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Abstract— Feed Forward Neural Network    is a part of machine learning based on a set of algorithms that 

attempt to model high-level abstractions in data by using multiple processing layers with complex structures 

learning refers to a rather wide class of machine learning techniques and architectures, with the hallmark 

of using many layers of non-linear information processing that are hierarchical in nature. Here we are 

discussing about the comparative study of Feed Forward Neural Network     

 

Index Terms - Artificial Intelligence, Machine learning, Neural network 

I. INTRODUCTION 

Deep learning is a recently-developed field belonging to Artificial Intelligence. It tries to mimic the human 

brain, which is capable of processing the complex input data, learning different knowledge’s intellectually 

and fast, and solving different kinds of complicated tasks well. Switching these features of human brain to a 

learning model, we wish the model can deal with the high-dimensional data, support a fast and intellectual 

learning algorithm and perform well in the complicated AI tasks like computer vision or speech recognition. 

Deep architecture is believed to be such kind of model, with good learning algorithms for the deep learning 

and an excellent performance in solving AI tasks. This paper reviews a history of deep learning, 

summarizing the components of Convolution Neural Networks (CNNs) and Deep Belief Networks (DBNs) 

together with their learning algorithms "signal" or "feedback" available to a learning system. These are:[10] 

and their performances in different applications. Machine learning tasks are typically classified into three 

broad categories, depending on the nature of the learning and their performances in different applications. 

Machine learning tasks are typically classified into three broad categories, depending on the nature of the 

learning  
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Fig 1 :Types Of Machine Learning Tasks 

II .TYPES OF MACHINE LEARNING TASKS  

Supervised learning: The computer is presented with example inputs and their desired outputs, given by a 

"teacher", and the goal is to learn a general rule that maps inputs to outputs. Unsupervised learning: No 

labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised 

learning can be a goal in itself (discovering hidden patterns in data) or a means towards an 

end.Reinforcement learning: A computer program interacts with a dynamic environment in which it must 

perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come 

close to its goal. Another example is learning to play a game by playing against an opponent[3]:Between 

supervised and unsupervised learning is semi-supervised learning, where the teacher gives an incomplete 

training signal: a training set with some (often many) of the target outputs missing. Transduction is a special 

case of this principle where the entire set of problem instances is known at learning time, except that part of 

the targets are missing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. MACHINE LEARNING METHODS  
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                                                                                  Fig 2:Machine Learning Methods 

 

 

 

 

 

 

 

 

 

IV   DEEP LEARNING 
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Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data 

by using multiple processing layers with complex structures, or otherwise composed of multiple non-linear transformations. 

[1][2][3][4][5][6]Deep learning is part of a broader family of machine learning methods based on learning representations of data. 

An observation (e.g., an image) can be represented in many ways such as a vector of intensity values per pixel, or in a more 

abstract way as a set of edges, regions of particular shape, etc. [4]Various deep learning architectures such as deep neural 

networks, convolutional deep neural networks, deep belief networks and recurrent neural networks have been applied to fields 

like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they 

have been shown to produce state-of-the-art results on various tasks.[7]Three important reasons for the popularity of deep 

learning today are drastically increased chip processing abilities (e.g., GPU units), the significantly lowered cost of computing 

hardware, and recent advances in machine learning and signal/information processing research. Active researchers in this area 

include those at University of Toronto, New York University, University of Montreal, Microsoft Research, Google, IBM 

Research, Stanford University, and University of Michigan, Massachusetts Institute of Technology, University of Washington, 

and numerous other places. These researchers have demonstrated successes of deep learning in diverse applications of computer 

vision, phonetic recognition, voice search, conversational speech recognition, speech and image feature coding, semantic 

utterance classification, hand-writing recognition, audio processing, visual object recognition, information retrieval, and even in 

the analysis of molecules that may lead to discovering new drugs as reported recently in (Mark off, 2012). 

FEED FORWARD NEURAL NETWORK 

A feed forward neural network is an artificial neural network where connections between the units do not form a cycle. This is 

different from recurrent neural networks. The feed forward neural network was the first and simplest type of artificial neural 

network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden 

nodes (if any) and to the output nodes. There are no cycles or loops in the network. In a feed forward network information always 

moves one direction; it never goes backwards. 

