) = 0. 

ii. Every pair of nonempty subsets A,B of a uniformly convex Banach space X  such that A  is convex. 

iii.  Every pair of nonempty subsets A,B of a strictly convex Banach space which A  is convex and relatively compact and the 

closure of B  is weakly compact. 

Definition- 4[5] Let A and B be nonempty subsets of a metric space (X,d). The ordered pair (A,B) satisfies the property 𝑈𝐶∗ if (A,B) 

has property UC and the following condition holds: 

If { 𝑥𝑛} and { 𝑧𝑛} are sequences in A  and { 𝑦𝑛} is a sequence in B  satisfying: 

i. 𝑑(𝑧𝑛 , 𝑦𝑛) →  𝑑(𝐴, 𝐵) 

ii. For every 𝜖 >  0  there exists 𝑁 ∈  𝒩such that 

    𝑑(𝑥𝑚 , 𝑦𝑛) ≤  𝑑(𝐴, 𝐵)  + 𝜖  

for all 𝑚 >  𝑛 ≥  𝑁. 

Then for every 𝜖 >  0 there exists 𝑁1 ∈   𝒩   such that 

    𝑑(𝑥𝑚 , 𝑧𝑛) ≤  𝑑(𝐴, 𝐵)  + 𝜖  

for all 𝑚 >  𝑛 ≥  𝑁1. 

Example-5[5]  Let A and B be nonempty subsets of a metric space (X,d). 

The following are examples of a pair of nonempty subsets (A,B) satisfying the property 𝑈𝐶∗. 

i. Every pair of nonempty subsets A,B of a metric space (X,d) such that 𝑑(𝐴, 𝐵)  =  0. 

ii.  Every pair of nonempty closed subsets A,B of a uniformly convex Banach space X  such that A  is convex. 

Definition-6 Let A and B be nonempty subsets of a metric space (X,d) and 𝑆: 𝐴 →  𝐵 be a mapping. A point 𝑥 ∈  𝐴 is said to be a best 

proximity point of S if it satisfies the condition that 

    𝑑(𝑥, 𝑆𝑥)  =  𝑑(𝐴, 𝐵).  

It can be observed that a best proximity point reduces to a fixed point if the underlying mapping is a self mapping. 
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Definition- 7 Let A  be a nonempty subset of a metric space X  and 𝐹: 𝐴 ×  𝐴 →  𝐴. A point (𝑥, 𝑦) ∈   𝐴 ×  𝐴  is called a coupled fixed 

point of F  if 

     𝑥 =  𝐹(𝑥, 𝑦),    𝑦 =  𝐹(𝑦, 𝑥).  

2. Coupled best proximity point theorems 

In this section we study the existence and convergence of coupled best proximity points for cyclic contraction pair. 

Definition-8 Let (X,d) be a metric space. A mapping 𝑇: 𝑋 →  𝑋 is said to be ICS if T is injective, continuous and has the property: for 

every sequence { 𝑥𝑛} in X, if { 𝑇𝑥𝑛} is convergent then { 𝑥𝑛} is also convergent. 

 

In this paper we give some coupled best proximity point theorems for mapping having the mixed monotone property in partially 

ordered metric space depended on another function, called T-cyclic contraction which is generalization of the main results of W. 

Sintunavarat and P. Kumam [4]. 

Definition-9 Let A and B be nonempty subsets of a metric space X  and 𝐹:  𝐴 ×  𝐴 →  𝐵. 

An ordered coupled (𝑥, 𝑦) ∈  𝐴 ×  𝐴 is called a coupled best proximity point of F if, 

    𝑑(𝑥, 𝐹(𝑥, 𝑦))  =  𝑑(𝑦, 𝐹(𝑦, 𝑥))  =  𝑑(𝐴, 𝐵).  

It is easy to see that if 𝐴 =  𝐵 in Definition-9, then a coupled best proximity point reduces to a coupled fixed point. 

Next,W. Sintunavarat and P. Kumam [4] introduce the notion of a cyclic contraction for two mappings which as follows. 

Definition-10 Let A and B be nonempty subsets of a metric space X, 𝐹:  𝐴 ×  𝐴 →  𝐵 and 𝐺:  𝐵 ×  𝐵 →  𝐴. The ordered pair (𝐹, 𝐺) is 

said to be a cyclic contraction if there exists a non-negative number 𝛼 <  1 such that 

   𝑑(𝐹(𝑥, 𝑦), 𝐺(𝑢, 𝑣)) ≤
𝛼

2
  [𝑑(𝑥, 𝑢)  +   𝑑(𝑦, 𝑣)]  +  (1 −  𝛼 )𝑑(𝐴, 𝐵)  

for all (𝑥, 𝑦) ∈  𝐴 ×  𝐴 and (𝑢, 𝑣) ∈  𝐵 ×  𝐵 . 

Now we introduced the following  notion of T-cyclic contraction for two mappings which is generalization of [4] as follows.  

Definition- 11 Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋  and let A and B be nonempty subsets of a metric space X, 𝐹:  𝐴 ×  𝐴  →

 𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴. The ordered pair (F,G) is said to be a T-cyclic contraction if there exists a non-negative number 𝛼  <  1 such 

that 

    𝑑(𝑇𝐹(𝑥, 𝑦), 𝑇𝐺(𝑢, 𝑣)) ≤  
𝛼

2
 [𝑑(𝑇𝑥, 𝑇𝑢)  +   𝑑(𝑇𝑦, 𝑇𝑣)]  + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))  

for all (𝑥, 𝑦) ∈  𝐴 ×  𝐴 and (𝑢, 𝑣) ∈   𝐵 ×  𝐵 . 

Note that if (F,G) is a T-cyclic contraction, then (G,F) is also a T-cyclic contraction. Also if we take T be an identity mapping in 

Definition-11  then we get Definition-10. 

Following example show that Definition-11 is generalization of  Definition-10. 

