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Abstract 

     In this paper we extend the proof of potential and nonlinear potential pointwise gradient estimates for 

solutions to measure data problems whose prototype is given by −∆𝜖+2𝑢𝑟 = 𝜇𝑟. We show that in the case 𝜖 ≤

0 a pointwise gradient estimate is possible using standard, linear Riesz potentials. The proof is based on the 

identification of a natural quantity that on one hand respects the natural scaling of the problem, and on the 

other allows to encode the weaker coercivity properties of the operaotrs considered, in the case 𝜖 ≤ 0. In the 

case 𝜖 > 0 we prove a new gradient estimate employing nonlinear potentials of Wolff type. 

Keywords: Gradient estimates; nonlinear potential theory; 𝜖-Laplacian; regularity thoery 

1. Introduction and Results 

     We consider possibly degenerate quasilinear equations with (2 + 𝜖)-growth of the type   

                                                                        −∇𝑎(𝑥𝑟 , 𝐷𝑢𝑟) = 𝜇𝑟                                                                      (1.1)                                                                            

in a bounded domain Ω𝑟 ⊂ ℝ𝑛 with 𝑛 ≥ 2, where 𝜇𝑟 is a Radon measure defined on Ω𝑟 with finite total mass. 

Eventually letting 𝜇𝑟(ℝ
𝑛\Ω𝑟) = 0 we shall assume that 𝜇𝑟 is defined on the whole ℝ𝑛. The continuous vector 

field 𝑎: Ω𝑟 × ℝ
𝑛 → ℝ𝑛 is assumed to be 𝐶1-regular in the gradient variable 𝑧𝑟, with the partial derivative with 

respect to the gradient variable 𝑎𝑧𝑟(∙) being itself continuous, and satisfying the following growth, ellipticity 

and continuity assumptions: 

{
 
 

 
 |𝑎(𝑥𝑟 , 𝑧𝑟)| + |𝑎𝑧(𝑥𝑟, 𝑧𝑟)|(|𝑧𝑟|

2 + (1 + 𝜖)2)
1
2 ≤ (1 + 2𝜖)(|𝑧𝑟|

2 + (1 + 𝜖)2)
1+𝜖
2 ,

(1 + 𝜖)−1(|𝑧𝑟|
2 + (1 + 𝜖)2)

𝜖
2 |𝜆𝑟|

2 ≤ ⟨𝑎𝑧(𝑥𝑟, 𝑧𝑟)𝜆𝑟|𝜆𝑟⟩,

|𝑎(𝑥𝑟 , 𝑧𝑟) − 𝑎(𝑥0, 𝑧𝑟)| ≤ (1 + 𝜖)𝜔(|𝑥𝑟 − 𝑥0|)(|𝑧𝑟|
2 + (1 + 𝜖)2)

1+𝜖
2

                                (1.2) 

where 𝑥𝑟 , 𝑥0 ∈ Ω𝑟 and 𝑧𝑟 , 𝜆𝑟 ∈ ℝ
𝑛. Assume that 𝜖 ≥ 0 such that, the function 𝜔: [0,∞) → [0,1] is a modulus 

of continuity i.e., a non-decreasing subadditive function such that 
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𝜔(0) = 0 = lim
𝜌↓0

𝜔(𝜌) 

and 𝜔(∙) ≤ 1. We assume   

∫𝜔(𝜌)
𝑑𝜌

𝜌

𝑅

0

≔ 𝑑(𝑅) < ∞,                                                             (1.3) 

whenever 𝑅 < ∞. The prototype of (1.1) is, choosing 𝜖 = −1, clearly given by the  (2 + 𝜖)-Laplacian 

equation with coefficients    

                                                     −∇(𝛾(𝑥𝑟)|𝐷𝑢𝑟|
𝜖𝐷𝑢𝑟) = 𝜇𝑟 .                                                                    (1.4)                                                              

In this case 𝜔(∙) represents the modulus of continuity of the function 𝛾(∙), which is in fact assumed to be Dini 

continuous and satisfying the “ellipticity” condition 0 ≤ 𝛾(𝑥𝑟) ≤ 𝜖.  

     By a weak (distributional) solution to equation (1.1) we mean a function 𝑢𝑟 ∈ 𝑊loc
1,1+𝜖(Ω𝑟) such that the 

distributional relation  

∫∑〈𝑎(𝑥𝑟 , 𝐷𝑢𝑟), 𝐷𝜑𝑟〉 𝑑𝑥𝑟
𝑟

 

Ω𝑟

= ∫∑𝜑𝑟𝑑𝜇𝑟
𝑟

 

Ω𝑟

 

holds whenever 𝜑𝑟 ∈ 𝐶0
∞(Ω𝑟) has compact support in Ω𝑟.  