 

 

Fig 3: Feed forward neural network 

BACK PROPAGATION ALGORITHM  

Back propagation is a common method of training artificial neural networks used in conjunction with 

an optimization method such as gradient descent. The method calculates the gradient of a loss function with 

respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it 

to update the weights, in an attempt to minimize the loss function.Back propagation requires a known, 

desired output for each input value in order to calculate the loss function gradient. It is therefore usually 

considered to be a supervised learning method, although it is also used in some unsupervised networks such 

as auto encoders. It is a generalization of the delta rule to multi-layered feed forward networks, made 

possible by using the chain rule to iteratively compute gradients for each layer. Back propagation requires 

that the activation function used by the artificial neurons (or "nodes") be differentiable.The back 

propagation learning algorithm can be divided into two phases: propagation and weight update. 

 

 

 

 

 

1) Phase 1: Propagation 
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2) Each propagation involves the following steps: 

Forward propagation of a training pattern's input through the neural network in order to generate the 

propagation's output activations. 

Backward propagation of the propagation's output activations through the neural network using the training 

pattern target in order to generate the deltas (the difference between the input and output values) of all 

output and hidden neurons. 

3) Phase 2: Weight update 

For each weight-synapse follow the following steps: 

Multiply its output delta and input activation to get the gradient of the weight. Subtract a ratio (percentage) 

of the gradient from the weight. This ratio (percentage) influences the speed and quality of learning; it is 

called the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio, the more 

accurate the training is. The sign of the gradient of a weight indicates where the error is increasing, this is 

why the weight must be updated in the opposite direction. Repeat phase 1 and 2 until the performance of the 

network is satisfactory. 

Algorithm 

The following is a stochastic gradient descent algorithm for training a three-layer network (only one hidden layer): 

  initialize network weights (often small random values) 

  do 

     forEach training example ex 

        prediction = neural-net-output(network, ex)  // forward pass 

        actual = teacher-output(ex) 

        compute error (prediction - actual) at the output units 

        compute  for all weights from hidden layer to output layer  // backward pass 

        compute  for all weights from input layer to hidden layer   // backward pass continued 

        update network weights // input layer not modified by error estimate 

  until all examples classified correctly or another stopping criterion satisfied 

  return the network 

The lines labeled "backward pass" can be implemented using the back propagation algorithm, which 

calculates the gradient of the error of the network regarding the network's modifiable weights.[2] Often the 

term "back propagation" is used in a more general sense, to refer to the entire procedure encompassing both 

the calculation of the gradient and its use in stochastic gradient descent, but back propagation proper can be 

used with any gradient-based optimizer, such as L-BFGS or truncated Newton. Back propagation networks 

are necessarily multilayer perceptron’s (usually with one input, multiple hidden, and one output layer). In 

order for the hidden layer to serve any useful function, multilayer networks must have non-linear activation 

functions for the multiple layers: a multilayer network using only linear activation functions is equivalent to 

some single layer, linear network. Non-linear activation functions that are commonly used include 

the rectifier, logistic function, the softmax function, and the Gaussian function. The back propagation 

algorithm for calculating a gradient has been rediscovered a number of times, and is a special case of a more 

general technique called automatic differentiation in the reverse accumulation mode. 

V METHODS OF UNSUPERVISED DEEP LEARNING ARCHITECTURE 

There are huge number of different variants of deep architectures. Deep learning is a fast-growing field so 

new architectures, variants, or algorithms may appear every few weeks.  

4) Deep Neural Networks 

A deep neural network (DNN) is an artificial neural network (ANN) with multiple hidden layers of units 

between the input and output layers.[11]  DNNs can model complex non-linear relationships. DNN 

architectures, e.g., for object detection and parsing generate compositional models where the object is 

expressed as layered composition of image primitives. The extra layers enable composition of features from 

lower layers, giving the potential of modeling complex data with fewer units than a similarly performing 

shallow network.[12]  

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Backpropagation#cite_note-2
https://en.wikipedia.org/wiki/L-BFGS
https://en.wikipedia.org/wiki/Truncated_Newton_method
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Softmax_activation_function
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Natural_language_processing


www.ijcrt.org                                                    © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882 

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1261 
 

DNNs are typically designed as feed forward networks, but recent research has successfully applied the 

deep learning architecture to recurrent neural networks for applications such as language modeling. 

The training DNNs is explained below: 

A DNN can be discriminatively trained with the standard back propagation algorithm. The weight updates 

can be done via stochastic gradient descent using the following equation: 

       (1)   

Here,  is the learning rate, and  is the cost function. The choice of the cost function depends on factors 

such as the learning type (supervised, unsupervised, reinforcement, etc.) and the activation function. 