Example-12  Let 𝑋 =  𝑅  with the usual metric 𝑑(𝑥, 𝑦) = ∣  𝑥 −  𝑦 ∣   and 𝑇𝑥 =  𝑥 +  1 also 𝐴 = [
3

2
,

5

2
] and 𝐵 = [−

5

2
, −

3

2
]. It easy to 

see that 𝑑(𝐴, 𝐵)  =  3. Define 𝐹: 𝐴 ×  𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 by 

   𝐹(𝑥, 𝑦) =
𝑥 − 𝑦 – 7

4
    and   𝐺(𝑥, 𝑦) =

𝑥 − 𝑦 + 1

4
. 

For arbitrary (𝑥, 𝑦) ∈   𝐴 ×  𝐴 , (𝑢, 𝑣) ∈   𝐵 ×  𝐵  and fixed 𝛼  =
1

2
, we get 

   𝑑(𝑇𝐹(𝑥, 𝑦), 𝑇𝐺(𝑢, 𝑣))   =   |
𝑥 − 𝑦  −7 + 4

4
 –

𝑢 − 𝑣 + 1 + 4

4
|  

       ≤  
∣ 𝑥 − 𝑢∣ + ∣ 𝑦 − 𝑣∣ 

4
 +   2  

        =  
𝛼

2
[ 𝑑(𝑇𝑥, 𝑇𝑢) +   𝑑(𝑇𝑦, 𝑇𝑣)]   + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)). 

This implies that (F,G) is a T- cyclic contraction with  𝛼  =  
1

2
 

The following lemma plays an important role in our main results. 

Lemma- 13 Let 𝑇: 𝑋 →  𝑋  be an ICS mapping also A and B be nonempty subsets of a metric space X, 𝐹:  𝐴 ×  𝐴  →  𝐵 and 𝐺:  𝐵 ×

 𝐵 →  𝐴 and (F,G) be a T-cyclic contraction. If (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴  and we define 
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    𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛),     𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1)  

    𝑦𝑛+1  =  𝐹(𝑦𝑛 , 𝑥𝑛), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈   𝑁 ∪ { 0 }, then 𝑑(𝑥𝑛 , 𝑥𝑛+1) →  𝑑(𝐴, 𝐵), 𝑑(𝑥𝑛+1, 𝑥𝑛+2) →  𝑑(𝐴, 𝐵), 𝑑(𝑦𝑛, 𝑦𝑛+1) →  𝑑(𝐴, 𝐵) and 𝑑(𝑦𝑛+1, 𝑦𝑛+2) →  𝑑(𝐴, 𝐵). 

Proof: For each  𝑛 ∈   𝑁, we have 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  =   𝑑(𝑇𝐹(𝑥𝑛 , 𝑦𝑛), 𝑇𝐺(𝑥𝑛−1, 𝑦𝑛−1))  

        ≤  
𝛼 

2
 [𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1) +   𝑑(𝑇𝑦𝑛, 𝑇𝑦𝑛−1)]    +  (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))  

Similarly we have 

   𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+1)  =   𝑑( 𝑇𝐹(𝑦𝑛 , 𝑥𝑛), 𝑇𝐺(𝑦𝑛−1, 𝑥𝑛−1))  

        ≤
𝛼 

2
 [𝑑(𝑇𝑦𝑛, 𝑇𝑦𝑛−1) +   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1)]    +  (1 − 𝛼 )𝑇(𝑑(𝐴, 𝐵))  

Therefore, by letting 

   𝑑𝑛   =  𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  +  𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+1)  

by adding above inequality we have 

   𝑑𝑛 ≤  𝛼  𝑑𝑛−1  +  2(1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)) 

Similarly we can show that 

   𝑑𝑛−1  ≤  𝛼  𝑑𝑛−2  +  2(1 − 𝛼 )𝑇(𝑑(𝐴, 𝐵))  

Consequently we have 

   𝑑1  ≤  𝛼  𝑑0  +  2(1 − 𝛼 )𝑇(𝑑(𝐴, 𝐵))  

If 𝑑0  =  0 then (𝑥0, 𝑦0) is a coupled best proximity point of F and G. Now let 𝑑0  >  0 for each 𝑛 ≥  𝑚 we have 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑚) ≤   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1)  +  𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛−2)+ . . . . . . . . . + 𝑑(𝑇𝑥𝑚+1, 𝑇𝑥𝑚)  

   𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑚) ≤   𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛−1)  +  𝑑(𝑇𝑦𝑛−1, 𝑇𝑦𝑛−2)+ . . . . . . . . . + 𝑑(𝑇𝑦𝑚+1, 𝑇𝑦𝑚)   

which gives 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑚)  +   𝑑(𝑇𝑦𝑛, 𝑇𝑦𝑚) \𝑙𝑒𝑞 𝑑𝑛−1  +  𝑑𝑛−2  +  𝑑𝑛−3 . . . . . . . + 𝑑𝑚  

   𝑑𝑛 ≤  𝛼𝑛  𝑑0  +  2𝑛(1 −  𝛼𝑛) 𝑇(𝑑(𝐴, 𝐵)) 

Taking 𝑛 → ∞ we have 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  +  𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+1)  →  𝑇(𝑑(𝐴, 𝐵))  

implies that 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)   →  𝑇(𝑑(𝐴, 𝐵))  

    𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+1)  →  𝑇(𝑑(𝐴, 𝐵))  

for all  𝑛 ∈   𝑁. 

By similar argument, we also have 

   𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2) →  𝑇(𝑑(𝐴, 𝐵)), and 𝑑(𝑇𝑦𝑛+1, 𝑇𝑦𝑛+2) →  𝑇(𝑑(𝐴, 𝐵)).  

Since T is injective mapping so we have   

   𝑑(𝑥𝑛, 𝑥𝑛+1)  →  𝑑(𝐴, 𝐵) 𝑎𝑛𝑑 𝑑(𝑦𝑛 , 𝑦𝑛+1)  →  𝑑(𝐴, 𝐵) 

for all  𝑛 ∈   𝑁. 

By similar argument, we also have 

   𝑑(𝑥𝑛+1, 𝑥𝑛+2) →  𝑑(𝐴, 𝐵),  and  𝑑(𝑦𝑛+1, 𝑦𝑛+2) →  𝑑(𝐴, 𝐵).  