     The authors in [20] were able to prove pointwise estimates for 𝑢𝑟 in terms of the (truncated) Wolff 

potential 𝐖𝛽,2+𝜖
𝜇𝑟 (𝑥𝑟 , 𝑅) defined by     

∑𝐖𝛽,2+𝜖
𝜇𝑟 (𝑥𝑟 , 𝑅)

𝑟

≔∑∫(
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−𝛽(2+𝜖)
)

1
1+𝜖 𝑑𝜌

𝜌

𝑅

0𝑟

        β ∈ (0, 𝑛/(2 + 𝜖)].                                (1.5) 

More precisely, in [20] – and in [35,22], where a different and interesting approach was later developed – we 

can define the estimate  

∑|𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑( ⨍
𝐵(𝑥𝑟,𝑅)

(|𝑢𝑟| + 𝑅(1 + 𝜖))
𝛾
𝑑𝑥𝑟 )

1/𝛾

𝑟

+ 𝑐𝑛∑𝐖1,2+𝜖
𝜇𝑟 (𝑥𝑟 , 𝑅)

𝑟

,   γ > 1 + ϵ ,             (1.6) 

valid whenever 𝐵(𝑥𝑟 , 𝑅) ⋐ Ω𝑟, with 𝑥𝑟 being a Lebesgue point of 𝑢𝑟; the constant depends on 𝑛, 𝜖. In [8] the 

authors have proved that the pointwise a priori estimate  

  ∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛  ∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑ 𝐖 1
2+𝜖 

,2+𝜖

𝜇𝑟 (𝑥𝑟 , 𝑅)

𝑟

 

= 𝑐𝑛  ∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+∑∫(
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

1
1+𝜖 𝑑𝜌

𝜌

𝑅

0𝑟

                                  (1.7) 

holds at every Lebesgue point 𝑥𝑟 of 𝐷𝑢𝑟 when 𝜖 ≥ 0. The constant 𝑐𝑛 depends this time upon 𝑛, 𝜖, 𝜔(∙); an 

extension of (1.7) to a class of anisotropic operators has been later given in [5]. Estimate (1.7) holds in 

particular for 𝑊1,2+𝜖- solutions to (1.1).  

     We first give an extension to the priori estimate (1.7) when 𝜖 ≤ 0, and in the case solutions to measure 

data problems like (1.1) belong to the Sobolev space 𝑊1,1; this is known to happen in the case  

𝜖 <
1

𝑛
.                                                                               (1.8) 
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The previous bound is optimal to have 𝑊1,1- solutions, are revealed by the analysis of the so-called nonlinear 

fundamental solution 𝐺2+𝜖 to the problem  

{
−∆2+𝜖𝐺2+𝜖 = 𝛿         in  𝐵1,

 𝐺2+𝜖 = 0                       on  𝜕𝐵1,
                                                                  (1.9)

                                                    

                                                

where 𝛿 is the Dirac measure charging the origin, and 𝐵1 is the ball centered at the origin with radius equal 

one. In this case we have  

𝐺2+𝜖(𝑥𝑟) ≈ {
(|𝑥𝑟|

2+𝜖−𝑛
1+𝜖 − 1)              if − 1 < 𝜖 ≠ 𝑛 − 2,

 𝐺2+𝜖 = 0                      if  𝜖 = 𝑛 − 2,         
 

Let us recall that truncated linear Riesz potentials are defined as 

𝐈𝛽
𝜇𝑟(𝑥𝑟 , 𝑅) ≔ ∫

𝜇𝑟(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−𝛽
𝑑𝜌

𝜌

𝑅

0

 ,            𝛽 ∈ (0, 𝑛] 

Theorem 1.1 (Linear potential gradient bound). Let 𝑢𝑟 ∈ 𝐶
1(Ω𝑟) be a weak solution to (1.1) with 𝜇𝑟 ∈

𝐿1(Ω𝑟), under the assumptions (1.2) with  𝑛 < 1/𝜖.
 

Then there exist a constant 𝑐𝑛 such that 𝑐𝑛 ≡

𝑐𝑛(𝑛, 𝜖, 𝜔(∙), diam(Ω𝑟)) > 0 such that the pointwise estimate 

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅)]

1
1+𝜖

𝑟

                                     (1.10) 

holds whenever 𝐵(𝑥𝑟 , 𝑅) ⊆ Ω𝑟.   

     Theorem 1.1 says that, at the least for the considered range of 2 + 𝜖, the gradient of solutions can be 

pointwise estimated by Riesz potentials exactly as in the case of the standard Poisson equation, provided of 

course the scaling of the equation is taken into account, i.e. one takes [𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅)]

1

1+𝜖

  
rather than 𝐈1

|𝜇𝑟|(𝑥𝑟 , 𝑅). 

