
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1256

A SURVEY ON FEED FORWARD NEURAL

NETWORKS AND DEEP LEARNING

ARCHITECTURES

1Prof. Anasuya N Jadagerimath, 2Prof. Yogesh G. S, 3Puneeth Kumar P,4Mohan Kumar

A.V

1Professor, 2Professor, 3Assistant Professor, 4Assistant Professor

1Computer Science and Engineering (AIML)Department, 2Electronics and

Communication Engineering Department, 3Computer Science and Engineering(AIML)

Department

t3,4Don Bosco Institute of Technology Bengaluru-India, 2 East Point College of

Engineering and Technology Bengaluru-India,

Abstract— Feed Forward Neural Network is a part of machine learning based on a set of algorithms that

attempt to model high-level abstractions in data by using multiple processing layers with complex structures

learning refers to a rather wide class of machine learning techniques and architectures, with the hallmark

of using many layers of non-linear information processing that are hierarchical in nature. Here we are

discussing about the comparative study of Feed Forward Neural Network

Index Terms - Artificial Intelligence, Machine learning, Neural network

I. INTRODUCTION

Deep learning is a recently-developed field belonging to Artificial Intelligence. It tries to mimic the human

brain, which is capable of processing the complex input data, learning different knowledge’s intellectually

and fast, and solving different kinds of complicated tasks well. Switching these features of human brain to a

learning model, we wish the model can deal with the high-dimensional data, support a fast and intellectual

learning algorithm and perform well in the complicated AI tasks like computer vision or speech recognition.

Deep architecture is believed to be such kind of model, with good learning algorithms for the deep learning

and an excellent performance in solving AI tasks. This paper reviews a history of deep learning,

summarizing the components of Convolution Neural Networks (CNNs) and Deep Belief Networks (DBNs)

together with their learning algorithms "signal" or "feedback" available to a learning system. These are:[10]

and their performances in different applications. Machine learning tasks are typically classified into three

broad categories, depending on the nature of the learning and their performances in different applications.

Machine learning tasks are typically classified into three broad categories, depending on the nature of the

learning

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Machine_learning#cite_note-aima-10

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1257

Fig 1 :Types Of Machine Learning Tasks

II .TYPES OF MACHINE LEARNING TASKS

Supervised learning: The computer is presented with example inputs and their desired outputs, given by a

"teacher", and the goal is to learn a general rule that maps inputs to outputs. Unsupervised learning: No

labels are given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised

learning can be a goal in itself (discovering hidden patterns in data) or a means towards an

end.Reinforcement learning: A computer program interacts with a dynamic environment in which it must

perform a certain goal (such as driving a vehicle), without a teacher explicitly telling it whether it has come

close to its goal. Another example is learning to play a game by playing against an opponent[3]:Between

supervised and unsupervised learning is semi-supervised learning, where the teacher gives an incomplete

training signal: a training set with some (often many) of the target outputs missing. Transduction is a special

case of this principle where the entire set of problem instances is known at learning time, except that part of

the targets are missing.

III. MACHINE LEARNING METHODS

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Map_%28mathematics%29
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Autonomous_car
https://en.wikipedia.org/wiki/Machine_learning#cite_note-bishop-3
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Transduction_%28machine_learning%29

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1258

 Fig 2:Machine Learning Methods

IV DEEP LEARNING

http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1259

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data

by using multiple processing layers with complex structures, or otherwise composed of multiple non-linear transformations.

[1][2][3][4][5][6]Deep learning is part of a broader family of machine learning methods based on learning representations of data.

An observation (e.g., an image) can be represented in many ways such as a vector of intensity values per pixel, or in a more

abstract way as a set of edges, regions of particular shape, etc. [4]Various deep learning architectures such as deep neural

networks, convolutional deep neural networks, deep belief networks and recurrent neural networks have been applied to fields

like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they

have been shown to produce state-of-the-art results on various tasks.[7]Three important reasons for the popularity of deep

learning today are drastically increased chip processing abilities (e.g., GPU units), the significantly lowered cost of computing

hardware, and recent advances in machine learning and signal/information processing research. Active researchers in this area

include those at University of Toronto, New York University, University of Montreal, Microsoft Research, Google, IBM

Research, Stanford University, and University of Michigan, Massachusetts Institute of Technology, University of Washington,

and numerous other places. These researchers have demonstrated successes of deep learning in diverse applications of computer

vision, phonetic recognition, voice search, conversational speech recognition, speech and image feature coding, semantic

utterance classification, hand-writing recognition, audio processing, visual object recognition, information retrieval, and even in

the analysis of molecules that may lead to discovering new drugs as reported recently in (Mark off, 2012).

