IJCRT.ORG

Neighborhood Prime Labeling Of Some Graphs

¹Mehul Chaurasiya,²Dhvanik Zala,³Shanti Khunti,⁴Mehul Rupani

^{1,2,3,4} Assistant Professor

^{1,4}Dept. Of Mathematics, Shree H.N.Shukla College Of Science, Rajkot, India

²Dept. Of Mathematics, Darshan Engineering College, Rajkot, India

³Dept. Of Mathematics, Saurashtra University, Rajkot, India

*Abstract:*Let G be the graph with n vertices, a bijective function $f: V(G) \rightarrow \{1, 2, ..., n\}$ is said to be a neighborhood prime labeling if for every vertex $v \in V(G)$, $\deg(v) > 1$. $\gcd\{f(p)|p \in N(w)\} = 1$. A graph which admits neighborhood prime labeling is called neighborhood prime graph.

Here we discuss about the coconut tree graph, the Jewel graph, $K_{1,3} * K_{1,n}$ graph, The Jelly fish graph which admits an NPL.

Keywords: Neighborhood prime labeling, Neighborhood prime graph, $K_{1,3} * K_{1,n}$ graph, Adjacent vertices

I. Introduction: Roger Entringer introduced the concept of prime labeling and was introduced in 1980's by Tout et al [6] which paved way for many researches in this zone. Motivated by the study of prime labeling, S.K.Patel and N.Shrimali in [3] introduced the concept of neighbourhood prime labeling in 2015, in which they have recognized the enough condition for a graph to admit neighbourhood prime labeling and proved that paths, cycles, helm, closed helm and flower have neighbourhood prime labeling.

II. BASIC TERMINOLOGY OF NEIGHBOOURHOOD PRIME LABELING OF SOME GRAPHS

Definition1.1:Let G be the graph with n vertices, a bijective function $f: V(G) \rightarrow \{1, 2, ..., n\}$ is said to be a neighborhood prime labeling if for every vertex $v \in V(G)$, deg(v) > 1.gcd $\{f(p) | p \in N(w)\} = 1$. A graph which admits neighborhood prime labeling is called neighborhood prime graph.

Definition1.2: The double star graph $(K_{1,n,n})$ is a tree getting from the star graph $K_{1,n}$ by attaching new pendent edges of the exiting *n* pendent vertices which consisting total 2n + 1 vertices and 2n edges.

Definition1.3[3]: Coconut tree graph is obtained by identifying the middle vertex of $K_{1,m}$ with a pendent vertex of the path P_n .

Definition1.4[6]: The Jewel graph J_n is the graph with vertex set $V(J_n) = \{u, v, x, y, u_j | 1 \le j \le n\}$ and the edge set $E(J_n) = \{ux, uy, vx, vy, xy, uu_j, vv_j | 1 \le j \le n\}$

Definition1.5[2]: Let $G = K_{1,3} * K_{1,n}$ be the graph obtained from $K_{1,3}$ by joining root of a star $K_{1,n}$ at each pendent vertex of $K_{1,3}$.

Definition1.5[5]: The Jelly fish graph J(n, m) is obtained from a 4-cycle $(v_1, ..., v_4)$ collected with an edge v_1v_3 and affixing *n* pendent edges to v_2 and *m* pendent edges to v_4 .

III. NEIGHBOOURHOOD PRIME LABELING OF SOME GRAPHS

Theorem 3.1: Every Double star graph $(K_{1,n,n})$ is a neighboourhood prime labeling.

Proof: Let G = (V(G), E(G)) be a graph of double star graph $(K_{1,n,n})$ with

vertex set $\{v, v_i, u_i; i \in 1, 2, ..., n\}$ obtained from the suppose $\{v, v_1, v_2, ..., v_n\}$ and $\{u_1, u_2, ..., u_n\}$ be the vertices and $\{e_1, e_2, ..., e_{n-1}\}$ be the edges which are denoted in figure.

