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Abstract: House price trend is important to predict housing prices without any biasness to help both the buyers and sellers for a
better decision. Hence, house price trends are not only a concern for buyers but also for sellers. It also indicates the current economic
situation regarding housing. The relationship between real estate and the economy is an important motivating factor. This dataset
is obtained from www.kaggle.com. Comparison of different features like ‘Number of Bedrooms’, ‘Area of construction’, various
amenities like ‘garage’, ‘basement’, etc. Here, ‘Linear Regression’ has been used to train the dataset. The objective of this project
is to find out efficient pricing of a house and to calculate accuracy of the prediction. This application will help customers to invest
in an estate without approaching an agent. It also decreases the risk involved in the transaction.

Index Term - House price, prediction, linear regression, real estate, economy.

1. Introduction

House price prediction is an innovative solution to understand the genuine house pricing. In this context, machine learning driven
technologies are used to generate selling price of the houses and the father of machine learning is John Mc Carthy [1]. Machine
learning can be defined as training a machine using different algorithms so it can behave intelligent in future by learning from
previous examples rather than just storing and retrieving data items like a database system.

Machine learning is a blessing for today's technology, and it is growing at an expeditious rate.-Machine learning is used in various
major concepts such as Image and Speech Recognition, prediction, Product recommendations, Self-driving cars, Email Spam and
Malware Filtering, Sentiment Analysis, Banking Domain etc.

Machine learning is requisite because of its extensive range of applications and its magnificent ability to learn from previous
examples to provide solutions to complex problems efficiently, effectively and quickly [2]. The aim of this project is to calculate
efficient house so that in future it will help buyers and sellers in knowing the trends of the market and getting the best available
price of the property. It will also help the real estate investors to know the trend and get maximum possible profit.

2. Algorithm Used: Linear Regression

Linear regression is an approach to model the relationship between a dependent variable and independent variable. Linear regression
attempts to model the relationship between two variables by fitting a linear equation to observed data [3].

A linear regression line has an equation of the form Y = a + bX, where X is the independent variable and Y is the dependent variable.

2.1 Hypothesis of Linear Regression

Y = ﬁ[) —+ 31;!'.'1 -+ 32.’1”.2 + .... + 3”:1”.,,

Y is the predicted value

6o is the bias term.

6h,...,0, are the model parameters
X1, Xz,...,X, are the feature values.
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2.2 The cost Function

To define and measure the error of our model we define the cost function as the sum of the squares of the residuals

m
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2.3 Gradient descent

Gradient descent is a generic optimization algorithm used in many machine learning algorithms. It iteratively tweaks the parameters
of the model in order to minimize the cost function.
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3. Methodology

3.1 Selection and cleaning

At first data available in .csv format is taken from Kaggle in order to perform further steps. Data cleaning is the next major step
performed after data selection. Different functions are created to fix the missing and null data values in the dataset and it is also
confirmed that the data type is correct.
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Fig.1. DATA SET

3.1.1 Exploratory Data Analysis:

Exploratory Data Analysis was conducted to explore the relationship between Sale Price with every other features. For numeric
features, the linear relationship was examined using a heatmap and correlation coefficients. For categorical data, bar plot was created
to visualize the mean Sale Price across categories.
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FIG.2 HEATMAP : Represents The Relationship Between Sale Prices And Numeric Features.
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title='Building Class 12@, 2@, 60, and 75 Show the Highest Sale Prices’, -
x_label = 'Building Class',
y_label = 'Sale Price’,
)
plt.tight_layout()
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In [155]: create_bar_xticks(housing,
*GarageType ',
"SalePrice’,
title="Houses with Attached and Built-In Garages Sold for the Highest Amount’,
x_label = "Garage Type',
y_label = 'Sale Price’,
¥ tirk lahalc =f'Attarhad® ‘Ratachad’ ‘Ruilt-Tn' ‘far Dart' ‘N Garage' ‘Racement’ 'Multinla Tunac'1)

FIG.3 FIG.3 BAR GRAPH: Represents the relationship between sale prices and categorical data.
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In [159]: create_bar_xticks(housing,
*LandContour’,
‘SalePrice’,
title='Houses on Hillsides Sell for Significantly More Money',
x_label = ‘Land Contour',
y_label = ‘Price (USD)‘,
x_tick_labels = [‘Level’, 'Banked', ‘Low Depression’, ‘Hillside’])
Haneac an Hillcidac Gall far Qianifirantly Mara Manau x
FI1G.4 Houses Accessed by Paved Roads Sell for Higher Prices.
“ Jupyter mainfile Last Checkpoint 1210712020 (autosaved) A oot
File Edit View Insert Cell Kemel Widgets Help Trusted \ Python3 O
B+ & @B 42 ¥ MR B C » cCode v | B2
A_LGUEL = LUNLI LLIAdD11ICALIUN A
y_label = 'Sale Price (USD)',

x_tick_labels = ['RL’, ‘RM", 'C’, 'FV', 'RH'])

plt.tight_layout()

Sale Price Varies by Zoning Class
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In [158]: create_bar_xticks(housing,
‘Street’,
‘SalePrice’,

C
Zoning Classification

title="Houses Accessed by Paved Roads Sell for Higher Prices’,
x_label = 'Type of Road Access’,
y_label = 'Sale Price("UsD")’,

Fig.5 Sales Prices Varies by Zoning Class.
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In [159]): create_bar_xticks(housing,
*LandContour’,
‘SalePrice’,
title='Houses on Hillsides Sell for Significantly More Money',
x_label = 'Land Contour’,
y_label = ‘Price (USD)',
x_tick labels = [‘Level’, 'Banked', 'Low Depression’, 'Hillside'])
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In [160]: create_bar_xticks(housing,
‘Neighborhood’,
‘SalePrice’,
title='Prices by Neighborhood',
x_label = 'Neighborhood', -

Fig.6 Houses on Hillside Sell for Significantly More Money.

3.2 Feature Engineering

In this phase, features are engineered to reduce dimensionality of the data and to account for the patterns and clusters that emerge
during Exploratory Data Analysis. During feature engineering, a categorical variable was coded and removed from the data frame.
All categorical variables of interest were dummified.

4. RESULT

1r prelim = LinearRegression()

1r prelim.fit(X_train_ 1, y train_ 1);

display R2 scores(lr prelim, X train 1, y train 1, X test 1, y test 1)

The mean cross validation score for this model is 8.8195.
The training score for this model is 8.94.
The testing score for this model is 8.713.

FIG.7 Output Image of Code and Accuracy Of Linear Regression

5. CONCLUSION

We have learnt about the concepts of linear regression and gradient descent. The system makes optimal use of the Linear Regression
Algorithm. The system makes use of data in the most efficient way. The linear regression algorithm helps to fulfil customers by
increasing the accuracy of estate choice and reducing the risk of investing in an estate. A lot’s of features that could be added to
make the system more widely acceptable. The model’s accuracy in predicting house price was measured by cross validation.
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