FEED FORWARD NEURAL NETWORK

A feed forward neural network is an artificial neural network where connections between the units do not form a cycle. This is

different from recurrent neural networks. The feed forward neural network was the first and simplest type of artificial neural

network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden

nodes (if any) and to the output nodes. There are no cycles or loops in the network. In a feed forward network information always

moves one direction; it never goes backwards.

Fig 3: Feed forward neural network

BACK PROPAGATION ALGORITHM

Back propagation is a common method of training artificial neural networks used in conjunction with

an optimization method such as gradient descent. The method calculates the gradient of a loss function with

respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it

to update the weights, in an attempt to minimize the loss function.Back propagation requires a known,

desired output for each input value in order to calculate the loss function gradient. It is therefore usually

considered to be a supervised learning method, although it is also used in some unsupervised networks such

as auto encoders. It is a generalization of the delta rule to multi-layered feed forward networks, made

possible by using the chain rule to iteratively compute gradients for each layer. Back propagation requires

that the activation function used by the artificial neurons (or "nodes") be differentiable.The back

propagation learning algorithm can be divided into two phases: propagation and weight update.

1) Phase 1: Propagation

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Learning_representation
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Deep_learning#Deep_neural_networks
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Automatic_speech_recognition
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Cycle
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Delta_rule
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Differentiable

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1260

2) Each propagation involves the following steps:

Forward propagation of a training pattern's input through the neural network in order to generate the

propagation's output activations.

Backward propagation of the propagation's output activations through the neural network using the training

pattern target in order to generate the deltas (the difference between the input and output values) of all

output and hidden neurons.

3) Phase 2: Weight update

For each weight-synapse follow the following steps:

Multiply its output delta and input activation to get the gradient of the weight. Subtract a ratio (percentage)

of the gradient from the weight. This ratio (percentage) influences the speed and quality of learning; it is

called the learning rate. The greater the ratio, the faster the neuron trains; the lower the ratio, the more

accurate the training is. The sign of the gradient of a weight indicates where the error is increasing, this is

why the weight must be updated in the opposite direction. Repeat phase 1 and 2 until the performance of the

network is satisfactory.

Algorithm

The following is a stochastic gradient descent algorithm for training a three-layer network (only one hidden layer):

 initialize network weights (often small random values)

 do

 forEach training example ex

 prediction = neural-net-output(network, ex) // forward pass

 actual = teacher-output(ex)

 compute error (prediction - actual) at the output units

 compute for all weights from hidden layer to output layer // backward pass

 compute for all weights from input layer to hidden layer // backward pass continued

 update network weights // input layer not modified by error estimate

 until all examples classified correctly or another stopping criterion satisfied

 return the network

The lines labeled "backward pass" can be implemented using the back propagation algorithm, which

calculates the gradient of the error of the network regarding the network's modifiable weights.[2] Often the

term "back propagation" is used in a more general sense, to refer to the entire procedure encompassing both

the calculation of the gradient and its use in stochastic gradient descent, but back propagation proper can be

used with any gradient-based optimizer, such as L-BFGS or truncated Newton. Back propagation networks

are necessarily multilayer perceptron’s (usually with one input, multiple hidden, and one output layer). In

order for the hidden layer to serve any useful function, multilayer networks must have non-linear activation

functions for the multiple layers: a multilayer network using only linear activation functions is equivalent to

some single layer, linear network. Non-linear activation functions that are commonly used include

the rectifier, logistic function, the softmax function, and the Gaussian function. The back propagation

algorithm for calculating a gradient has been rediscovered a number of times, and is a special case of a more

general technique called automatic differentiation in the reverse accumulation mode.