Lemma – 14 Let 𝑇: 𝑋 →  𝑋  be an ICS mapping also let A and B be nonempty subsets of a metric space X  such that (A,B) and (B,A) 

have a property UC, 𝐹:  𝐴 ×  𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 and let the ordered pair (F,G) is a T- cyclic contraction. If (𝑥0, 𝑦0) ∈   𝐴 ×

 𝐴 and define 

   𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛), 𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1)  and  𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛),    𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈  𝑁 ∪ { 0 }, then for  𝜖 >  0, 
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there exists a positive integer 𝑁0 such that for all 𝑚 >  𝑛 ≥  𝑁0 

    
𝛼 

2
[𝑑(𝑇𝑥𝑚 , 𝑇𝑥𝑛+1) +   𝑑(𝑇𝑦𝑚, 𝑇𝑦𝑛+1)]   <  𝑇(𝑑(𝐴, 𝐵))  + 𝜖.    (2.1) 

Proof : By Lemma-13, we have 

    𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) →  𝑇(𝑑(𝐴, 𝐵)),    𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2) →  𝑇(𝑑(𝐴, 𝐵)),  

   𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+1) →  𝑇(𝑑(𝐴, 𝐵)),      𝑑(𝑇𝑦𝑛+1, 𝑇𝑦𝑛+2) →  𝑇(𝑑(𝐴, 𝐵)).  

Since (A,B) has a property UC, we get 

   𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+2) →  0.  

A similar argument shows that 

   𝑑(𝑇𝑦𝑛 , 𝑇𝑦𝑛+2) →  0. 

As (B,A) has a property UC, we also have 

    𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+3) →  0,    𝑑(𝑇𝑦𝑛+1, 𝑇𝑦𝑛+3) →  0.  

Suppose that (2.1) does not hold. Then there exists 𝜖′ >  0 such that for all 𝑘 ∈  𝑁,there is 𝑚𝑘  >  𝑛𝑘 ≥  𝑘 satisfying 

    
𝛼 

2
[ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +   𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)]  ≥  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′.  

Further, corresponding to 𝑛𝑘  , we can choose 𝑚𝑘  in such a way that it is the smallest integer with 𝑚𝑘 > 𝑛𝑘  and satisfying above 

relation. 

Then 

    
𝛼 

2
[ 𝑑(𝑇𝑥𝑚𝑘−2, 𝑇𝑥𝑛𝑘+1) +   𝑑(𝑇𝑦𝑚𝑘−2, 𝑇𝑦𝑛𝑘+1)]  <  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′.  

Therefore, we get 

  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′  ≤
𝛼 

2
[ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +   𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)]  

         ≤  
𝛼 

2
 [𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘−2) +  𝑑(𝑇𝑥𝑚𝑘−2, 𝑇𝑥𝑛𝑘+1)] +
𝛼 

2
 [𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑚𝑘−2) +  𝑑(𝑇𝑦𝑚𝑘−2, 𝑇𝑦𝑛𝑘+1)] 

          <  
𝛼 

2
 [ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘−2) +   𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑚𝑘−2)]  +  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′. 

Letting 𝑘 → ∞ , we obtain to see that 

     
𝛼 

2
[ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +   𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)]  →  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′. 

By using the triangle inequality, we get 

𝛼 

2
 [ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +   𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)] ≤  

𝛼 

2
 [𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘+2) +  𝑑(𝑇𝑥𝑚𝑘+2, 𝑇𝑥𝑛𝑘+3) +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)]  

       +
𝛼 

2
[𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑚𝑘+2) +  𝑑(𝑇𝑦𝑚𝑘+2, 𝑇𝑦𝑛𝑘+3) +  𝑑(𝑇𝑦𝑛𝑘+3, 𝑇𝑦𝑛𝑘+1)]   

    =
𝛼 

2
[
𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘+2) + 𝑑 (𝑇𝐺(𝑥𝑚𝑘+1, 𝑦𝑚𝑘+1), 𝑇𝐹(𝑥𝑛𝑘+2, 𝑦𝑛𝑘+2))

+ 𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)
]  

       +
𝛼 

2
[
𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑚𝑘+2) +  𝑑 (𝑇𝐺(𝑦𝑚𝑘+1, 𝑥𝑚𝑘+1), 𝑇𝐹(𝑦𝑛𝑘+2, 𝑥𝑛𝑘+2))

+ 𝑑(𝑇𝑦𝑛𝑘+3, 𝑇𝑦𝑛𝑘+1)
] 

          ≤
𝛼 

2
[𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘+2) +
𝛼 

2
[
𝑑(𝑇𝑥𝑚𝑘+1, 𝑇𝑥𝑛𝑘+2) +   𝑑(𝑇𝑦𝑚𝑘+1, 𝑇𝑦𝑛𝑘+2) 

+ (1 − 𝛼  )𝑇(𝑑(𝐴, 𝐵))
]  

       + 𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)  

     +
𝛼

2
 [𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑚𝑘+2) +
𝛼 

2
[
 𝑑(𝑇𝑦𝑚𝑘+1, 𝑇𝑦𝑛𝑘+2) +   𝑑(𝑇𝑥𝑚𝑘+1, 𝑇𝑥𝑛𝑘+2)

+ (1 –  𝛼 )𝑇(𝑑(𝐴, 𝐵))
]  

     + 𝑑(𝑇𝑦𝑛𝑘+3, 𝑇𝑦𝑛𝑘+1) 

    ≤  𝛼  [
𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑚𝑘+2) +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)

+ 𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑚𝑘+2) +  𝑑(𝑇𝑦𝑛𝑘+3, 𝑇𝑦𝑛𝑘+1)

]  

    + 𝛼2[𝑑(𝑇𝑥𝑚𝑘+1, 𝑇𝑥𝑛𝑘+2) +  𝑑(𝑇𝑦𝑚𝑘+1, 𝑇𝑦𝑛𝑘+2)] +  (1 −  𝛼2)𝑇(𝑑(𝐴, 𝐵)). 
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Taking 𝑘 → ∞, we get 

  𝑇(𝑑(𝐴, 𝐵))  + 𝜖′ ≤  𝛼2 [ 𝑇(𝑑(𝐴, 𝐵))  + 𝜖′]  +  (1 − 𝛼2)𝑇(𝑑(𝐴, 𝐵))  =  𝑇(𝑑(𝐴, 𝐵))  + 𝛼2 𝜖′ 

Since T is injective mapping so  we have 

𝑑(𝐴, 𝐵)  + 𝜖′ ≤  𝛼2 [ 𝑑(𝐴, 𝐵)  + 𝜖′]  +  (1 − 𝛼2)𝑑(𝐴, 𝐵)  =  𝑑(𝐴, 𝐵)  +  𝛼2 𝜖′  

which contradicts. Therefore, we can conclude that (2.1) holds. 