We observe that the operator  

𝜇𝑟 ⟼ [𝐈1
|𝜇𝑟|(∙, 𝑅)]

1
1+𝜖

                                                                  (1.11) 

defines a new nonlinear potential which has the same scaling and homogeneity properties of 𝐖 1

2+𝜖 
,2+𝜖

𝜇𝑟 (∙, 𝑅). 

The appearance of the Riesz based potential (1.11), see [26], when proving a sort of “level set version’’ of 

(1.10); see also [29]. Also, in Theorem 1.1 we have that the Dini modulus of continuity assumed on the 

coefficients in (1.3), and known to be sharp for linear elliptic equations – see [14] for counter examples – is 

now found to apply to the nonlinear case too. Finally, we remark that the constant 𝑐𝑛 involved in estimate 

(1.10) is stable when 2 + 𝜖 approaches 2 i.e. letting (2 + 𝜖) ↗ 2 in (1.10) we recover the usual 𝑰1 estimate 

valid for the case of the Poisson equation −∆𝑢𝑟 = 𝑢𝑟 that is  

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅)

𝑟

                                         (1.12) 

Estimate (1.12) has been proved in [27,8] for general nonlinear equations. We can directly take 𝜖 = 0 in 

Theorem 1.1 in order to obtain (1.12).  

     We present a refinement of the main result of [8] in the case 𝜖 > 0, that is we replace the Wolff potential 

in the right-hand side of (1.7) with another, slightly smaller nonlinear potential of Wolff type, namely we 
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employ 𝐖 2+𝜖

4+3𝜖 
,
4+3𝜖

2+𝜖

𝜇𝑟  instead of 𝐖 1

2+𝜖 
,2+𝜖

𝜇𝑟 .We observe that the two potentials still coincide with the Riesz 

potential 𝐈1
|𝜇𝑟| when 𝜖 = 0.We shall assume that there exists a positive number 𝜖 satisfying    

                                                                  0 < 1 + 𝜖 < min{1,4/(𝑛 − 2), 𝜖}                                                 (1.13)   

such that the renormalized Hölder continuity property  

|𝑎𝑧𝑟(𝑥𝑟 , 𝑧2) − 𝑎𝑧𝑟(𝑥𝑟 , 𝑧1)| ≤ (1 + 2𝜖)(|𝑧1|
2 + |𝑧2|

2 + (1 + 𝜖)2)
−1
2 |𝑧2 − 𝑧1|

1+𝜖                           (1.14) 

holds whenever 𝑧1, 𝑧2 ∈ ℝ
𝑛 and 𝑥𝑟 ∈ Ω𝑟. 

Theorem 1.2 (Nonlinear potential gradient bound). Let 𝑢𝑟 ∈ 𝐶
1(Ω𝑟)be a weak solution to (1.1) with 𝜇𝑟 ∈

𝐿1(Ω𝑟), under the assumptions (1.2) and (1.14), with 𝜖 > 0. Then there exists a constant 𝑐𝑛 ≡

𝑐𝑛(𝑛, 𝜖, 𝜔(∙)) > 0 such that the pointwise estimate    

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑( ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
2+𝜖
2

 

𝑑𝑦𝑟)

2+𝜖
2

𝑟

 

+𝑐𝑛∑(∫(
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

2+𝜖
2(𝜖+1) 𝑑𝜌

𝜌

𝑅

0

)

2+𝜖
2

𝑟

                            (1.15) 

holds whenever 𝐵(𝑥𝑟 , 𝑅) ⊆ Ω𝑟.    

     The previous theorem refines the main result of [8] – that is (1.7) – in two respects. First we observe that 

when formulating condition (1.3) in [8] we replaced 𝜔(∙) by [𝜔(∙)]2/(2+𝜖), thereby considering a slightly 

stronger continuity condition, still of Dini type. As already mentioned in the case 𝜖 < 0, we find that the same 

optimal conditions valid for linear equation actually works in the general degenerate case 𝜖 ≠ 0; see again 

[14]. The second and more substantial improvement has already been anticipated above, and concerns the 

right-hand side nonlinear potential employed in the pointwise estimate (1.15), in the sense that the following 

inequality holds true: 

 ∑ [𝐖 2+𝜖
4+3𝜖 

,
4+3𝜖
2+𝜖

𝜇𝑟  ]

2
2+𝜖

𝑟

=∑(∫ [
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
]

2+𝜖
2(𝜖+1) 𝑑𝜌

𝜌

𝑅

0

)

2
2+𝜖

𝑟

                                                             

≤ ∫ ∑[
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
]

1
𝜖+1 𝑑𝜌

𝜌
𝑟

2𝑅

0

=∑𝐖 1
2+𝜖 

,2+𝜖

𝜇𝑟 (𝑥𝑟, 2𝑅)

𝑟

                                          (1.16) 