V METHODS OF UNSUPERVISED DEEP LEARNING ARCHITECTURE

There are huge number of different variants of deep architectures. Deep learning is a fast-growing field so

new architectures, variants, or algorithms may appear every few weeks.

4) Deep Neural Networks

A deep neural network (DNN) is an artificial neural network (ANN) with multiple hidden layers of units

between the input and output layers.[11] DNNs can model complex non-linear relationships. DNN

architectures, e.g., for object detection and parsing generate compositional models where the object is

expressed as layered composition of image primitives. The extra layers enable composition of features from

lower layers, giving the potential of modeling complex data with fewer units than a similarly performing

shallow network.[12]

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Backpropagation#cite_note-2
https://en.wikipedia.org/wiki/L-BFGS
https://en.wikipedia.org/wiki/Truncated_Newton_method
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Softmax_activation_function
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Automatic_differentiation
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Natural_language_processing

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1261

DNNs are typically designed as feed forward networks, but recent research has successfully applied the

deep learning architecture to recurrent neural networks for applications such as language modeling.

The training DNNs is explained below:

A DNN can be discriminatively trained with the standard back propagation algorithm. The weight updates

can be done via stochastic gradient descent using the following equation:

 (1)

Here, is the learning rate, and is the cost function. The choice of the cost function depends on factors

such as the learning type (supervised, unsupervised, reinforcement, etc.) and the activation function.

For example, when performing supervised learning on a multiclass classification problem, common choices

for the activation function and cost function are the softmax function and cross entropy function,

respectively. The softmax function is defined as where represents the class

probability (output of the unit) and and (2)

represent the total input to units and of the same level respectively. Cross entropy is defined

as where represents the target probability for output unit and is the

probability output for after applying the activation function.

These can be used to output object bounding boxes in form of a binary mask. They are also used for multi

scale regression to increase localization precision. DNN-based regression can learn features that capture

geometric information in addition to being a good classifier. They remove the limitation of designing a

model which will capture parts and their relations explicitly. This helps to learn a wide variety of objects.

The model consists of multiple layers each of which has a rectified linear unit for non-linear transformation.

Some layers are convolution, while others are fully connected. Every convolutional layer has an additional

max pooling. The network is trained to minimize L2 error for predicting the mask ranging over the entire

training set containing bounding boxes represented as masks.

Two common issues in DNN are over fitting and computation time.

DNNs are prone to over fitting because of the added layers of abstraction, which allow them to model rare

dependencies in the training data. Regularization methods such as weight decay (-regularization)

or sparsity (-regularization) can be applied during training to help combat over fitting A more recent

regularization method applied to DNNs is dropout regularization. In dropout, some number of units are

randomly omitted from the hidden layers during training. This helps to break the rare dependencies that can

occur in the training data Error-correction training (such as back propagation with gradient descent) have

been the dominant method for training these structures due to the ease of implementation and their tendency

to converge to better local optima in comparison with other training methods. However, these methods can

be computationally expensive, especially when being used to train DNNs. There are many training

parameters to be considered with a DNN, such as the size (number of layers and number of units per layer),

the learning rate and initial weights. Sweeping through the parameter space for optimal parameters may not

be feasible due to the cost in time and computational resources.

5) Deep Belief Networks:

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Discriminative_model
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Softmax_activation_function
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Weight_decay
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1262

Fig 4: A restricted Boltzmann machine (RBM) with fully connected visible and hidden units.

A deep belief network (DBN) is a probabilistic, generative model made up of multiple layers of hidden

units. It can be looked at as a composition of simple learning modules that make up each layerA DBN can

be used for generatively pre-training a DNN by using the learned weights as the initial weights. Back

propagation or other discriminative algorithms can then be applied for fine-tuning of these weights. This is

particularly helpful in situations where limited training data is available, as poorly initialized weights can

have significant impact on the performance of the final model. These pre-trained weights are in a region of

the weight space that is closer to the optimal weights this allows for both improved modeling capability and

faster convergence of the fine-tuning phase. A DBN can be efficiently trained in an unsupervised, layer-by-

layer manner where the layers are typically made of restricted Boltzmann machines (RBM). A description

of training a DBN via RBMs is provided below. An RBM is an undirected, generative energy-based model

with an input layer and single hidden layer. Connections only exist between the visible units of the input

layer and the hidden units of the hidden layer; there are no visible-visible or hidden-hidden connections. The

training method for RBMs was initially proposed by Geoffrey Hinton for use with training "Product of