Lemma- 15  Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋 also let A and B be nonempty subsets of a metric space X, (A,B) and (B,A) 

satisfy the property 𝑈𝐶∗. 

Let 𝐹: 𝐴 ×  𝐴  →  𝐵, 𝐺:  𝐵 ×  𝐵  →  𝐴 and (𝐹, 𝐺) be a T-cyclic contraction. If (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴 and define 

    𝑥𝑛+1 =  𝐹(𝑥𝑛, 𝑦𝑛), 𝑦𝑛+1   =  𝐹(𝑦𝑛 , 𝑥𝑛)  

and 

    𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1),     𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all 𝑛 ∈  𝑁 ∪ { 0 }, then { 𝑥𝑛}, { 𝑦𝑛}, { 𝑥𝑛+1} and { 𝑦𝑛+1} are Cauchy sequences. 

Proof: By Lemma-13, we have 𝑑(𝑥𝑛 , 𝑥𝑛+1)  →  𝑑(𝐴, 𝐵) and 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  →  𝑑(𝐴, 𝐵). Since (A,B)  satisfies property UC, we get 

𝑑(𝑥𝑛, 𝑥𝑛+2)  →  0. Similarly, we also have 𝑑(𝑥𝑛+1, 𝑥𝑛+3)  →  0 because (B,A)  satisfies property UC. 

We now show that for every 𝜖 >  0 there exists 𝑁 ∈  𝒩 such that 

    𝑑(𝑥𝑚 , 𝑥𝑛+1) ≤  𝑑(𝐴, 𝐵)  + 𝜖     (2.2) 

for all 𝑚 >  𝑛 ≥  𝑁 

Suppose (2.2)not hold, then there exists  𝜖 >  0 such that for all  𝑘 ∈  𝑁  there exists 𝑚𝑘  >  𝑛𝑘 ≥  𝑘 such that 

    𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘+1)  >  𝑇(𝑑(𝐴, 𝐵))  + 𝜖.    (2.3) 

Further, corresponding to 𝑛𝑘, we can choose 𝑚𝑘  in such a way that it is the smallest integer with 𝑚𝑘 > 𝑛𝑘  and satisfying above 

relation. Now we have 

     𝑇(𝑑(𝐴, 𝐵))  +  𝜖  <  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘+1) 

           ≤  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘−2)  +  𝑑(𝑇𝑥𝑚𝑘−2, 𝑇𝑥𝑛𝑘+1)  

            ≤  𝑑(𝑇𝑥2𝑚𝑘
, 𝑇𝑥2𝑚𝑘−2)  +  𝑇(𝑑(𝐴, 𝐵))  +  𝜖 .  

Taking  𝑘 →  ∞ , we have 𝑑(𝑇𝑥2𝑚𝑘
, 𝑇𝑥2𝑛𝑘+1)  →  𝑇(𝑑(𝐴, 𝐵))  +  𝜖 . 

By Lemma 13, there exists 𝑁 ∈  𝒩  such that 

    
𝛼 

2
[ 𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +  𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)]  <  𝑇(𝑑(𝐴, 𝐵))  +  𝜖   (2.4) 

for all 𝑚 >  𝑛 ≥  𝒩.  By using the triangle inequality, we get 

   𝑇(𝑑(𝐴, 𝐵))  + 𝜖  <  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘+1)   

   ≤  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑(𝑇𝑥𝑚𝑘+2, 𝑇𝑥𝑛𝑘+3)  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)  

   =  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑 (𝑇𝐺(𝑥𝑚𝑘+1, 𝑦𝑚𝑘+1), 𝑇𝐹(𝑥𝑛𝑘+2, 𝑦𝑛𝑘+2))  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)  

   ≤  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +

𝛼 

2
[𝑑(𝑥𝑚𝑘+1, 𝑥𝑛𝑘+2) +   𝑑(𝑦𝑚𝑘+1, 𝑦𝑛𝑘+2)]  

       + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)   

   =  
𝛼 

2
[𝑑 (𝑇𝐹(𝑥𝑚𝑘

, 𝑦𝑚𝑘
), 𝑇𝐺(𝑥𝑛𝑘+1, 𝑦𝑛𝑘+1))]  +

𝛼 

2
[𝑑 (𝑇𝐹(𝑦𝑚𝑘

, 𝑥𝑚𝑘
), 𝑇𝐺(𝑦𝑛𝑘+1, 𝑥𝑛𝑘+1))]  

       +(1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)) +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)  

   ≤
𝛼 

2
 [

𝛼 

2
[𝑑(𝑇𝑥𝑚𝑘

, 𝑇𝑥𝑛𝑘+1) +  𝑑(𝑇𝑦𝑚𝑘
, 𝑇𝑦𝑛𝑘+1)  +  (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))]]   

     +
𝛼 

2
[

𝛼 

2
[ 𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑛𝑘+1) +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘+1)  +  (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))]]   

      + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵))  +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1) 
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   =  𝛼2 [ 𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑛𝑘+1) +  𝑑(𝑇𝑦𝑚𝑘

, 𝑇𝑦𝑛𝑘+1)]  

      + (1 −  𝛼2) 𝑇(𝑑(𝐴, 𝐵))  +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1) 

   <  𝛼2 𝑇(𝑑(𝐴, 𝐵))  +  𝜖 )   +  (1 – 𝛼2) 𝑇(𝑑(𝐴, 𝐵))  +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)   

        + 𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1)  

   =  𝛼2 𝜖  +  𝑇(𝑑(𝐴, 𝐵)) +  𝑑(𝑇𝑥𝑚𝑘
, 𝑇𝑥𝑚𝑘+2)  +  𝑑(𝑇𝑥𝑛𝑘+3, 𝑇𝑥𝑛𝑘+1).  