For example, when performing supervised learning on a multiclass classification problem, common choices 

for the activation function and cost function are the softmax function and cross entropy function, 

respectively. The softmax function is defined as where  represents the class 

probability (output of the unit ) and  and    (2) 

represent the total input to units  and  of the same level respectively. Cross entropy is defined 

as  where  represents the target probability for output unit  and  is the 

probability output for  after applying the activation function. 

These can be used to output object bounding boxes in form of a binary mask. They are also used for multi 

scale regression to increase localization precision. DNN-based regression can learn features that capture 

geometric information in addition to being a good classifier. They remove the limitation of designing a 

model which will capture parts and their relations explicitly. This helps to learn a wide variety of objects. 

The model consists of multiple layers each of which has a rectified linear unit for non-linear transformation. 

Some layers are convolution, while others are fully connected. Every convolutional layer has an additional 

max pooling. The network is trained to minimize L2 error for predicting the mask ranging over the entire 

training set containing bounding boxes represented as masks. 

Two common issues in DNN are over fitting and computation time. 

DNNs are prone to over fitting because of the added layers of abstraction, which allow them to model rare 

dependencies in the training data. Regularization methods such as weight decay ( -regularization) 

or sparsity ( -regularization) can be applied during training to help combat over fitting A more recent 

regularization method applied to DNNs is dropout regularization. In dropout, some number of units are 

randomly omitted from the hidden layers during training. This helps to break the rare dependencies that can 

occur in the training data Error-correction training (such as back propagation with gradient descent) have 

been the dominant method for training these structures due to the ease of implementation and their tendency 

to converge to better local optima in comparison with other training methods. However, these methods can 

be computationally expensive, especially when being used to train DNNs. There are many training 

parameters to be considered with a DNN, such as the size (number of layers and number of units per layer), 

the learning rate and initial weights. Sweeping through the parameter space for optimal parameters may not 

be feasible due to the cost in time and computational resources. 

 

 

 

 

 

 

5) Deep Belief Networks: 
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Fig 4: A restricted Boltzmann machine (RBM) with fully connected visible and hidden units. 

A deep belief network (DBN) is a probabilistic, generative model made up of multiple layers of hidden 

units. It can be looked at as a composition of simple learning modules that make up each layerA DBN can 

be used for generatively pre-training a DNN by using the learned weights as the initial weights. Back 

propagation or other discriminative algorithms can then be applied for fine-tuning of these weights. This is 

particularly helpful in situations where limited training data is available, as poorly initialized weights can 

have significant impact on the performance of the final model. These pre-trained weights are in a region of 

the weight space that is closer to the optimal weights this allows for both improved modeling capability and 

faster convergence of the fine-tuning phase.  A DBN can be efficiently trained in an unsupervised, layer-by-

layer manner where the layers are typically made of restricted Boltzmann machines (RBM). A description 

of training a DBN via RBMs is provided below. An RBM is an undirected, generative energy-based model 

with an input layer and single hidden layer. Connections only exist between the visible units of the input 

layer and the hidden units of the hidden layer; there are no visible-visible or hidden-hidden connections. The 

training method for RBMs was initially proposed by Geoffrey Hinton for use with training "Product of 

Expert" models and is known as contrastive divergence (CD).[86] CD provides an approximation to 

the maximum likelihood method that would ideally be applied for learning the weights of the RBM.[80][87]In 

training a single RBM, weight updates are performed with gradient ascent via the following equation: 

       (3) 

Here,  is the probability of a visible vector, which is given by .  is the partition function 

(used for normalizing) and  is the energy function assigned to the state of the network. A lower energy indicates the 

network is in a more "desirable" configuration. The gradient  has the simple 

form  where  represent averages with respect to distribution . The issue arises in 

sampling  as this requires running alternating Gibbs sampling for a long time. CD replaces this step by running 

alternating Gibbs sampling for  steps (values of  have empirically been shown to perform well). After  steps, the data 

is sampled and that sample is used in place of .  

The CD procedure works as follows:  

Initialize the visible units to a training vector. 

Update the hidden units in parallel given the visible units: .  Represents the 

sigmoid function and  is the bias of . 

Update the visible units in parallel given the hidden units: .  is 

the bias of . This is called the "reconstruction" step. 