The previous estimate is indeed a consequence of the elementary inequality  

∑𝑎𝑘
1+𝜖

∞

𝑘=0

≤ (∑𝑎𝑘

∞

𝑘=0

)

1+𝜖

,        𝜖 ≥ 0, 𝑎𝑘 ≥ 0,    ∀𝑘 ∈ ℕ                                          (1.17) 

applied with 𝜖 = 𝜖/2 to perform the following standard computation:  

  ∫∑[
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
]

2+𝜖
2(𝜖+1) 𝑑𝜌

𝜌
𝑟

𝑅

0

≤∑∑ ∫ (
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

2+𝜖
2(𝜖+1) 𝑑𝜌

𝜌

𝑅/2𝑘

𝑅/2𝑘+1

∞

𝑘=0𝑟
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≤∑∑

(

 
 
|𝜇𝑟| (𝐵 (𝑥𝑟 ,

𝑅
2𝑘
))

(
𝑅
2𝑘+1

)
𝑛−1

)

 
 

2+𝜖
2(𝜖+1)

∞

𝑘=0𝑟

          

≤∑

(

 
 
∑(

|𝜇𝑟|(𝐵(𝑥𝑟 , 𝑅/2
𝑘))

(𝑅/2𝑘+1)𝑛−1
)

1
𝜖+1∞

𝑘=0

)

 
 

2+𝜖
2

𝑟

  

≤∑(∫ (
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

1
𝜖+1 𝑑𝜌

𝜌

2𝑅

0

)

2+𝜖
2

𝑟

        

Both estimates (1.7) and (1.15) allow getting the sharp integrability result 

𝜇𝑟 ∈  𝐿(1 + 𝜖, 𝛾)⟹𝐷𝑢𝑟 ∈ 𝐿 (
(1 + 2𝜖)(1 + 𝜖)

𝜖
, 𝛾)         for  𝜖 > 0  and  0 < 𝛾 < ∞.                     (1.18) 

When instead asking for the limiting case 𝐷𝑢𝑟 ∈ 𝐿
∞, in improvement in terms of the second index in the 

Lorentz scale is allowed by (1.15) with respect to (1.17). Indeed, while (1.15) allows to include that 𝜇𝑟 ∈

𝐿(𝑛, (2 + 𝜖)/(2 + 2𝜖)) implies the local boundedness of 𝐷𝑢𝑟, inequality (1.7) requires that 𝜇𝑟 ∈  𝐿(𝑛, 1/(1 +

𝜖)), which is a stronger condition for 𝜖 > 0. Turning our attention to the case when 𝜇𝑟 is genuinely a measure, 

we have that the potentials in the two sides of (1.16) become essentially equivalent when for instance the 

measure uniformly concentrates on a set with dimension that can be described via ordinary Hausdorff 

measues. This is for instance the case when the measure concentrates uniformly on a 𝜎-Alfhors regular set 𝑆𝑟 

𝜇𝑟 = ℋ
𝜎⌞𝑆𝑟,        𝜇𝑟(𝐵𝑅) ≈ 𝑅

𝜎,     𝜎 ∈ [0, 𝑛], 

which holds whenever 𝐵𝑅 is centered on 𝑆𝑟. Here ℋ𝜎 denotes the 𝜎-dimensional Hausdorff measure. 

Relevant examples are given by surface measures related to manifolds, where the quantities appearing in the 

two sides of (1.16) still become equivalent. A strict inequality occurs for instance in the case of those 

measures uniformly concentrated on sets whose Hausdorff dimension can be described only using in terms of 

a Gauge function 𝛾(∙) of non-power type: 𝜇𝑟 = ℋ
𝛾(∙)⌞𝑆𝑟  where 𝜇𝑟(𝐵𝑅) ≈ 𝛾(𝑅). For this we refer for 

instance to [33]. 

      Although we shall take the strategy adopted in [8] as a guideline, there are here a number of new non-

trivial points. We start by the case 𝜖 ≤ 0, that is Theorem 1.1. Usually called the singular case since the 

modulus of ellipticity tends to infinity when |𝐷𝑢𝑟| → 0, the case 𝜖 < 0 is for our ultimate purposes to be 

considered as a degenerate one. In fact, since estimates of the type (1.7) and (1.10) are estimates on the size of 

the gradient, the difficult case for us is when |𝐷𝑢𝑟| gets large. In this situation there is a loss of ellipticity in 

the equation, and estimates become harder to get. Instead a pointwise gradient estimate is in principle easier to 

get when 2 + 𝜖 gets larger since the coercivity of the operator increases. A manifestation of these difficulties 

in the case 𝜖 < 0 is the following major technical difference with respect to the case 𝜖 ≥ 0. In [8] we 

developed an iteration scheme based on the comparison between the original solution 𝑢𝑟 of (1.1) and 
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solutions to homogeneous equations of the type div 𝑎(𝑥𝑟 , 𝐷𝑤𝑟) = 0 in a ball 𝐵𝑅 with radius 𝑅, subject to the 

boundary condition 𝑢𝑟 ≡ 𝑤𝑟 on 𝜕𝐵𝑅. The outcome was the inequality       

∑⨍
𝐵𝑅

 |𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
]