Taking  𝑘 → ∞, we get 

   𝑇(𝑑(𝐴, 𝐵))  +  𝜖  ≤  𝑇(𝑑(𝐴, 𝐵))  + 𝛼2 𝜖  

which contradicts. Therefore, condition (2.2) holds. Since (2.2) holds and 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  →  𝑇(𝑑(𝐴, 𝐵)), by using property 𝑈𝐶∗ of 

(A,B), we have { 𝑇𝑥𝑛}  is a Cauchy sequence. In similar way, we can prove that { 𝑇𝑦𝑛}, { 𝑇𝑥𝑛+1} and { 𝑇𝑦𝑛+1} are Cauchy sequences. 

Since T is ICS mapping, i.e T is injective mapping, we have { 𝑥𝑛}, { 𝑦𝑛}, { 𝑥𝑛+1} and { 𝑦𝑛+1} are a Cauchy sequences.  

Here we state the main results of this article in the existence and convergence of coupled best proximity points for cyclic contraction 

pairs on nonempty subsets of metric spaces satisfying the property 𝑈𝐶∗. 

Theorem-16 Let T be an ICS mapping on X and A and B be nonempty closed subsets of a metric space X such that (A,B) and (B,A) 

have a property 𝑈𝐶∗, 𝐹:  𝐴 ×  𝐴  →  𝐵 and 𝐺: 𝐵 ×  𝐵  →  𝐴 and let the ordered pair (F,G) is a T- cyclic contraction. If (𝑥0, 𝑦0) ∈   𝐴 ×

 𝐴  and define 

    𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛),   𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛)  

and 

    𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1),   𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈  𝑁 ∪ { 0} . Then F  has a coupled best proximity point (𝑟, 𝑠) ∈   𝐴2   and G  has a coupled best proximity point (𝑟′, 𝑠′) ∈

  𝐵2. 

Moreover, we have 𝑥𝑛  →  𝑟,    𝑦𝑛  →  𝑠,   𝑥𝑛+1  →  𝑟′,   𝑦𝑛+1   →  𝑠′. 

Furthermore, if 𝑟 = 𝑠 and 𝑟′ = 𝑠′, then 

   𝑑(𝑟, 𝑟′)  +  𝑑(𝑠, 𝑠′)  =  𝑑(𝐴, 𝐵).   

Proof : By Lemma-13, we get  𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  →  𝑇(𝑑(𝐴, 𝐵)). Using Lemma-13, we have { 𝑇𝑥𝑛} and { 𝑇𝑦𝑛} are Cauchy sequences. 

Thus, there exists 𝑟, 𝑠 ∈  𝐴 such that 𝑇𝑥𝑛  →  𝑇𝑟,   𝑇𝑦𝑛  →  𝑇𝑠. 

We obtain that 

   𝑇(𝑑(𝐴, 𝐵))  ≤  𝑑(𝑇𝑟, 𝑇𝑥𝑛−1)  ≤  𝑑(𝑇𝑟, 𝑇𝑥𝑛)  +  𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛−1).   (2.5) 

Letting 𝑛 → ∞ in (2.5), we have 𝑑(𝑇𝑟, 𝑇𝑥𝑛−1)  →  𝑇(𝑑(𝐴, 𝐵)). By a similar argument we also have 

    𝑑(𝑇𝑠, 𝑇𝑦𝑛−1)  →  𝑇(𝑑(𝐴, 𝐵)).  

It follows that 

     𝑑(𝑇𝑥𝑛 , 𝑇𝐹(𝑟, 𝑠)) =  𝑑(𝑇𝐺(𝑥𝑛−1, 𝑦𝑛−1), 𝑇𝐹(𝑟, 𝑠)) 

       ≤  
𝛼 

2
 [𝑑(𝑇𝑥𝑛−1, 𝑇𝑟) +   𝑑(𝑇𝑦𝑛−1, 𝑇𝑠)]  + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)). 

Taking  𝑛 → ∞, we get 𝑑(𝑇𝑟, 𝑇𝐹(𝑟, 𝑠))  =  𝑇(𝑑(𝐴, 𝐵)). Similarly, we can prove that 

     𝑑(𝑇𝑠, 𝑇𝐹(𝑠, 𝑟))  =  𝑇(𝑑(𝐴, 𝐵)) 

Since T is injective mapping. 

Therefore, we have (𝑟, 𝑠) is a coupled best proximity point of F. 

In similar way, we can prove that there exists 𝑟′, 𝑠′ ∈  𝐵 such that  𝑇𝑥𝑛+1  →  𝑟′ and 𝑇𝑦𝑛+1  →  𝑠′. Moreover, we have 

        𝑑(𝑇𝑟′, 𝑇𝐺(𝑟′, 𝑠′))  =  𝑇(𝑑(𝐴, 𝐵)),  

and 

     𝑑(𝑇𝑠′, 𝑇𝐹(𝑠′, 𝑟′))  =  𝑇(𝑑(𝐴, 𝐵))  
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and so (𝑟′, 𝑠′)  is a coupled best proximity point of G. 

Finally, we assume  that  𝑟 = 𝑠 and 𝑟′ = 𝑠′ and then we show that 

      𝑑(𝑇𝑟, 𝑇𝑟′)   +  𝑑(𝑇𝑠, 𝑇𝑠′)  =  2𝑇(𝑑(𝐴, 𝐵)). 

For all 𝑛 ∈  𝑁, we obtain that 

      𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)   =   𝑑(𝑇𝐺(𝑥𝑛−1, 𝑦𝑛−1), 𝑇𝐹(𝑥𝑛 , 𝑦𝑛)) 

       ≤  
𝛼 

2
[ 𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛) +   𝑑(𝑇𝑦𝑛−1, 𝑇𝑦𝑛)]  + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)).  

