
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4760 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

THE CHALLENGES AND MITIGATION

STRATEGIES OF USING DEVOPS DURING

SOFTWARE DEVELOPMENT

Dhaya Sindhu Battina

Sr. Data Engineer, DevOps & Software Automation SME

Department of Information Technology

USA

Abstract— This paper looked at the challenges that DevOps

brings to software development, as well as the techniques

for mitigating such challenges. Every industry, from finance

to retail manufacturing, relies on software. Individual

desktop programs, large-scale web applications, and mobile

apps are all examples of software [1]. Due to software's

intangible and complicated nature, requirements change

fast, and software development teams have found it difficult

to generate software that adequately meets client

expectations while also providing the desired functionality

and software quality [1]. Innovations have advanced the

software business fast. Researchers have developed new

programming languages, new database designs, and new

development technologies such as Cloud Computing,

Crowdsourcing, APIs, and SOA as a burgeoning business

that is just 50 to 60 years old [2]. Because of the

introduction of new technologies, old software systems

become out-of-date and must be improved for the company

to remain viable. Because software is always evolving,

several Software Development Life Cycle (SDLC) models

have emerged, including the Waterfall approach, Iterative

Model, Spiral Model, Agile, and derivative forms [2]. These

models all cater to software development, deployment, and

maintenance. With today's technological advancements, the

industry is moving toward the "DevOps" paradigm of

software development. To provide software and services

quickly, reliably, and of better quality, DevOps uses a

variety of methodologies that bring together developers and

operations personnel. In a team empowered with complete

responsibility for their service and its underlying

technological stack, duties and responsibilities are shared

from development through deployment and maintenance

[3]. This study is meant to verify and assess whether the

problems and mitigation measures of implementing DevOps

from systematic literature research are widespread in

business.

Keywords: DevOps, CI, CD, machine learning, CI/CD

Pipeline, software development

I. INTRODUCTION

Traditional software companies have distinct divisions

for software development, IT operations, and quality

assurance. Development and operations are often at odds

when providing excellent software to clients regularly [4].

Developers are more interested in providing new features or

modifications to consumers rapidly, while operations want

greater reliability and security and suggest that they don't

alter their products as regularly. It's difficult for operations

to tolerate the frequent release of new versions [4]. These

disagreements may impede the advancement of software

[4,5]. To bridge the gap between development and

operations, DevOps combines the words "development" and

"operations," which are used to change incentives and share

techniques throughout the whole development process."

Development and operations must work together more

effectively to tackle crucial problems throughout the

software development process, and DevOps is a collection

of methods for doing so [8]. Fear of change and unsafe

deployment are key challenges [5]. There is less of a divide

between developers and operations personnel and end-users

as a result of DevOps [5]. DevOps may embrace and give

strategies to handle the everyday issues of software delivery

[8]. However, according to our research, there isn't a

consensus on what DevOps means [6] [7]. DevOps requires

an understanding of topics of software engineering other

than DevOps to fully grasp its extent. There is no such thing

as a DevOps department [8], and there is no DevOps

approach or process either [7]. While DevOps and Agile

have certain similarities, there are some key differences as

well [7,8]. Agile is a metaphor for shifting perspectives.

However, the use of DevOps results in cultural shifts inside

the business [8]. Agile is more of a methodology, whereas

DevOps is more of a framework. Businesses are beginning

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4761 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

to use DevOps throughout the development process as a

result of the growth of DevOps in recent years. Using

DevOps during software development poses some

challenges, and this thesis seeks to identify and collect these

issues as well as mitigating solutions. This is accomplished

by looking at the problems that might arise while utilizing

DevOps and the solutions that can be used to mitigate those

problems in the literature and the industry.

The software industry must recognize its strengths and

limitations to remain competitive and expand, as well as use

the best software development method. When compared to

other places where software is developed, Sri Lankan

culture and values stand out. New software development

approaches such as DevOps should be explicitly reviewed

to see whether they can be employed in the country's current

software development process models to provide high-

quality products that meet customer expectations [8]. In

other words, the goal of this study is to look at companies

that use DevOps to see how it affects the growth of several

quality matrices that have been defined. This study

demonstrates the benefits of adopting DevOps methods in

Agile software development processes, as well as the

drawbacks. It also discusses the difficulties of making the

switch to DevOps.