Expert" models and is known as contrastive divergence (CD).[86] CD provides an approximation to

the maximum likelihood method that would ideally be applied for learning the weights of the RBM.[80][87]In

training a single RBM, weight updates are performed with gradient ascent via the following equation:

 (3)

Here, is the probability of a visible vector, which is given by . is the partition function

(used for normalizing) and is the energy function assigned to the state of the network. A lower energy indicates the

network is in a more "desirable" configuration. The gradient has the simple

form where represent averages with respect to distribution . The issue arises in

sampling as this requires running alternating Gibbs sampling for a long time. CD replaces this step by running

alternating Gibbs sampling for steps (values of have empirically been shown to perform well). After steps, the data

is sampled and that sample is used in place of .

The CD procedure works as follows:

Initialize the visible units to a training vector.

Update the hidden units in parallel given the visible units: . Represents the

sigmoid function and is the bias of .

Update the visible units in parallel given the hidden units: . is

the bias of . This is called the "reconstruction" step.

Reupdate the hidden units in parallel given the reconstructed visible units using the same equation as in step

2.

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Function_composition
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Contrastive_divergence
https://en.wikipedia.org/wiki/Deep_learning#cite_note-POE-86
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Deep_learning#cite_note-RBMTRAIN-80
https://en.wikipedia.org/wiki/Deep_learning#cite_note-RBMTutorial-87
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gibbs_sampling

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1263

 Perform the weight update: .

Once an RBM is trained, another RBM can be "stacked" atop of it to create a multilayer model. Each time

another RBM is stacked, the input visible layer is initialized to a training vector and values for the units in

the already-trained RBM layers are assigned using the current weights and biases. The final layer of the

already-trained layers is used as input to the new RBM. The new RBM is then trained with the procedure

above, and then this whole process can be repeated until some desired stopping criterion is met.[2]

Despite the approximation of CD to maximum likelihood being very crude (CD has been shown to not

follow the gradient of any function), empirical results have shown it to be an effective method for use with

training deep architectures.

6) Convolutional Neural Networks

A CNN is composed of one or more convolutional layers with fully connected layers (matching those in

typical artificial neural networks) on top. It also uses tied weights and pooling layers. This architecture

allows CNNs to take advantage of the 2D structure of input data. In comparison with other deep

architectures, convolutional neural networks are starting to show superior results in both image and speech

applications. They can also be trained with standard back propagation. CNNs are easier to train than other

regular, deep, feed-forward neural networks and have many fewer parameters to estimate, making them a

highly attractive architecture to use. Examples of applications in Computer Vision include Deep Dream.

7) Convolutional Deep Belief Networks

A recent achievement in deep learning is from the use of convolutional deep belief networks (CDBN). A

CDBN is very similar to normal Convolutional neural network in terms of its structure. Therefore, like

CNNs they are also able to exploit the 2D structure of images combined with the advantage gained by pre-

training in Deep belief network. They provide a generic structure which can be used in many image and

signal processing tasks and can be trained in a way similar to that for Deep Belief Networks. Recently,

many benchmark results on standard image datasets like CIFAR have been obtained using CDBNs.

8) Large Memory Storage And Retrieval (Lamstar) Neural Networks

LAMSTAR (Large Memory Storage And Retrieval) Neural Networks are fast Deep Learning neural

networks of many layers and which may employ numerous filters simultaneously. These filters may be

nonlinear, stochastic, logic, non-stationary, or even non-analytical. The LAMSTAR is a biologically

motivated continuously-learning neural network.

There is no connection between the units of the same layer (like RBM). For the DBM, we can write the

probability which is assigned to vector as: (4)

where are the set of hidden units, and are the

model parameters, representing visible-hidden and hidden-hidden symmetric interaction, since they are

undirected links. As it is clear by setting and the network becomes the well-

known Restricted Boltzmann machine.[111]

There are several reasons which motivate us to take advantage of deep Boltzmann machine

architectures. Like DBNs, they benefit from the ability of learning complex and abstract internal

representations of the input in tasks such as object or speech recognition, with the use of limited

number of labeled data to fine-tune the representations built based on a large

supply of unlabeled sensory input data.