Letting  𝑛 → ∞, we have 

      𝑑(𝑇𝑟, 𝑇𝑟′)  ≤  
𝛼 

2
 [𝑑(𝑇𝑟, 𝑇𝑟′) +  𝑑(𝑇𝑠, 𝑇𝑠′)]  +  (1 −  𝛼 ) 𝑇(𝑑(𝐴, 𝐵)).   (2.6) 

For all 𝑛 ∈  𝑁,  we have 

      𝑑(𝑇𝑦𝑛, 𝑇𝑦𝑛+1)   =   𝑑(𝑇𝐺(𝑦𝑛−1, 𝑥𝑛−1), 𝑇𝐹(𝑦𝑛 , 𝑥𝑛))  

    ≤
𝛼 

2
[ 𝑑(𝑇𝑦𝑛−1, 𝑇𝑦𝑛) +   𝑑(𝑇𝑥𝑛−1, 𝑇𝑥𝑛)]   + (1 −  𝛼 ) 𝑇(𝑑(𝐴, 𝐵)).   

Letting  𝑛 → ∞, we have 

     𝑑(𝑇𝑠, 𝑇𝑠′) ≤
𝛼 

2
[ 𝑑(𝑇𝑠, 𝑇𝑠′) +  𝑑(𝑇𝑟, 𝑇𝑟′)] +  (1 −  𝛼 ) 𝑇(𝑑(𝐴, 𝐵)).  (2.7) 

Similarly we can write, 

It follows from (2.6) and (2.7) that 

𝑑(𝑇𝑟, 𝑇𝑟′) +  𝑑(𝑇𝑠, 𝑇𝑠′)  ≤
𝛼 

2
 [𝑑(𝑇𝑟, 𝑇𝑟′) +   𝑑(𝑇𝑠, 𝑇𝑠′)]  +  2(1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)) 

which implies that 

   𝑑(𝑇𝑟, 𝑇𝑟′)  +  𝑑(𝑇𝑠, 𝑇𝑠′)   ≤  2 𝑇(𝑑(𝐴, 𝐵)).      (2.8) 

Since 𝑇(𝑑(𝐴, 𝐵))  ≤  𝑑(𝑇𝑟, 𝑇𝑟′) and 𝑇(𝑑(𝐴, 𝐵))  ≤  𝑑(𝑇𝑠, 𝑇𝑠′), we have 

   𝑑(𝑇𝑟, 𝑇𝑟′) +  𝑑(𝑇𝑠, 𝑇𝑠′) ≥  2 𝑇(𝑑(𝐴, 𝐵)).      

From (2.7)and (2.8),we get 

   𝑑(𝑇𝑟, 𝑇𝑟′)  +  𝑑(𝑇𝑠, 𝑇𝑠′)   =   2 𝑇(𝑑(𝐴, 𝐵)).     (2.9) 

Since T is injective mapping which implies 

   𝑑(𝑟, 𝑟′)  +  𝑑(𝑠, 𝑠′)   =   2 𝑑(𝐴, 𝐵).      (2.10) 

This complete the proof. 

Note that every pair of nonempty closed subsets A,B of a uniformly convex  Banach space X  such that A is convex satisfies the 

property UC. 

Therefore, we obtain the following corollary. 

 Corollary- 17 Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋 and  A and B be nonempty closed convex subsets of a uniformly convex 

Banach space 𝑋, 𝐹:  𝐴 ×  𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 and let the ordered pair (F,G) be a T- cyclic contraction. Let (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴  

and define 

   𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛), 𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1),     and  𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈   𝑁 ∪ { 0 }. Then F  has a coupled best proximity point (𝑟, 𝑠) ∈   𝐴 ×  𝐴   and G  has a coupled best proximity point 

(𝑟′, 𝑠′) ∈  𝐵 ×  𝐵. 

Moreover, we have 𝑥𝑛  →  𝑟,   𝑦𝑛  →  𝑠,   𝑥𝑛+1  →  𝑟′,    𝑦𝑛+1   →  𝑠′.  

Furthermore, if 𝑟 = 𝑠 and 𝑟′ = 𝑠′, then 

   𝑑(𝑟, 𝑟′)  +  𝑑(𝑠, 𝑠′)  =  2 𝑑(𝐴, 𝐵).  

Next, we give some illustrative example of Corollary 17. 

Example- 18 Consider uniformly convex Banach space 𝑋 =  𝑅   with the usual norm. Let 𝐴 =  [1,2]  and 𝐵 =  [−1, −2].  Thus 

𝑑(𝐴, 𝐵)  =  2. Define 𝐹:  𝐴 ×  𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 by 
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  𝐹(𝑥, 𝑦) =
− 2𝑥 − 3𝑦  − 1

6
   and   𝐺(𝑥, 𝑦) =

− 2𝑥 − 3𝑦  + 1

6
.  

For arbitrary (𝑥, 𝑦) ∈   𝐴 ×  𝐴  and (𝑢, 𝑣) ∈  𝐵 ×  𝐵  and fixed  𝑝 =
1

3
 and  𝑞 =

1

2
 we get 

   𝑑(𝐹(𝑥, 𝑦), 𝐺(𝑢, 𝑣))  =  |
− 𝑥 − 𝑦 − 1

6
 −

− 𝑢 − 𝑣  + 1

6
|   

      ≤   
2|𝑥−𝑢|+3|𝑦−𝑣|

6
+  

1

3
  

        =
1

3
𝑑(𝑥, 𝑢)  +  

1

2
𝑑(𝑦, 𝑣)   +  (1 − (𝑝 + 𝑞))𝑑(𝐴, 𝐵)   

This implies that (F,G) is a cyclic contraction with 𝛼  =  
1

2
. Since A and B are closed convex, we have (A,B) and (B,A) satisfy the 

property 𝑈𝐶∗. 

Therefore, all hypothesis of Corollary 17  hold. So F  has a coupled best proximity point and G  has a coupled best proximity point. We 

note that a point (1,1) ∈   𝐴 ×  𝐴  is a unique coupled best proximity point of F  and a point (−1, −1, ) ∈   𝐵 ×  𝐵  is a unique coupled 

best proximity point of G. Furthermore, we get 

    𝑑(1, −1)  +  𝑑(1, −1)   =  4 =  2𝑑(𝐴, 𝐵).  

Next, we give the coupled best proximity point result in compact subsets of metric spaces. 