II. PROBLEM STATEMENT

The main problem that this paper will address is to

explore the challenges and mitigation strategies when

adopting DevOps during software development. It's not

uncommon for development and operations to clash when a

company is providing useful new software to its clients. To

resolve the tension between the development and operations

teams, the developing idea of DevOps has been presented.

DevOps is being used by an increasing number of businesses

and organizations. The notion of DevOps is still relatively

new, so it's important to know what problems it might help

solve as well as how to mitigate them.

III. LITERATURE REVIEW

A. DevOps: A Brief History

When Patrick Debois was working on a project

involving development and operations teams, he realized

that there had to be a better method to handle the disputes

that arise between the two worlds of Dev and Ops. This was

in 2007. Agile Infrastructure was a popular topic of

discussion during the 2008 Agile Conference in Toronto,

thanks to Patrick Debois[8,9]. A small group of people met

after the conference to explore ways to bridge the

development and operational gaps. During the Velocity

conference 2009, John Allspaw and Paul Hammond

presented their well-known lecture entitled 10 deployments

per day Dev & ops cooperation at Flickr on June 23rd, 2009

[9]. Patrick, John, and Paul met together after exchanging

messages on Twitter to talk about DevOps. Patrick

concluded that the event needed a name that included both

development and operations, therefore DevOpsdays was

born [9]. DevOps attracted systems administrators,

developers, and managers from all around the globe. Even

though attendees dispersed to all regions of the world once

the conference ended, the topic carried over to Twitter.

Since Twitter only allows 140 characters per tweet, the

DevOps hashtag is used instead of the DevOpsdays hashtag.

Eventually, the conferences became a recurrent worldwide

series produced by the DevOps community that is a key

driving force in the field. The #DevOps Twitter hashtag

develops into a rich and important information stream on the

social media site. As DevOps grows, it enters the workplace,

where well-known companies like Target, Nordstrom, and

LEGO have embraced it [9].

B. DevOps

The concept of DevOps has received little attention in

the academic literature [7]. Built on agile development

principles, it allows for quick development and deployment

cycles [19]. DevOps has no universally agreed-upon

definition. According to researchers, DevOps is a software

development technique that integrates quality assurance and

operations into development methods [10]. DevOps is a

corporate strategy that may be used to define more effective

cooperation involving software development and

infrastructure management experts [11]. According to IBM

Cloud, adopting common DevOps technologies enables

cooperation between developers, testers, and operators and

facilitates the delivery of software continuously by allowing

collaborative testing and continuous monitoring across the

development, integration, and segmentation environments.

Using the right tools may help with anything from version

control to infrastructure setup to orchestrating to monitoring

to containerization to automation. It's been since 2011 that

the DevOps community has created open-source tools like

Puppet (for automating the setup of virtual development

environments) and Chef (for automating the setup of

physical development environments).

Fig i: Six Phases of DevOps Model

C. Benefits of DevOps

As a whole, the strategic goal of DevOps is to get the

best possible return on investment while also ensuring high-

quality software and meeting customer demands. To allow

frequent and rapid software releases, DevOps strives to

build a continuous pipeline [11, 12] that includes automated

testing cycles to enable continuous software delivery. Using

DevOps, you can also respond quickly to client needs that

change [12]. With DevOps, developers and operators may

collaborate to integrate all organizational processes,

streamline testing and quality assurance, and ease the

transition between development and operations. DevOps

eliminates organizational and cultural problems by

integrating development and operations [12] and reduces the

cost of fault detection in the early stages [13]. Software

defects are instantly fixed early on in the development

lifecycle in the DevOps environment due to the continuous

deployment of software builds [13].