Since the exact maximum likelihood learning is intractable for the DBMs, we may perform

the approximate maximum likelihood learning. There is another possibility, to use mean-field inference

to estimate data-dependent expectations, incorporation with a Markov chain Monte

Carlo (MCMC) based stochastic approximation technique to approximate the expected sufficient

statistics of the model.[12]We can see the difference between DBNs and DBM. In DBNs, the top two

layers form a restricted Boltzmann machine which is an undirected graphical model, but the lower

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Deep_learning#cite_note-BENGIODEEP-2
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/DeepDream
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ref1-111
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Object_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ref1-111
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Graphical_model

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1264

layers form a directed generative model. Apart from all the advantages of DBMs discussed so far, they

have a crucial disadvantage which limits the performance and functionality of this kind of architecture.

The approximate inference, which is based on mean-field method, is about 25 to 50 times slower than a

single bottom-up pass in DBNs. This time consuming task make the joint optimization, quite impractical

for large data sets, and seriously restricts the use of DBMs in tasks such as feature representations (the

mean-field inference have to be performed for each new test input)

Table 1: Comparison of unsupervised deep learning architecture

Sl
.N

o

Architecture Type of
Machine

Learning

Task

Designed
as

Algort
him

used

Formula used for Weight calculation Applications

1

Deep

Neural

Networks

Unsupervis

ed

Feed

forward

Back

propag
ation

Wij (t+1)=wij(t)+n∂C

Gradient descendent

is the learning

rate, and is the cost function.

Language modeling.

Automatic speech

recognition

2 Deep
belief

networks

Unsupervis
ed

Restricted
Boltzmann

Machines

(Rbm)

Gradie
nt-

Based

Contr

astive

Diverg

ence

as contrastive divergence (CD).

ere, is the probability of a visible vector, which is given by

. is the partition function

(used for normalizing) and is the energy function assigned

to the state of the network.

Dimensionality
reduction

classification,
collaborative filtering

feature learning[5]

topic modelling.

3 Convolu

tional neural

networks

Unsupervis

ed

feed-

forward

artificial
neural

network

Back

propag

ation

Back propagation

where the parameter which minimizes is to be estimated.

Each summand function is s typically associated with the -th

observation in the data set (used for training).

Image recognition

Video analysis

Natural language
processing

Drug discovery

4 Large

Memory

Storage and
Retrieval

(LAMSTAR)

neural
networks

Unsupervis

ed

fast deep

learning

neural
network

Back

propag

ation

w(n + 1) = w(n) + α

∗(x − w(n))

where,

α — learning constant = 0.8

w — weight at the input of the neuron
x — subword

z = w∗X

Input Normalization:

Each subwords of every input pattern is normalized as follows:
xi-= xi

Σx2j

where, x — sub word of an input pattern. During the process, those sub
words,

which are all zeros, are identified and their normalized values are

manually set
to zero.

Image recognition[

Computer-based medical
diagnosis system

Fault diagnosis

VI DEEP LEARNING SOFTWARE LIBRARIES

TensorFlow — Google's open source machine learning library in C++ and Python with APIs for both. It provides parallelization

with CPUs and GPUs.[231]

Torch — An open source software library for machine learning based on the Lua programming language.

Theano — An open source machine learning library for Python.

Deeplearning4j — An open source deep learning library written for Java. It provides parallelization with CPUs and GPUs.

OpenNN — An open source C++ library which implements deep neural networks and provides parallelization with CPUs.

NVIDIA cuDNN — A GPU-accelerated library of primitives for deep neural networks.

DeepLearnToolbox — A Matlab/Octave toolbox for deep learning.

convnetjs — A Javascript library for training deep learning models. It contains online demos.

Gensim — A toolkit for natural language processing implemented in the Python programming language.

Caffe — A deep learning framework.