Theorem- 19 Let T be an ICS mapping such that  𝑇: 𝑋 →  𝑋 and  A and B be nonempty compact subsets of a metric space X, 𝐹:  𝐴 ×

 𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 and let the ordered pair (F,G) be a cyclic contraction. Let (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴  and define 

   𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛), 𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1)  

   𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈  𝑁 ∪ { 0 }. Then F  has a coupled best proximity point (𝑟, 𝑠) ∈   𝐴 ×  𝐴   and G  has a coupled best proximity point 

(𝑟′, 𝑠′) ∈   𝐵 ×  𝐵 . 

Moreover, we have 𝑥𝑛  →  𝑟,    𝑦𝑛  →  𝑠,    𝑥𝑛+1 →  𝑟′,   𝑦𝑛+1   →  𝑠′.  

Furthermore, if 𝑟 = 𝑠 and 𝑟′ = 𝑠′, then 

     𝑑(𝑟, 𝑟′)  +  𝑑(𝑠, 𝑠′)  =  2 𝑑(𝐴, 𝐵).  

Proof : Since 𝑥0, 𝑦0 ∈  𝐴 and 

    𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛), 𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1)  

    𝑦𝑛+1  =  𝐹(𝑦𝑛 , 𝑥𝑛), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1) ] 

for all  𝑛 ∈  𝑁 ∪ { 0 }, we have 𝑥𝑛 , 𝑦𝑛 ∈  𝐴 and 𝑥𝑛+1, 𝑦𝑛+1 ∈  𝐴 for all  𝑛 ∈   𝑁 ∪ { 0} .  As A is compact, the sequences { 𝑥𝑛}  and { 𝑦𝑛}  

have convergent subsequences { 𝑥𝑛𝑘
}  and { 𝑦𝑛𝑘

}  respectively, such that  

   𝑥𝑛𝑘
→  𝑟 ∈  𝐴,   𝑦𝑛𝑘

→  𝑠 ∈  𝐴.  

Now, we have 

     𝑇(𝑑(𝐴, 𝐵))  ≤  𝑑(𝑇𝑟, 𝑇𝑥𝑛𝑘−1)  ≤   𝑑(𝑇𝑟, 𝑇𝑥𝑛𝑘
)  +  𝑑(𝑇𝑥𝑛𝑘

, 𝑇𝑥𝑛𝑘−1) (2.11) 

By Lemma-13, we have 𝑑(𝑇𝑥𝑛𝑘
, 𝑇𝑥𝑛𝑘−1)  →  𝑇(𝑑(𝐴, 𝐵)). 

Taking 𝑘 →  ∞  in (2.11), we get 

    𝑑(𝑇𝑟, 𝑇𝑥𝑛𝑘−1)  →  𝑇(𝑑(𝐴, 𝐵)).  

By a similar argument we observe that 

    𝑑(𝑇𝑠, 𝑇𝑥𝑛𝑘−1)  →  𝑇(𝑑(𝐴, 𝐵)).  

Note that 

    𝑇(𝑑(𝐴, 𝐵))   ≤   𝑑 (𝑇𝑥𝑛𝑘
, 𝑇𝐹(𝑟, 𝑠))  =   𝑑 (𝑇𝐺(𝑥𝑛𝑘−1, 𝑦𝑛𝑘−1), 𝑇𝐹(𝑟, 𝑠)) 

       ≤
𝛼 

2
[ 𝑑(𝑇𝑥𝑛𝑘−1, 𝑇𝑟) +   𝑑(𝑇𝑦𝑛𝑘−1, 𝑇𝑠)]   + (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)).  

Taking 𝑘 →  ∞ , we get 𝑑(𝑇𝑟, 𝑇𝐹(𝑟, 𝑠))  =  𝑇(𝑑(𝐴, 𝐵)). Similarly, we can prove that 

   𝑑(𝑇𝑠, 𝑇𝐹(𝑠, 𝑟))  =  𝑇(𝑑(𝐴, 𝐵)).  
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 Thus F  has a coupled best proximity (𝑟, 𝑠) ∈   𝐴 ×  𝐴 . In similar way, since B  is compact, we can also prove that G  has a coupled 

best proximity point (𝑟′, 𝑠′) ∈   𝐵 ×  𝐵 . For 

    𝑑(𝑇𝑟, 𝑇𝑟′)  +  𝑑(𝑇𝑠, 𝑇𝑠′)   =  2𝑇(𝑑(𝐴, 𝐵))  

 Since T is injective mapping. So we have 

    𝑑(𝑟, 𝑟′)  +  𝑑(𝑠, 𝑠′)   =  2𝑑(𝐴, 𝐵)  

 similar to the final step of the proof of Theorem-16. 

This complete the proof. 

3. Coupled Fixed Point Theorems 

In this section, we give the new coupled fixed point theorem for a cyclic contraction pair. 

Theorem- 20 Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋 also A and B be nonempty closed subsets of a metric space 𝑋, 𝐹:  𝐴 ×

 𝐴  →  𝐵 and 𝐺:  𝐵 ×  𝐵  →  𝐴 and let the ordered pair (F,G) be a T-cyclic contraction. Let (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴 and define 

   𝑥𝑛+1  =  𝐹(𝑥𝑛 , 𝑦𝑛), 𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1)  

   𝑦𝑛+1  =  𝐹(𝑦𝑛, 𝑥𝑛), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈   𝑁 ∪ { 0 }.  If 𝑑(𝐴, 𝐵)  =  0, then F  has a coupled fixed point (𝑟, 𝑠) ∈  𝐴 ×  𝐴 

and G  has a coupled fixed point (𝑟′, 𝑠′) ∈  𝐵 ×  𝐵. 

Moreover, we have 𝑥𝑛  →  𝑟,    𝑦𝑛  →  𝑠,   𝑥𝑛+1  →  𝑟′,    𝑦𝑛+1   →  𝑠′. 

Furthermore, if 𝑟 = 𝑟′ and 𝑠 = 𝑠′, then F and G have a  common coupled fixed point in (𝐴 ∩  𝐵)2. 

Proof : Since 𝑑(𝐴, 𝐵)  =  0, we  get (A,B) and (B,A) satisfy the property UC. 