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4762 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

D. Major DevOps Challenges

The genesis of DevOps may be traced back to the need

to eliminate organizational silos to better own and

collaborate on delivered products. Development and

Operations are the two most important elements of the

company area. DevOps is the practice of software

development and operations teams working collaboratively

from the beginning of the SDLC through deployment and

operation. Increasing delivery speed and having greater

ownership (and, as a result, higher quality) of the end

product are both goals of this strategy [14]. With DevOps,

businesses can better serve their consumers by delivering

software continuously and with higher quality. Despite its

many advantages, deploying DevOps may provide many

obstacles as well. DevOps provides some problems to

businesses, such as aligning objectives and priorities to

encourage cooperation across functional boundaries or

changing infrastructure models that are more than a decade

old. Before implementing DevOps, it's critical to know what

problems to expect and how to overcome them [14].

1. Issues in Security/Development Teams'

Communication

Despite their apparent differences, developers and

security professionals have similar objectives. As quickly as

possible, developers want to get their code out into the wild.

Security teams prioritize providing safe apps above speed,

with security as their primary goal. This entails assessing a

large number of apps before a new version is released.

Confusion, delayed delivery, and irritation are all too

common when security and development teams don't work

together and communicate effectively. Security teams

should be included early in the software development

lifecycle (SDLC) according to DevOps. However, there is

some tension in the initial stages between the development

and security teams since developers typically do not

understand security concepts or how to deal with security

issues. To keep up with the rapid pace of new server

deployment, both development and security teams must

work together to ensure each server is adequately hardened,

has correct logging in place, and so on. DevOps prioritizes

high-quality service delivery, but it also needs more robust

security measures. As a result, the development team is

often unaware of the necessary security measures that

should be done. Similarly, security teams often ignore

DevOps' automated nature.

2. The Security Team's Struggle to Keep Up with

the DevOps Cycle

Fast delivery and short development cycles are the

emphases of DevOps. A single vulnerability may seriously

jeopardize a business; thus, security teams strive to be as

comprehensive as possible when examining the security of

apps and their surroundings. Because of the need for

thoroughness, evaluating the code and its environment

might take significantly longer than developing or

modifying it. While the goal of DevOps is quick continuous

delivery, firms are often compelled to compromise on

security to meet deadlines. Speeding up an application at

any cost leaves it vulnerable to security breaches and

malicious assaults due to ignored dangers and vulnerabilities

in the code.

3. Cultural Resistance to Security

Testing for security has traditionally been done after the

software development lifecycle (SDLC), just before release.

Security teams, on the other hand, are interwoven across the

SDLC thanks to DevOps. As the development teams are

used to working alone throughout the development stage of

the lifecycle, this early integration may cause friction.

Management places enormous demands on development

teams to produce updates as quickly as possible, and

security teams typically see any involvement with the

development team as a burden to providing the functionality

that management wants to see delivered. Because of this, the

development team frequently has to make compromises in

terms of the application's security. When it comes to

security, many people are concerned that incorporating it

early in the process may lead to delivery delays and so

ignore the issue.

4. Avoiding Risks Associated with Containers and

Other ToolS

When working in a DevOps environment, cloud

infrastructure and deployments are regularly used, which

makes the application vulnerable to possible security risks if

suitable security measures are not implemented. In the

DevOps environment, a large number of open-source,

immature, and innovative technologies are used [14].

Simple bugs or misconfigurations in the fast-paced delivery

pipeline of DevOps may result in spectacular failures, such

as corporations disclosing their administrative consoles for

their orchestration software, as Tesla did, or even the failure

of a whole company. There are several tools that a DevOps

team will use, including Ansible, Salt, Chef, Puppet, and

many more similar programs and tools. Containers are one

of the most regularly used tools/technologies by DevOps

teams, and they are also one of the most widely distributed.

Containment systems are ultra-lightweight portable

packaging platforms that make it easy to install and use

software programs. Unfortunately, determining the security

of these containers might be challenging for security teams

to do so accurately. The use of safe libraries, as well as the

creation of adequately protected services, are being

considered. Are secrets being kept and maintained securely?