Note that the path consist n vertices and n - 1 edges.

If $G = (K_{1,n,n})$ then total number of vertices 2n + 1 and total number of edges 2n.

Now we define a vertex labeling $f: V(G) \rightarrow \{1, 2, ..., p\}$ as follows:

f(v) = 1

$$f(v_j) = j + 1; 1 \le j \le n$$

$$f(u_j) = n + j + 1; 1 \le j \le n$$

Here the vertices which are greater than one are

 $f(v) = 1, f(v_1) = 2, f(v_2) = 3f(v_3) = 4, f(v_4) = 5, f(v_5) = 6$ $f(u_1) = 7, f(u_2) = 8, f(u_3) = 9, f(u_4) = 10, f(u_5) = 11$

Case 1:If w = v then gcd{ $f(p) | p \in N(w)$ } = 1, since f(v) = 1 such that which is relatively prime to remaining numbers.

Case2: If $w = v_j$; $1 \le j \le n$ then $gcd\{f(p)|p \in N(w)\} = 1$

Since f(v) = 1 and $f(u_i) = n + j + 1$: $1 \le j \le n$ such that which is relatively prime to remaining numbers.

Then the double star graph admits NPL. Hence it is Neighborhood prime graph.

Theorem 3.2: The coconut tree graph $CT_{m,n}$ admits a neighboourhood prime labeling.

Proof: Let $V = \{v_i | 1 \le i \le m\} \bigcup \{u_j | 1 \le j \le n\}$ be the vertex set of coconut tree where v_i are the vertices of the path P_m and and u_j are the n new pendent vertices at an end vertex of the path P_m .

Let $E = \{e_i = v_i v_{i+1} | 1 \le i \le m\} \cup \{e_{ij} = v_i u_j | i = m, 1 \le j \le n\}$ be the edge set of coconut tree. Here the coconut tree has |V(G)| = m + n vertices and |E(G)| = m + n - 1 edges.

An Injective function $f: V(G) \rightarrow \{1, 3, \dots, 2(m + n) - 1\}$ such that

Case(i): $m \equiv 1 \pmod{2}$

 $f(v_i) = \begin{cases} i, if iisodd \\ m+i, if iiseven \end{cases}$

$$f(u_j) = 2m + 2j - 1, 1 \le j \le n$$

The vertices with degree greater than one are $N(u_i) \supset \{u_{i-1}, u_{i+1}\}$ where $2 \le i \le m - 2$.

Where
$$f(u_{i-1}) = i - 1$$
 & $f(u_{i+1}) = i + 1$

Then the $gcd{f(p)|p \in N(u_i)} = 1$

Now $N(u_m) \supset \{u_{m-1}, v_i\}$ here $1 \le i \le m$

Here
$$f(u_{m-1}) = 5$$
 and $f(u_j) = 2m + 2j - 1; 1 \le j \le n$

Then the $gcd{f(p)|p \in N(u_m)} = 1$

Then the coconut tree graph $CT_{m,n}$ admits NPL. Hence it is Neighborhood prime graph.

Fig 2:NPL of $CT_{3.5}$

Theorem 3.3: Let G be the Jewel graph admits an NPL.

Proof: Suppose G^* be the graph defined by

 $G^* = G - \{uw_j | 1 \le j \le m - 2\}$. Here $V(G^*) = \{u, v, x, y, w_j | 1 < j \le m\}$ and

 $E(G^*) = \{ux, vx, uy, vy, uw_{m-1}, uw_m, vw_j | 1 \le j \le m\}$. Then $|V(G^*)| = m + 4$ and