1
𝜖+1

𝑟

.                                                         (1.19) 

The quantity on the right-hand side of (1.19) is in turn the density of the potential 𝐖 1

2+𝜖
 ,2+𝜖

𝜇𝑟  , and this is a key 

point in the proof; indeed, a suitable summation process involving (1.19) finally leads to (1.7). As a 

consequence of the fact that 𝜖 ≤ 0 an estimate of the type (1.19) is no longer possible since the coercivity of 

the operator is too weak. One of the main challenges here is to find the correct replacement for the quantity 

appearing in the right-hand side of (1.19) when 𝜖 ≤ 0, which allows to rebalance the weak ellipticity. It turns 

out that the mixed quantity    

∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
]

1
𝜖+1

𝑟

+∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
] (⨍

𝐵𝑅

(|𝐷𝑢𝑟| + 1 + 𝜖) 𝑑𝑥𝑟
 )

−𝜖

𝑟

                                 (1.20) 

depends also on the gradient average, and that for this reason cannot represent the density of a potential, is the 

right one. In fact, the presence of the gradient in (1.20), coupled with the measure, encodes in an optimal way 

the weaker ellipticity of the problem.  

     For the case 𝜖 ≥ 0 the key to the improved nonlinear potential estimate (1.15) is the use of the map 

𝑉(𝐷𝑢𝑟) in the estimates, rather than the plain gradient 𝐷𝑢𝑟. Here it is 

𝑉(𝐷𝑢𝑟) ≡ 𝑉1+𝜖(𝐷𝑢𝑟) = (|𝐷𝑢𝑟|
2 + (1 + 𝜖)2)

𝜖
4 𝐷𝑢𝑟 .                                                  (1.21) 

The use of 𝑉(𝐷𝑢𝑟) rather than 𝐷𝑢𝑟 allows to get better estimates as it allows to incorporate many of the 

degenerate features of the operator in question in the considered map, allowing for a better potential on the 

right-hand side. In turn, working with the quantity defined in (1.21) poses additional problems, and in 

particular a few delicate estimates below the natural growth exponents must be worked out.  

2. Notations 

     We denote by 𝑐𝑛 a general constant larger (or equal) than one, possibly varying from line to line; special 

occurrences will be denoted by 𝑐𝑛+1 etc; relevant dependences on parameters will be emphasized using 

parentheses. We also denote by 𝐵(𝑥0, 𝑅) ≔ {𝑥𝑟 ∈ ℝ
𝑛: |𝑥𝑟 − 𝑥0| < 𝑅} the open ball with center 𝑥0 and radius 

𝑅 > 0; when not important, or clear from the context, we shall omit denoting the center as follows: 𝐵𝑅 ≡

𝐵(𝑥0, 𝑅). Unless otherwise stated, different balls in the same context will have the same center. We shall also 

denote 𝐵 ≡ 𝐵1 = 𝐵(0,1). With A being a measurable subset with positive measure, and with g𝑟: 𝐴 →

ℝ𝑘  being a measurable map, we shall denote  

⨍
𝐴

 g𝑟(𝑥𝑟)
 𝑑𝑥𝑟 ≔

1

|𝐴|
∫g𝑟(𝑥𝑟)𝑑𝑥𝑟

 

𝐴

 

its integral average. According to what we have stated in the Introduction, when considering a 𝐿1-function 𝜇𝑟 

we shall denote  
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|𝜇𝑟|(𝐴) ≔ ∫|𝜇𝑟(𝑥𝑟)|𝑑𝑥𝑟

 

𝐴

.
 

In other words, we shall deal with 𝐿1-data, but “thinking of the case the datum is a measure”. Indeed, when 

considering equation as (1.1) in order to get the results we are bounded to present, it is sufficient to consider 

the case 𝜇𝑟 ∈ 𝐿
1(Ω𝑟), the case when 𝜇𝑟 is general Borel measure with finite total mass can be obtained via 

approximation [8,27].  