As a result of not completely addressing these concerns or

providing satisfactory answers, the usage of containers may

bring new dangers into a company [14]. While containers

constitute a significant problem, it is also important to

address and protect all of the tools connected with

deployment, since they are critical in developing and

maintaining the deployed application and environment. All

too frequently, the keys to the kingdom are connected with

orchestration software, and this software must be thoroughly

evaluated to verify that it is safe to use and secure to operate.

5. Poor access controls and secret management

procedures

Secrecy management and strict access constraints are

critical in the context of highly automated development and

deployment processes. API tokens, SSH keys, privileged

account credentials, and other such information are

examples of secrets. Containers, services, personnel, and a

plethora of other entities might make use of them [14].

These kinds of essential passwords and keys are commonly

mismanaged (and hence exposed), making them a popular

target for attackers on the internet. Additionally, to maintain

a seamless and efficient workflow, DevOps teams often

provide practically unfettered access to privileged accounts

such as admin, root, and so on. It becomes substantially

more likely that these excessive rights may be exploited

when numerous users use and exchange passwords for

confidential accounts, as well as when processes execute

with high access.

E. DevOps Mitigation Strategies in Software

Development

DevOps may introduce security risks and cause

compatibility concerns across multiple teams involved in the

software development lifecycle (SDLC), however, there are

techniques to overcome these difficulties. Consider

applying the following strategies in your business to

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4763 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

increase DevOps security while maintaining a balance

between diverse teams and the need for agility [14,15].

1. Enforce Security-Oriented Policies

When it comes to creating comprehensive security

environments, the establishment of governance and

effective communication are essential. You should develop

a set of cybersecurity processes and rules that are simple,

easy to understand, and transparent, covering topics like

access restrictions, code review, firewalls, and configuration

management, among others. Security rules should be

adhered to by the DevOps teams, and they should work

together constructively to create a secure application. In

addition, the notion of "infrastructure as code (IaC)" is a

foundation of the DevOps methodology and practice.

Virtual machine setup and configuration, network

configuration, load balancing, and connection topology are

all defined as code that is versioned in the same way that the

DevOps teams do for their application code [15]. IaC stands

for Infrastructure as Code. While this may appear to be a

frightening prospect, it has the potential to be extremely

beneficial because code (the infrastructure, the servers, the

routers, the configurations, and so on) can be reviewed and

assessed more easily to ensure that the environment is in the

proper hardened configuration for the situation15] [. Similar

to the premise that the same code produces the same binary

when an IaC model is applied, it creates the same

environment as it did before it was implemented.

IaC overcomes the issue of environment drift in the

delivery pipeline by using distributed computing. Teams

would have to manually manage the parameters of each

deployment environment if there was no IaC.

Inconsistencies across various environments may cause

problems during the release process. With the integration of

IaC, DevOps teams can more simply administer and

maintain the security of their apps and environments than

they could before [15,16]. To maintain infrastructure and

deliver applications safely, quickly, and at scale, DevOps

teams that incorporate IaC work together and use a

consistent set of security policies and tools to collaborate.

2. Adopt a DevSecOps model of operation

Effective DevOps security may be accomplished by

promoting cross-functional partnerships across the full

DevOps lifecycle, from development to operations. When it

comes to achieving similar objectives such as increased

security, DevOps teams should not only work together but

also actively engage throughout the development lifecycle.

Security should not be the primary responsibility of a single

team, but rather should be a deeply ingrained part of the

organization's whole culture. The term "DevSecOps" refers

to the practice of embedding security into the culture of an

organization [16]. It is a culture inside businesses in which

everyone accepts responsibility for complying with security

rules and procedures.