Reupdate the hidden units in parallel given the reconstructed visible units using the same equation as in step 

2. 
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        Perform the weight update: . 

Once an RBM is trained, another RBM can be "stacked" atop of it to create a multilayer model. Each time 

another RBM is stacked, the input visible layer is initialized to a training vector and values for the units in 

the already-trained RBM layers are assigned using the current weights and biases. The final layer of the 

already-trained layers is used as input to the new RBM. The new RBM is then trained with the procedure 

above, and then this whole process can be repeated until some desired stopping criterion is met.[2] 

Despite the approximation of CD to maximum likelihood being very crude (CD has been shown to not 

follow the gradient of any function), empirical results have shown it to be an effective method for use with 

training deep architectures. 

 

6) Convolutional Neural Networks 

A CNN is composed of one or more convolutional layers with fully connected layers (matching those in 

typical artificial neural networks) on top. It also uses tied weights and pooling layers. This architecture 

allows CNNs to take advantage of the 2D structure of input data. In comparison with other deep 

architectures, convolutional neural networks are starting to show superior results in both image and speech 

applications. They can also be trained with standard back propagation. CNNs are easier to train than other 

regular, deep, feed-forward neural networks and have many fewer parameters to estimate, making them a 

highly attractive architecture to use. Examples of applications in Computer Vision include Deep Dream. 

 

7) Convolutional Deep Belief Networks 

A recent achievement in deep learning is from the use of convolutional deep belief networks (CDBN). A 

CDBN is very similar to normal Convolutional neural network in terms of its structure. Therefore, like 

CNNs they are also able to exploit the 2D structure of images combined with the advantage gained by pre-

training in Deep belief network. They provide a generic structure which can be used in many image and 

signal processing tasks and can be trained in a way similar to that for Deep Belief Networks. Recently, 

many benchmark results on standard image datasets like CIFAR have been obtained using CDBNs. 

8) Large Memory Storage And Retrieval (Lamstar) Neural Networks 

LAMSTAR (Large Memory Storage And Retrieval) Neural Networks are fast Deep Learning neural 

networks of many layers and which may employ numerous filters simultaneously. These filters may be 

nonlinear, stochastic, logic, non-stationary, or even non-analytical. The LAMSTAR is a biologically 

motivated continuously-learning neural network. 

There is no connection between the units of the same layer (like RBM). For the DBM, we can write the 

probability which is assigned to vector  as:     (4) 

 

where  are the set of hidden units, and  are the 

model parameters, representing visible-hidden and hidden-hidden symmetric interaction, since they are 

undirected links. As it is clear by setting  and  the network becomes the well-

known Restricted Boltzmann machine.[111] 

There are several reasons which motivate us to take advantage of deep Boltzmann machine 

architectures. Like DBNs, they benefit from the ability of learning complex and abstract internal 

representations of the input in tasks such as object or speech recognition, with the use of limited 

number of labeled data to fine-tune the representations built based on a large 

supply of unlabeled sensory input data.  

Since the exact maximum likelihood learning is intractable for the DBMs, we may perform 

the approximate maximum likelihood learning. There is another possibility, to use mean-field inference 

to estimate data-dependent expectations, incorporation with a Markov chain Monte 

Carlo (MCMC) based stochastic approximation technique to approximate the expected sufficient 

statistics of the model.[12]We can see the difference between DBNs and DBM. In DBNs, the top two 

layers form a restricted Boltzmann machine which is an undirected graphical model, but the lower 
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layers form a directed generative model. Apart from all the advantages of DBMs discussed so far, they 

have a crucial disadvantage which limits the performance and functionality of this kind of architecture. 

The approximate inference, which is based on mean-field method, is about 25 to 50 times slower than a 

single bottom-up pass in DBNs. This time consuming task make the joint optimization, quite impractical 

for large data sets, and seriously restricts the use of DBMs in tasks such as feature representations (the 

mean-field inference have to be performed for each new test input)  

Table 1:  Comparison of unsupervised deep learning architecture 
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VI DEEP LEARNING SOFTWARE LIBRARIES 

TensorFlow — Google's open source machine learning library in C++ and Python with APIs for both. It provides parallelization 

with CPUs and GPUs.[231] 

Torch — An open source software library for machine learning based on the Lua programming language. 

Theano — An open source machine learning library for Python. 

Deeplearning4j — An open source deep learning library written for Java. It provides parallelization with CPUs and GPUs. 