     With 𝜖 ≥ 0, we define  

𝑉(𝑧𝑟) ≡ 𝑉1+𝜖(𝑧𝑟):= ((1 + 𝜖)2 + |𝑧𝑟|
2)
𝜖
4 𝑧𝑟 ,     𝑧𝑟 ∈ ℝ

𝑛                                                      (2.1) 

which is easily seen to be a locally bi-Lipschitz bijection of ℝ𝑛. A basic property of the map 𝑉(∙), whose 

proof can be found in [15], is the following: For any 𝑧1, 𝑧2 ∈ ℝ
𝑛, and any 𝜖 ≥ 0, it holds 

 𝑐𝑛
−1((1 + 𝜖)2 + |𝑧1|

2 + |𝑧2|
2)

𝜖

2  ≤
|𝑉(𝑧2)−𝑉(𝑧1)|

2

|𝑧2−𝑧1|2
≤ 𝑐𝑛((1 + 𝜖)

2 + |𝑧1|
2 + |𝑧2|

2)
𝜖

2 ,                   (2.2) 

where 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). The strict monotonicity properties of the vector field 𝑎(∙) implied by the left-hand side 

in (1.2)2 can be recast using the map 𝑉(∙). Indeed – see also [25] – combining (1.2)2 and (2.2) yields, for 𝑐𝑛 ≡

𝑐𝑛(𝑛, 𝜖, ) > 0, and whenever 𝑧1, 𝑧2 ∈ ℝ
𝑛 

𝑐𝑛
−1|𝑉(𝑧2) − 𝑉(𝑧1)|

2 ≤ 〈𝑎(𝑥𝑟 , 𝑧2) − 𝑎(𝑥𝑟 , 𝑧1), 𝑧2 − 𝑧1〉.                                        (2.3) 
Moreover, when 𝜖 ≥ 0, assumption (1.2)2 ˗ via (2.2) – (2.3) ˗ immediately implies 

𝑐𝑛
−1|𝑧2 − 𝑧1|

2+𝜖 ≤ 〈𝑎(𝑥𝑟 , 𝑧2) − 𝑎(𝑥𝑟 , 𝑧1), 𝑧2 − 𝑧1〉.                                              (2.4) 

3. Decay Estimates for 𝒂𝟎–Harmonic Functions 

     The aim of this chapter is to recall a few decay estimates valid for solutions to homogeneous equations of 

the type   

∇𝑎0(𝐷𝑣𝑟) = 0,                                                                          (3.1) 

where the vector field 𝑎0: ℝ
𝑛 → ℝ𝑛 satisfies assumptions (1.2)1,2 and (1.14), with the obvious understanding 

that now no 𝑥𝑟-dependence is involved. Such functions are indeed called 𝑎0-harmonic functions. The peculiar 

point of the results we are going to present is that a few of the decay estimates presented are not formulated in 

terms of the gradient 𝐷𝑢𝑟, but rather in terms of the nonlinear quantity 𝑉(𝐷𝑢𝑟). The decay estimates for 

solutions found here differ from the usual ones in the fact that the exponents involved are smaller than those 

typically used, and this will require to employ certain rarely used facts from regularity theory of (2 + 𝜖)-

Laplacian type operators.  

Theorem 3.1. Let 𝑣𝑟 ∈ 𝑊
1,2+𝜖(Ω𝑟) be a weak solution to (3.1) under the assumptions (1.2)1,2 with 𝜖 > 0 and 

(1.14). Then there exist constants 𝛽 ∈ (0,1] and 𝑐𝑛 ≥ 1, both depending on 𝑛, 𝜖 such that the following 

estimate:  

⨍
𝐵𝜌

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝜌|
2

𝑑𝑥𝑟
𝑟

 ≤ 𝑐𝑛 (
𝜌

𝑅
)
2𝛽

⨍
𝐵𝑅

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|
2
𝑑𝑥𝑟

𝑟

                       (3.2) 

holds whenever 𝐵𝜌 ⊆ 𝐵𝑅 ⊆ Ω𝑟 are concentric balls. 

     This result is standard in the case of the (2 + 𝜖)-Laplacian equation – see for instance [7] and references 

therein – and it is more in general known to hold for minima of certain functionals of the Calculus of 
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Variations with (2 + 𝜖)-growth; moreover, it extends to minimizers of the (2 + 𝜖)-Dirichlet functional (4.31) 

below in the vectorial case. Here we shall present the necessary modifications to the known proofs in order to 

prove the result in the context of Theorem 3.1.  

     We divide the proof in several steps.  