DevSecOps is a collection of cybersecurity functions

and governance that work together to lower the likelihood

of security breaches caused by lax account restrictions and

other security vulnerabilities. It goes well beyond the use of

technological tools and software to ensure that security is

seen as a fundamental organizational concept. DevSecOps

encourages teams of all sizes to become familiar with

fundamental security concepts. It is recommended that all

members of a team get some basic security training [16]. In

addition to formal training, developers should get familiar

with the usage of automated tools and software to do rapid

security checks on their code. Security experts should also

be able to write code and interact with APIs, which will

allow them to script and automate security checks, which

will be very useful in IaC environments. Involvement of

security teams in the production of certified and hardened

versions of infrastructure for usage by the development team

is possible. They may also enforce the settings by

automatically monitoring the infrastructure code, which

they can do using automated tools [16].

3. Automate processes to increase speed and

scalability

When it comes to developing safe apps and secure

environments, automation is critical to success. Automation

helps to decrease the risks associated with human mistakes,

as well as the vulnerabilities and downtime that are

connected with them. It becomes more difficult for the

security team to keep up with the DevOps team if they do

not have access to automated security tools and procedures.

There are a variety of activities that may be automated,

including continuous integration, vulnerability assessments,

privileged credentials/secrets monitoring, and code analysis,

to name a few. Selecting automated tools and procedures is

as important to automating your DevOps as deploying

them.Automated technologies that are used to create a

secure DevOps process should have the following features:

• Must be simple to comprehend and manage
• Does not need the use of security expertise

• Not have a high proportion of false positives

when it comes to concerns

• Be incorporated into the continuous integration

and delivery pipeline

The objective is to make it simpler for the DevOps team to

work more efficiently and effectively, not to overwhelm

them with hundreds of tools or procedures that are

unfamiliar to them from their current working environment.

With a narrower gap between security and DevOps teams'

speeds, it will be simpler to establish security as a key

concept in your organization's development process.

4. Identify and Manage Vulnerabilities

Successfully

Incorporating security into the software development

lifecycle (SDLC) from the outset makes it easier to spot

defects and vulnerabilities early on. To deal with the

detected vulnerabilities, you'll need an effective

vulnerability management system that can monitor and

prioritize the many approaches that should be taken to fix

each issue (remediation, acceptance, transfer, etc) [17]. In a

vulnerability management program, there are four major

steps to consider:

• Determine the criticality of an asset, the owners of

the asset, the frequency of scanning, and the schedule

for repair that can be achieved within a reasonable

timeframe.

• Locate and inventory assets on the network as they

are discovered.

• Identify any vulnerabilities in the assets that have

been detected.

• Identify and address any vulnerabilities that have

been discovered.

When you first start working with a vulnerability

management application, you may realize that you have a

rather high vulnerability score, which results in time-

consuming repair cycles [17]. The important thing is to

demonstrate development from quarter to quarter and year

to year. With increased familiarity and education about the

vulnerability management program, teams should be able to

reduce the amount of time spent remediating vulnerabilities

and lowering their vulnerability scores. These programs

continually embrace and comply with the organization's

newest risk reduction targets.

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4764 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

5. Implement a Successful DevOps Secrets

Management Strategy

Passwords, keys, and other private information are

examples of secrets that need to be guarded with extreme

care. DevOps teams have regularly resorted to bad secret

management practices in the pursuit of rapid automated

deployment, such as keeping passwords in files inside

containers. Team members might often take shortcuts that

expose highly sensitive passwords and keys in the rush to

install automated software as quickly as possible. For

efficient DevOps secrets management, you should delete

sensitive data such as credentials from code, files, accounts,

services, and other platforms and tools, as well as from other

platforms and tools [17]. To do this, the passwords are

removed from the code and stored in an off-site password

safe when they are not in use by the user. When you are not

using your passwords, you may store them in solutions such

as Cyberark, Azure key vault, AWS secrets manager,

Thycotic Secret Server, and other similar products. Access

to passwords may be controlled by using a centralized

password safe. APIs may also be used to acquire control

over code, scripts, files, and embedded keys by

incorporating them into the system.

6. Implement an effective Privileged Access

Management system

It is possible to dramatically minimize the number of

opportunities by limiting privileged access to the account.