Therefore, by Theorem- 16, claim that F  has a coupled best proximity point (𝑟, 𝑠) ∈    𝐴 ×  𝐴  that is 

   𝑑(𝑇𝑟, 𝑇𝐹(𝑟, 𝑠))  =  𝑑(𝑇𝑠, 𝑇𝐹(𝑠, 𝑟))  =  𝑇(𝑑(𝐴, 𝐵))     (3.1) 

and G  has a coupled best proximity point (𝑟′, 𝑠′) ∈    𝐵 ×  𝐵 that is 

   𝑑(𝑇𝑟′, 𝑇𝐺(𝑟′, 𝑠′))  =  𝑑(𝑇𝑠′, 𝑇𝐺(𝑠′, 𝑟′))  =  𝑇(𝑑(𝐴, 𝐵)).    (3.2) 

From (3.1) and 𝑑(𝐴, 𝐵)  =  0 , we conclude that 

   𝑟 =  𝐹(𝑟, 𝑠),   𝑠 =  𝐹(𝑠, 𝑟).        

that is (𝑟, 𝑠) is a coupled fixed point of F. It follows from (3.2) and 𝑑(𝐴, 𝐵)  =  0, we get 

   𝑟′ =  𝐺(𝑟′, 𝑠′),   𝑎𝑛𝑑   𝑠′ =  𝐺(𝑠′, 𝑟′)  

that is (𝑟′, 𝑠′) is a coupled fixed point of G. 

Next, we assume that 𝑟 = 𝑟′ and 𝑠 = 𝑠′ and then we show that 

F and G have a unique common coupled fixed point in (𝐴 ∩  𝐵)2. 

From Theorem-16, we get 

   𝑑(𝑇𝑟, 𝑇𝑟′)  +  𝑑(𝑇𝑠, 𝑇𝑠′)   =   2 𝑇(𝑑(𝐴, 𝐵)).     (3.3) 

Since 𝑇(𝑑(𝐴, 𝐵))  =  0, we get 

   𝑑(𝑇𝑟, 𝑇𝑟′)  +  𝑑(𝑇𝑠, 𝑇𝑠′)   =   0  

Since T is injective mapping.  

which implies that 𝑟 =  𝑟′ and 𝑠 =  𝑠′. 

Therefore, we conclude that (𝑟, 𝑠) ∈  (𝐴 ∩  𝐵)2 is common coupled fixed point of F  and G. 

Example- 21 Consider  𝑋 =  𝑅  with the usual metric, 𝐴 =  [−2,0] and 𝐵 =  [0,2]. Define 𝑇: 𝑋 →  𝑋 , 𝐹: 𝐴 ×  𝐴  →  𝐵 and 𝐺: 𝐵 ×

 𝐵  →  𝐴 by 𝑇𝑥 =
𝑥

4
  

   𝐹(𝑥, 𝑦) =  −
2𝑥 + 2𝑦 

5
 and  𝐺(𝑢, 𝑣) =  −

2𝑢 + 2𝑣

5
.  

Then 𝑑(𝐴, 𝐵)  =  0 and (F,G) is a T- cyclic contraction with 𝛼  =
4

5
. 

Indeed, for arbitrary (𝑥, 𝑦) ∈   𝐴 ×  𝐴  and (𝑢, 𝑣) ∈   𝐵 ×  𝐵 , 
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we have 

     𝑑(𝐹(𝑥, 𝑦), 𝐺(𝑢, 𝑣)) =    | −
2𝑥 + 2𝑦 

5
+

2𝑢 + 2𝑣 

5
| 

     ≤
𝛼 

2
 [𝑑(𝑇𝑥, 𝑇𝑢) +  𝑑(𝑇𝑦, 𝑇𝑣)]  +  (1 −  𝛼 )𝑇(𝑑(𝐴, 𝐵)). 

Therefore, all hypothesis of Theorem-20 hold. So F  and G  have a common coupled fixed point and this point is (0,0) ∈  (𝐴 ∩  𝐵)2. 

If we take  𝐴 =  𝐵 in Theorem 20, then we get the following results. 

Corollary- 22 Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋  and A be a nonempty closed subset of a complete metric space 𝑋, 𝐹:  𝐴 ×

 𝐴  →  𝐴 and 𝐺:  𝐴 ×  𝐴 →  𝐴 and let the ordered pair (F,G) be a T-cyclic contraction. Let (𝑥0, 𝑦0) ∈   𝐴 ×  𝐴  and define 

  𝑥𝑛+1  =  𝐹(𝑥𝑛, 𝑦𝑛), 𝑦𝑛+1  =  𝐹(𝑦𝑛 , 𝑥𝑛)  and   𝑥𝑛+2  =  𝐺(𝑥𝑛+1, 𝑦𝑛+1), 𝑦𝑛+2  =  𝐺(𝑦𝑛+1, 𝑥𝑛+1)  

for all  𝑛 ∈ 𝑁 ∪ {  0 }. 

Then F has a coupled fixed point (𝑟, 𝑠) ∈  𝐴 ×  𝐴 

and G  has a coupled fixed point (𝑟′, 𝑠′) ∈  𝐵 ×  𝐵. 

Moreover, we have 𝑥𝑛  →  𝑟,   𝑦𝑛  →  𝑠, 𝑥𝑛+1   →  𝑟′,    𝑦𝑛+1   →  𝑠′. 

Furthermore, if 𝑟 = 𝑟′ and 𝑠 = 𝑠′, then F and G have a  common coupled fixed point in A× A. 

We take F = G in Corollary 22, then we get the following results 

Corollary- 23  Let T be an ICS mapping such that 𝑇: 𝑋 →  𝑋  and A be nonempty closed subsets of a complete metric space X,  

𝐹:  𝐴 ×  𝐴  →  𝐴 and 

    𝑑(𝑇𝐹(𝑥, 𝑦), 𝑇𝐹(𝑢, 𝑣))  ≤  
𝛼 

2
 [𝑑(𝑇𝑥, 𝑇𝑢)  +   𝑑(𝑇𝑦, 𝑇𝑣)]   

for all (𝑥, 𝑦), (𝑢, 𝑣) ∈  𝐴 ×  𝐴  . Then F  has a  coupled fixed point (𝑟, 𝑠) ∈   𝐴 ×  𝐴. 
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