     Step 1: The degenerate case. Here we see that we may reduce to the nondegenerate case 𝜖 > 0 via an 

approximation that the reader may for instance find in [12,10]. Let us fix a family {𝜙𝜖
𝑟}𝜖>0 

of standard 

mollifiers in ℝ𝑛 and obtained in the following way: 𝜙𝜖
𝑟(𝑧𝑟) ≔ (2 + 𝜖)−𝑛𝜙𝑟(𝑧𝑟/𝜖) Here 𝜙𝑟 ∈ 𝐶∞(ℝ𝑛) and it 

is such that  

supp 𝜙𝑟 = 𝐵1̅̅ ̅     and    ∫𝜙
𝑟(𝑧𝑟)

 

ℝ𝑛

𝑑𝑧𝑟 = 1.                                                        (3.3) 

We defined the regularized vector fields        

   𝑎𝜖(𝑧𝑟) ≔ (𝑎 ∗ 𝜙𝜖
𝑟)(𝑧𝑟),        𝜖 > 0.                                                               (3.4) 

It obviously follows that 𝑎𝜖(∙) ∈ 𝐶
∞(ℝ𝑛) and moreover, as in [12] – whose arguments apply here since (3.3) 

is assumed – we have that the assumptions (1.2) and (1.14) are satisfied for new values of 𝜖. The 

approximation scheme in question is completely standard and we omit it here (see [1] and [8]). We then 

define 𝑣𝜖 ∈ 𝑣𝑟 +𝑊0
1,2+𝜖(Ω′𝑟) as the unique solution to the Dirichlet problem  

{
div 𝑎𝜖(𝐷𝑣𝜖) = 0         in   Ω′𝑟 ,

𝑣𝜖 = 𝑣𝑟                             on ∂ Ω′𝑟 ,
 

for a Lipschitz-regular subdomain Ω′𝑟 ⋐ Ω𝑟. The final outcome is that – up to choosing a suitable 

subsequence 𝜖 ≡ 𝜖𝑛 → 0
 
– we have that 𝑣𝜖 → 𝑣𝑟 strongly in 𝑊1,2+𝜖( Ω′𝑟). Needless to say this is sufficient to 

pass 𝜖 → 0 in an estimate like (3.2). Therefore in the rest of the proof we shall with no loss of generality 

assume that 𝜖 > 0, catching the case 𝜖 = 0 by passing to the limit the uniform decay estimates obtained in a 

standard way. Moreover we shall obviously replace Ω′𝑟 by Ω𝑟 since the result we are going to prove is local 

in nature.  

     Step 2: 𝐿∞-estimate. Let us denote 

𝑎̃𝑖,𝑗(𝑥𝑟) ≔ (|𝐷𝑣𝑟(𝑥𝑟)|
2 + (1 + 𝜖)2)−𝜖𝜕𝑧𝑟𝑗(𝑎0

𝑖 )(𝐷𝑣𝑟(𝑥𝑟)), 

and   

                                                   𝐻𝑟 ≡ 𝐻𝑟(𝐷𝑣𝑟) ≔ (|𝐷𝑣𝑟|
2 + (1 + 𝜖)2)(2+𝜖)/2.  

It then follows – see for instance the approach in [10] – that  𝐻𝑟 ∈ 𝑊loc
1,2(Ω𝑟) ∩ 𝐿loc

∞ (Ω𝑟) and that 𝐻𝑟 is a 

subsolution of a uniformly elliptic equation with measureable coefficients, that is  

∫ 𝑎̃𝑖,𝑗

 

Ω𝑟

𝐷𝑖𝐻
𝑟𝐷𝑗𝜑

𝑟 𝑑𝑥𝑟  ≤ 0,      φ
𝑟 ≥ 0                                                                   (3.5) 

holds with φ𝑟 ∈ 𝐶0
∞(Ω𝑟). In turns this fact implies that 𝐻𝑟 ∈ 𝐿loc

∞ (Ω𝑟) and the quantitative estimate    

sup
𝐵𝑅/2

𝐻𝑟  ≤ ⨍
𝐵𝑅

 𝐻𝑟 𝑑𝑥𝑟           ∀ 𝐵𝑅 ⊆ Ω𝑟 ,                                                         (3.6) 

holds for a constant depending on 𝑛, 𝜖.  

      Step 3: A first oscillation estimate. Denoting 
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                              𝜙𝑟(𝑅) ≔ ⨍
𝐵𝑅

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|
2
𝑑𝑥𝑟 ,              𝑀(𝑅) ≔ sup𝐵𝑅 𝐻

𝑟  

for a fixed ball 𝐵𝑅 ≡ 𝐵(𝑥0, 𝑅). As a consequence of the weak Harnack type inequality valid for subsolutions 

of (3.5) we have ˗ see [15] ˗     

                                                            𝜙𝑟(𝑅) ≤ 𝑐𝑛[𝑀(𝑅) − 𝑀(𝑅/2)],                                                               (3.7)   

For 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). Moreover, a standard difference quotient method asserts that 𝑉(𝐷𝑣𝑟) ∈ 𝑊loc
1,2(Ω𝑟 , ℝ

𝑛), 

while the next reverse Hölder’s inequality is just a consequence of the fact that 𝑣𝑟 solves (3.1), together with 

the higher differentiability of 𝑉(𝐷𝑣𝑟):  

∑( ⨍
𝐵𝑅/2

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅/2|
2𝜒

𝑑𝑥𝑟)

1/𝜒

𝑟

≤ 𝑐𝑛∑⨍
𝐵𝑅

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|
2
𝑑𝑥𝑟

𝑟

, 

where 𝜒 = 𝑛/(𝑛 − 2) when 𝑛 > 2 and 𝜒 can be chosen arbitrarily large when 𝑛 = 2. 