End-user PCs will no longer be able to access administrative

or privileged accounts as a result of this change. One should

keep a close eye on all sessions using privileged accounts to

make sure they're real and compliant with your company's

policies. In addition to restricting access for development

teams to select development, production, and management

systems, enforcing a privileged model involves [18]. Even

so, they should still be able to generate images and machines

from authorized templates, deploy them, change them, and

fix vulnerabilities in the system with the access and

permissions necessary. Consider the implementation of a

cutting-edge privileged access management system like

OpenIAM, which can automate the control, monitoring, and

auditing of privileged access all through the development

life cycle [17, 18]. Privileged credentials and secrets should

be tracked throughout their entire existence.

IV. FUTURE IN THE U.S

The future of DevOps and AI in the U.S is going to

focus more on intelligent systems that train on data and learn

to complete different functions on their own. Artificial

intelligence (AI) has the potential to make DevOps more

efficient. It may improve performance by allowing quick

development and operation cycles, and by providing a great

user experience with these features as well. In the DevOps

system, machine learning algorithms may make it easier to

gather data from diverse sources [18]. As artificial

intelligence (AI) and data science become more widely used

in the business, DevOps will continue to grow in importance

[19]. To help enterprises accelerate and enhance their AI

solutions, DevOps for AI offers a viable approach. It

facilitates the preparation of data and the building of models

while also introducing standardized methods to enable AI

on a large scale [18]. Despite this, AI operationalization is

seldom addressed, despite the many advantages it offers

over traditional approaches. The moment has come to

prioritize the implementation of artificial intelligence as a

strategic goal for the company.

V. ECONOMIC BENEFITS IN THE

UNITED STATES

This study will aid the United States by shedding light

on how DevOps issues may be overcome to the advantage

of a wide range of enterprises' operations. According to CB

Insights' most recent estimates, the open-source services

market will be worth more than $17 billion in 2019 and

approximately $33 billion by 2022. Non-open-source firms

like Microsoft and Google routinely contribute to GitHub

projects, as do Intel and Facebook [18]. In 2018, Google

workers contributed a total of 5,500 hours of volunteer

work. Smaller, independent initiatives have benefited

greatly from many of these donations, as well. Google's

open-source software projects such as Kubernetes, Istio, and

Knative, which are in great demand, have the most support,

according to the survey [19]. Independent developers will

continue to participate as corporate-sponsored initiatives

gain popularity. This demonstrates the importance of the

giants stepping up to assist the open-source movement in

expanding. Over 19,000 people have contributed to the

Visual Studio Code project at Microsoft. Because of the free

developer input and direct user feedback provided by the

hundreds of contributors, these tech titans can profit [20].

Because of this, businesses can produce better software

more quickly. The use of open-source software is already

commonplace, and it has a promising future.

VI. CONCLUSION

This research paper conducted a review of the literature

and industry to determine the problems and mitigation

techniques associated with using DevOps during software

development. One of the main goals of this paper is to offer

a thorough analysis and description of the problems that will

arise while using DevOps. Using literature review, this

study develops evaluations that highlight the problems of

implementing DevOps throughout the software

development process, as well as the methods for overcoming

these challenges. In adopting DevOps, the two checklists

might assist individuals to avoid issues, manage risks

effectively, and budget for the unavoidable obstacles of

utilizing DevOps. A brighter future has been ushered in by

DevOps, which provides effective solutions that help in

speedier delivery, boost cooperation among teams, and

cultivate an Agile working environment. While the

advantages of DevOps are many, it also brings with it new

obstacles. The challenge many firms have in incorporating

security into the DevOps approach is one of the most

obvious problems with DevOps. However, security must be

considered throughout the process. Implementing security

in DevOps as early as possible can aid in the rapid

identification of vulnerabilities and the remediation of

operational flaws before they become a problem.

Embedding security early in the DevOps lifecycle helps to

keep it in place and operational throughout the product's

lifespan. By using this security measure, the code will be

protected against cybersecurity threats and data breaches.

http://www.ijcrt.org/
http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882

IJCRT2101583 4765 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

REFERENCES

1. V. Gupta, P. Kapur and D. Kumar, "Modeling and measuring

attributes influencing DevOps implementation in an enterprise

using structural equation modeling", Information and Software

Technology, vol. 92, pp. 75-91, 2017.