Apache SINGA — A deep learning platform developed for scalability, usability and extensibility.

http://www.ijcrt.org/
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Contrastive_divergence
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine#cite_note-coates2011-5
https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Deep_learning#cite_note-DeanMonga2015-231
https://en.wikipedia.org/wiki/Torch_(machine_learning)
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/Deeplearning4j
https://en.wikipedia.org/wiki/OpenNN
https://developer.nvidia.com/cudnn
https://en.wikipedia.org/wiki/Matlab
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/Javascript
https://en.wikipedia.org/wiki/Gensim

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1265

RNNLM — RNN language model open source.

RNNLMPara — Parallel RNN language model trainer open source.

VI DEEP LEARNING RESEARCH GROUPS

Some labs and research groups that are actively working on deep learning:

University of Toronto - Machine Learning Group (Geoffrey Hinton, Rich Zemel, Ruslan Salakhutdinov,

Brendan Frey, Radford Neal)

Université de Montréal – MILA Lab (Yoshua Bengio, Pascal Vincent, Aaron Courville, Roland

Memisevic)

New York University – Yann Lecun, Rob Fergus, David Sontag and Kyunghyun Cho

Stanford University – Andrew Ng, Christopher Manning‘s, Fei-fei Li‘s group

University of Oxford – Deep learning group, Nando de Freitas and Phil Blunsom, Andrew Zisserman

Google Research – Jeff Dean, Geoffrey Hinton, Samy Bengio, Ilya Sutskever, Ian Goodfellow, Oriol

Vinyals, Dumitru Erhan, Quoc Le et al

Google DeepMind - Alex Graves, Karol Gregor, Koray Kavukcuoglu, Andriy Mnih, Guillaume

Desjardins, Xavier Glorot, Razvan Pascanu, Volodymyr Mnih et al

Facebook AI Research(FAIR) - Yann Lecun, Rob Fergus, Jason Weston, Antoine Bordes, Soumit

Chintala, Leon Bouttou, Ronan Collobert, Yann Dauphin et al.

Twitter’s Deep Learning Group – Hugo Larochelle, Ryan Adams, Clement Farabet et al

Microsoft Research – Li Deng et al

SUPSI – IDSIA (Jurgen Schmidhuber‘s group)

UC Berkeley – Bruno Olshausen‘s group, Trevor Darrell‘s group, Pieter Abbeel

UCLA – Alan Yuille

University of Washington – Pedro Domingos‘ group

IDIAP Research Institute - Ronan Collobert‘s group

University of California Merced – Miguel A. Carreira-Perpinan‘s group

University of Helsinki - Aapo Hyvärinen‘s Neuroinformatics group

Université de Sherbrooke – Hugo Larochelle‘s group

University of Guelph – Graham Taylor‘s group

University of Michigan – Honglak Lee‘s group

Technical University of Berlin – Klaus-Robert Muller‘s group

Baidu – Kai Yu‘s and Andrew Ng’s group

Aalto University - Juha Karhunen and Tapani Raiko group

U. Amsterdam – Max Welling‘s group

CMU – Chris Dyer

U. California Irvine – Pierre Baldi‘s group

Ghent University – Benjamin Shrauwen‘s group

University of Tennessee – Itamar Arel‘s group

IBM Research – Brian Kingsbury et al

University of Bonn – Sven Behnke’s group

Gatsby Unit @ University College London – Maneesh Sahani, Peter DayanComputational Cognitive

Neuroscience Lab @ University of Colorado Boulder

VII CONCLUSION

Given the far-reaching implications of artificial intelligence coupled with the realization that deep learning

is emerging as one of its most powerful techniques, the subject is understandably attracting both criticism

and comment, and in some cases from outside the field of computer science itself. Others point out that deep

learning should be looked at as a step towards realizing strong AI, not as an all-encompassing solution.

Despite the power of deep learning methods, they still lack much of the functionality needed for realizing

this goal entirely. Some currently popular and successful deep learning architectures display certain

problematical behaviors. The researchers hypothesized that these behaviors are tied with limitations in the

internal representations learned by these architectures, and that these same limitations would inhibit

integration of these architectures into heterogeneous multi-component AGI architectures. It is suggested that

these issues can be worked around by developing deep learning architectures that internally form states

homologous to image-grammar decompositions of observed entities and events.