 $|E(G^*)| = m + 6$. Let $f: V(G^*) \to \{1, 2, \dots, 2m + 9, 2(m + 6)\}$ is defined as follows:

$$f(u) = 1 f(v) = 3f(w_{l}) = 2m + 9 - 2j; 1 \le j \le m - 2f(w_{m-1}) = 9 f(w_{m}) = 5f(x) = 2(n + 6) f(y) = 2n + 9The vertices with degree grater than one are $N(x) \supset \{f(u), f(v)\}$
Here $f(u) = 1$ and $f(v) = 3$.
Then the the $gcd\{f(p)|p \in N(x)\} = 1$
Now consider $N(y) = \{f(u), f(v)\}$
Here $f(u) = 1$ and $f(v) = 3$.
Then the $gcd\{f(p)|p \in N(y)\} = 1$
Now, $N(u) \supset \{f(x), f(y), f(w_{n-1}), f(w_n)\}$
Here $f(x) = 2m + 12$ $f(y) = 2m + 9$
 $f(w_{m-1}) = 9$ $f(w_m) = 5$
Then the $gcd\{f(p)|p \in N(u)\} = 1$
Now, $N(v) \supset \{f(x), f(y), f(w_{m-1}), f(w_m), f(w_j)\}; 1 \le j \le m - 2$
Here $f(w_j) = 2m + 9 - 2j; 1 \le j \le m - 2$
 $f(x) = 2(m + 6)$ $f(y) = 2m + 9$
 $f(w_{m-1}) = 9$ $f(w_m) = 5$
Then the $gcd\{f(p)|p \in N(w_j)\} = 1$
Now $N(w_{m-1}) \supset f(u), f(v)$
Here $f(u) = 1$ and $f(v) = 3$$$

JCR

Then the $gcd{f(p)|p \in N(w_{m-1})} = 1$

Now $N(w_m) \supset \{f(u), f(v)\}$

Here f(u) = 1 and f(v) = 3

Then the $gcd{f(p)|p \in N(w_m)} = 1$

Here note that either n is odd or n is even.

The Jewel graph which admits NPL. Hence it is neighborhood prime graph.

Fig 3: NPL of Jewel graph for odd and even numbers.

Theorem 3.4: The graph $k_{1,3} * K_{1,n}$ admits an NPL for all $n \ge 2$.

Proof: Let $G = k_{1,3} * K_{1,n}$ with $V(G) = \{x, u, v, w, v_j, w_j | 1 \le j \le n\}$ and

 $E(G) = \{xu, xv, xw, uu_j vv_j, ww_j | 1 \le j \le n\}$. Hence |V(G)| = 3n + 4 and |E(G)| = 3(n + 1)

Define $f: V(G) \rightarrow \{1, 2, \dots, 6n + 7\}$ by

f(u) = 1 f(v) = 3 f(w) = 2n + 5 $f(x) = 4n + 7 f(u_j) = 6n + 9 - 2j; 1 \le j \le n$

 $f(v_j) = 4n - 2j + 7; 1 \le j \le n$

$$f(w_i) = 2n - 2j + 5; 1 \le j \le n$$

The vertices with degree greater than one are

 $N(u) \supset \{f(x), f(u_j)\}; 1 < j \le n$ Here f(x) = 4n + 7 and $f(u_j) = 6n - 2j + 9$ Then the $gcd\{f(p)|p \in N(u)\} = 1$ $N(v) \supset \{f(x), f(v_j)\}; 1 \le j \le n$ Here $(x) = 4n + 7, f(v_j) = 4n - 2j + 7$ Then the $gcd\{f(p)|p \in N(v)\} = 1$

Now $N(w) \supset \{f(x), f(w_j)\}; 1 \le j \le n$

Here (x) = 4n + 7, $f(w_j) = 2n - 2j + 5$

Then the $gcd{f(p)|p \in N(w)} = 1$

Now $N(x) \supset \{f(u), f(v), f(w)\}$

Here f(u) = 1 which is relatively prime to remaining numbers.