OpenNN — An open source C++ library which implements deep neural networks and provides parallelization with CPUs. 

NVIDIA cuDNN — A GPU-accelerated library of primitives for deep neural networks. 

DeepLearnToolbox — A Matlab/Octave toolbox for deep learning. 

convnetjs — A Javascript library for training deep learning models. It contains online demos. 

Gensim — A toolkit for natural language processing implemented in the Python programming language. 

Caffe — A deep learning framework. 

Apache SINGA — A deep learning platform developed for scalability, usability and extensibility. 
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RNNLM — RNN language model open source. 

RNNLMPara — Parallel RNN language model trainer open source. 

VI DEEP LEARNING RESEARCH GROUPS 

Some labs and research groups that are actively working on deep learning: 

University of Toronto - Machine Learning Group (Geoffrey Hinton, Rich Zemel, Ruslan Salakhutdinov, 

Brendan Frey, Radford Neal) 

Université de Montréal –  MILA Lab (Yoshua Bengio, Pascal Vincent, Aaron Courville, Roland 

Memisevic) 

New York University – Yann Lecun, Rob Fergus, David Sontag and Kyunghyun Cho 

Stanford University – Andrew Ng, Christopher Manning‘s, Fei-fei Li‘s group 

University of Oxford – Deep learning group,  Nando de Freitas and Phil Blunsom, Andrew Zisserman 

Google Research – Jeff Dean, Geoffrey Hinton, Samy Bengio, Ilya Sutskever, Ian Goodfellow, Oriol 

Vinyals, Dumitru Erhan, Quoc Le et al 

Google DeepMind - Alex Graves, Karol Gregor, Koray Kavukcuoglu, Andriy Mnih, Guillaume 

Desjardins, Xavier Glorot, Razvan Pascanu, Volodymyr Mnih et al 

Facebook AI Research(FAIR) - Yann Lecun, Rob Fergus, Jason Weston, Antoine Bordes, Soumit 

Chintala, Leon Bouttou, Ronan Collobert, Yann Dauphin et al. 

Twitter’s Deep Learning Group – Hugo Larochelle, Ryan Adams, Clement Farabet et al 

Microsoft Research – Li Deng et al 

SUPSI – IDSIA (Jurgen Schmidhuber‘s group) 

UC Berkeley – Bruno Olshausen‘s group, Trevor Darrell‘s group, Pieter Abbeel 

UCLA – Alan Yuille 

University of Washington – Pedro Domingos‘ group 

IDIAP Research Institute - Ronan Collobert‘s group 

University of California Merced – Miguel A. Carreira-Perpinan‘s group 

University of Helsinki - Aapo Hyvärinen‘s Neuroinformatics group 

Université de Sherbrooke – Hugo Larochelle‘s group 

University of Guelph – Graham Taylor‘s group 

University of Michigan – Honglak Lee‘s group 

Technical University of Berlin – Klaus-Robert Muller‘s group 

Baidu – Kai Yu‘s and Andrew Ng’s group 

Aalto University - Juha Karhunen and Tapani Raiko group 

U. Amsterdam – Max Welling‘s group 

CMU – Chris Dyer 

U. California Irvine – Pierre Baldi‘s group 

Ghent University – Benjamin Shrauwen‘s group 

University of Tennessee – Itamar Arel‘s group 

IBM Research – Brian Kingsbury et al 

University of Bonn – Sven Behnke’s group 

Gatsby Unit @ University College London – Maneesh Sahani, Peter DayanComputational Cognitive 

Neuroscience Lab @ University of Colorado Boulder 

 
 

VII  CONCLUSION 

Given the far-reaching implications of artificial intelligence coupled with the realization that deep learning 

is emerging as one of its most powerful techniques, the subject is understandably attracting both criticism 

and comment, and in some cases from outside the field of computer science itself. Others point out that deep 

learning should be looked at as a step towards realizing strong AI, not as an all-encompassing solution. 

Despite the power of deep learning methods, they still lack much of the functionality needed for realizing 

this goal entirely. Some currently popular and successful deep learning architectures display certain 

problematical behaviors. The researchers hypothesized that these behaviors are tied with limitations in the 

internal representations learned by these architectures, and that these same limitations would inhibit 

integration of these architectures into heterogeneous multi-component AGI architectures. It is suggested that 

these issues can be worked around by developing deep learning architectures that internally form states 

homologous to image-grammar decompositions of observed entities and events. 
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