 References

http://www.ijcrt.org/
http://learning.cs.toronto.edu/index.shtml?section=home
http://www.iro.umontreal.ca/rubrique.php3?id_rubrique=27
http://yann.lecun.com/ex/index.html
http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php
http://www.robotics.stanford.edu/~ang/group.html
http://nlp.stanford.edu/manning/
http://vision.stanford.edu/feifeili/
http://www.cs.ox.ac.uk/projects/DeepLearn/index.html
http://www.cs.ox.ac.uk/people/nando.defreitas/
http://www.cs.ox.ac.uk/people/phil.blunsom/
http://research.google.com/
http://deepmind.com/
https://research.facebook.com/ai
http://research.microsoft.com/en-us/people/deng/
http://www.idsia.ch/
http://www.idsia.ch/~juergen/
http://deeplearning.net/deep-learning-research-groups-and-labs/redwood.berkeley.edu/bruno
http://www.eecs.berkeley.edu/~trevor/
http://www.cs.berkeley.edu/~pabbeel/
http://www.stat.ucla.edu/~yuille/
http://homes.cs.washington.edu/~pedrod/
http://ronan.collobert.com/
http://faculty.ucmerced.edu/mcarreira-perpinan/
http://www.hiit.fi/neuro
http://www.dmi.usherb.ca/~larocheh/index_en.html
http://www.uoguelph.ca/~gwtaylor/
http://web.eecs.umich.edu/~honglak/
http://www.ml.tu-berlin.de/menue/machine_learning/
http://www.dbs.ifi.lmu.de/~yu_k/
http://research.ics.aalto.fi/bayes/
http://www.ics.uci.edu/~welling/
http://www.cs.cmu.edu/~cdyer/
http://www.igb.uci.edu/~pfbaldi/
http://reslab.elis.ugent.be/benjamin
http://mil.engr.utk.edu/nmil/member/2
http://researcher.watson.ibm.com/researcher/view.php?person=us-bedk
http://www.ais.uni-bonn.de/deep_learning/
http://www.gatsby.ucl.ac.uk/
http://grey.colorado.edu/CompCogNeuro/index.php/CCNLab/people
http://grey.colorado.edu/CompCogNeuro/index.php/CCNLab/people

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 2 February 2021 | ISSN: 2320-2882

IJCRT2102157 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1266

[1] Deng, L.; Yu, D. (2014). "Deep Learning: Methods and Applications" (PDF). Foundations and Trends in

Signal Processing 7: 3–4.

 [2] Bengio, Yoshua (2009). "Learning Deep Architectures for AI" (PDF). Foundations and Trends in

Machine Learning 2 (1): 1–127.

 [3] Bengio, Y.; Courville, A.; Vincent, P. (2013). "Representation Learning: A Review and New

Perspectives".IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (8): 1798–

1828. arXiv:1206.5538.

[4] Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview". Neural Networks 61: 85–

117. arXiv:1404.7828.doi:10.1016/j.neunet.2014.09.003.

[5] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015)."Deep Learning". Nature 521: 436–

444.doi:10.1038/nature14539.

[6] Three Classes of Deep Learning Architectures and Their Applications: A Tutorial Survey Li Deng

Microsoft Research, Redmond, WA 98052, USA E-mail: deng@microsoft.com, Tel: 425-706-2719

[7] D, Graupe, H. Kordylewski, (1996), "Network based on SOM (self-organizing-map) modules combined

with statistical decision tools", Proc. IEEE 39th Midwest Conf. on Circuits and Systems, 1:471-475.

[8] D, Graupe, H. Kordylewski, (1998), "A large memory storage and retrieval neural network for adaptive

retrieval and diagnosis", International Journal of Software Engineering and Knowledge Engineering, 1998.

[9]H. Kordylewski, D Graupe, K. Liu, "A novel large-memory neural network as an aid in medical

diagnosis applications", IEEE Transactions on Information Technology in Biomedicine, 5(3):202-209.

[10]Bengio, Yoshua (2009). "Learning Deep Architectures for AI" (PDF). Foundations and Trends in

Machine Learning 2 (1): 1–127.

http://www.ijcrt.org/
http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20%282009%29.pdf
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1206.5538
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1404.7828
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%2Fj.neunet.2014.09.003
http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1038%2Fnature14539
http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20%282009%29.pdf