2. J. Humble, D. Farley, Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment

Automation (Adobe Reader). Pearson Education; 2010 Jul 27.

3. V. Lalsing, S. Kishnah, and S. Pudaruth, People factors in

agile software development and project management.

International Journal of Software Engineering & Applications,

3(1), 2012, p.117.

4. A. Benoist, 2013 "Influence of release frequency in

software development.", [available at] https://hal.archives-

ouvertes.fr/hal-00832011v2 [17] Iso.org, "ISO/IEC 9126-

1:2001 - Software engineering -- Product quality -- Part 1:

Quality model", 2016. [Online]. Available:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749.

[Accessed: 05- Feb- 2016]

5. M. Ammar., "Application of Artificial Intelligence and

Computer Vision Techniques to Signatory Recognition",

Information Technology Journal, vol. 2, no. 1, pp. 44-51, 2002.

6. H. Izadkhah, "Transforming Source Code to Mathematical

Relations for Performance Evaluation", Annales Universitatis

Mariae Curie-Sklodowska, sectio AI – Informatica, vol. 15, no.

2, p. 7, 2015.

7. H. Papadopoulos, A. Andreou and M. Bramer, Artificial

Intelligence Applications and Innovations. Berlin, Heidelberg:

IFIP International Federation for Information Processing, 2010.

8. V. Sugumaran, Distributed artificial intelligence, agent

technology and collaborative applications. Hershey, PA:

Information Science Reference, 2009.

9. L. Lopes, N. Lau, P. Mariano and L. Rocha, Progress in

Artificial Intelligence. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009.

10. G. Simov, "Artificial intelligence and intelligent systems:

the implications", Information and Software Technology, vol.

32, no. 3, p. 229, 1990.

11. M. Huttermann, "Beginning DevOps for Developers",

DevOps for Developers, vol., 2012 , pp. 3-13.

12. H. Salzman, "Engineering perspectives and technology design

in the United States", AI & Society, vol. 5, no. 4, pp. 339-356,

1991.

13. L. Rendell, "A new basis for state-space learning systems and

a successful implementation", Artificial Intelligence, vol. 20,

no. 4, pp. 369-392, 1983.

14. R. Conejo, M. Urretavizcaya and J. Prez-de-la-Cruz, Current

topics in artificial intelligence. Berlin: Springer, 2004.

15. T. Bradley and T. Bradley, "Why DevOps means the end of

the world as we know it", TechSpective, 2016. [Online].

Available: https://techspective.net/2015/08/16/why-devops-

means-the-end-of-the-world-as-we-know-it/.

16. D. Linthicum, "What is DevOps? DevOps Explained |

Microsoft Azure", Azure.microsoft.com, 2016. [Online].

Available: https://azure.microsoft.com/en-us/overview/what-

is-devops/.

17. L. Iliadis, I. Maglogiannis and H. Papadopoulos, Artificial

intelligence applications and innovations. Berlin: Springer,

2012.

18. Y. Jiang, "Analysis on the Application of Artificial

Intelligence Technology in Modern Physical Education",

Information Technology Journal, vol. 13, no. 3, pp. 477-484,

2014. [11] Y. Nakajima, M. Ptaszynski, H. Honma and F.

Masui, "Automatic extraction of future references from news

using morphosemantic patterns with application to future trend

prediction", AI Matters, vol. 2, no. 4, pp. 13-15, 2016.

19. K. Hirasawa, "Trend on application of AI technologies to

industry. From the latest international workshop on AI

applications.", IEEJ Transactions on Industry Applications, vol.

108, no. 10, pp. 868-871, 1988.

20. L. Bass, I. Weber and L. Zhu, DevOps: A Software

Architect's Perspective. Pearson Education,Inc., 2015.

http://www.ijcrt.org/
http://www.ijcrt.org/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