Fig 4:NPL of The graph $K_{1,3} * K_{1,n}$

Theorem 3.5: The Jelly fish $J(n, m)$ admits an NPL.	
Proof: Let G be the Jelly fish $J(n, m)$ graph. Let $V(G) = \{u, v, x, y, u_i, v_j 1 \le i \le n, 1 \le j \le m\}$	
And $E(G) = \{xu, xv, yu, yv, xy\} \cup \{uu_i 1 \le i \le n\} \cup \{vv_j 1 \le j \le m\}$	
Then $ V(G) = n + m + 4$ and $ E(G) = n + m + 5$	
Define $f: V(G) \rightarrow \{1, 2, \dots, 2(n + m)\}$	$(1+\frac{4}{2}), 2n+2m+11$ as follows:
f(u) = 2n + 2m + 11	f(v) = 2n + 2m + 7
f(x) = 2n + 1	$f(\mathbf{y}) = 2n + 3$
$f(u_i) = 2i - 1; 1 \le i \le n$	
$f(v_j) = 2n + 2j + 3; 1 \le j \le m$	
The vertices with degree greaterthan one as follows:	
Now $N(u) \supset \{f(u_i), f(x), f(y)\}; 1$	$l \leq i \leq n$
Here $f(u_i) = 2i - 1$ $f(x) = 2i - 1$	2n+1 $f(y) = 2n+3$
Then the $gcd{f(p) p \in N(u)} = 1$	
Now $N(v) \supset \{f(v_j), f(x), f(y)\}; 1 \le j \le m$	
$f(v_j) = 2n + 2j + 3$	f(x) = 2n + 1 $f(y) = 2n + 3$
Then the $gcd{f(p) p \in N(v)} = 1$	
Now $N(x) \supset \{f(u), f(v), f(y)\}$	
Here $f(u) = 2n + 2m + 11$,	f(v) = 2n + 2m + 7 $f(y) = 2n + 3$
Then the $gcd{f(p) p \in N(x)} = 1$	
Now $N(y) \supset \{f(u), f(v), f(x)\}$	
Here $f(u) = 2n + 2m + 11$,	f(v) = 2n + 2m + 7 $f(x) = 2n + 1$
Then the $gcd{f(p) p \in N(y)} = 1$	

So, The Jelly fish graph J(n, m) is NPL. Hence it is Neighborhood prime graph.

Fig 5:NPL of The Jelly fish graph J(n, m).

Reference:

[1]Ananthavalli .C, Nagarajan .K, "Neighbourhood-prime labeling for some special graphs", International Journal of Mathematical Archive-Vol. 7, No. 4, pp. 224-230, 2016.

[2]DharamvirsinhParmar,UrvishaVaghela,"skolenDifferenceMeanLabelingOf Some Path Related Graphs",Pramana Research Journal,Vol 9,Issue 5,2019, Page No.651-657

[3]M.Kalaimathi, B.J.Balamurugan, "Cpmputation Of Even-Odd Harmonious Labeling Of Certain Family Of Acyclic Graphs", International Journal Of Engineering and Advanced Technology, Vol-9,Issue-IS3,Dec-2019,Page No.414-419.

[4] Patel .S.K and Shrimali .N, "Neighbourhood prime labeling", International journal of mathematics and soft computing, Vol 5, No.2, pp. 135-143, 2015.

[5]S.Shenbagadevi,A.Nagarajan,NearSkolen Difference Mean Labeling Of Special Types Of Trees,International Journal Of Mathematics Trendsand Technology-Vol 52 Number 7,Dec-2017, Page No.474-478

[6]S.Shenbagadevi,A.Nagarajan,"On Changing Behaviour OF Edges Of Some Special Classes Of GraphsII", International Journal Of Resent Scientific Research, Vol 9,Issue3(J),March-2018, Page No.25334-25339

[7] Vaidya .S.K and Kanani.K. K, "Prime Labeling for Some Cycle Related Graphs", Journal of Mathematics Research , Vol. 2, No. 2, May 2010.