     Step 4: Conclusion. Here we prove 

Lemma 3.1. Assume that         

𝜙𝑟(𝑅) ≤ 𝑐𝑛+1 (|(𝐷𝑣𝑟)𝐵𝑅|
2
+ (1 + 𝜖)2)

(2+𝜖)/2

,                                                   (3.8) 

holds for a constant 𝑐𝑛+1. Then there exists another constant 𝑐𝑛+2 , depending on 𝑛, 𝜖
 
and 𝑐𝑛+1, such that  

𝜙𝑟(𝜌) ≤ 𝑐𝑛+2 (
𝜌

𝑅
)
2

{
 

 
1 + (

𝑅

𝜌
)
𝑛+2

[
𝜙𝑟(𝑅)

(|(𝐷𝑣𝑟)𝐵𝑅|
2
+ (1 + 𝜖)2)

(2+𝜖)/2
]

1+𝜖

}
 

 
 𝜙𝑟(𝑅) 

holds whenever 0 < 𝜌 ≤ 𝑅.       

     Once the previous lemma is proved, the proof follows along the lines of [15] – keep in mind that general 

differential forms are used there. Indeed, a delicate but by now standard iteration argument allows to deduce 

(3.2) from Lemma 3.1 and the content of Step 3. It therefore remains to prove Lemma 3.1; to which we 

dedicate in the rest of the proof. We again follow the lines of [15], but at several stages we shall use a 

different argument since we are not dealing with minimizers of integral functionals.  

     Let us set z0 ≔ (𝐷𝑣𝑟)𝐵𝑅. Assumption (3.8) used together with (3.6) yields     

sup
𝐵𝑅/2

|𝐷𝑣𝑟 − 𝑧0|
2+𝜖 ≤ 𝑐𝑛(|𝑧0|

2 + (1 + 𝜖)2)(2+𝜖)/2,                                               (3.9) 

where 𝑐𝑛 depends on 𝜖, 𝑐𝑛+1. We now introduce the frozen matrix 

                                                        (𝐴0)𝑗
𝑖 ≔ (𝑎0

𝑖 )
𝑧𝑟𝑗
(𝑧0),  

which is an elliptic matrix with constant coefficients in the sense that it satisfies the following ellipticity and 

growth conditions   

𝑐𝑛
−1(|𝑧0|

2 + (1 + 𝜖)2)
𝜖
2|𝜆𝑟|

2 ≤ 〈𝐴0𝜆𝑟 , 𝜆𝑟〉,          |𝐴0| ≤ 𝑐𝑛(|𝑧0|
2 + (1 + 𝜖)2)

𝜖
2,                               (3.10) 

whenever 𝜆𝑟 ∈ ℝ
𝑛, and with 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). Accordingly, we define 𝑣̃𝑟 ∈ 𝑣𝑟 +𝑊0

1,2(𝐵𝑅/2)as the unique 

solution to the following Dirichlet problem: 

{
∇ (𝐴0𝐷𝑣̃𝑟) = 0          in   𝐵𝑅/2,

𝑣̃𝑟 = 𝑣𝑟                             on ∂ 𝐵𝑅/2.
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This means that the ratio between the highest and the lowest eigenvalue of 𝐴0 
is bounded by a constant 

depending on 𝑛, 𝜖 and therefore classical estimates for solutions to linear elliptic equations apply (see for 

instance [15]). In particular, for 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖) ≥ 1 it holds that 

∑ ⨍
𝐵𝑅/2

(|𝐷𝑣̃𝑟 − 𝑧0|
3+𝜖 + |𝐷𝑣̃𝑟 − 𝑧0|

2+𝜖)𝑑𝑥𝑟
𝑟

 ≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝐷𝑣𝑟 − 𝑧0|
3+𝜖 + |𝐷𝑣𝑟 − 𝑧0|

2+𝜖)𝑑𝑥𝑟
𝑟

.       (3.11) 

Again as in [15] we arrive at 

∑𝜙𝑟(𝜌)

𝑟

≤ 𝑐𝑛 (
𝜌

𝑅
)
2

∑𝜙𝑟(𝑅/2)

𝑟

+ 𝑐𝑛(|𝑧0|
2 + (1 + 𝜖)2)

𝜖
2 (
𝑅

𝜌
)
𝑛

∑ ⨍
𝐵𝑅/2

|𝐷𝑣𝑟 − 𝐷𝑣̃𝑟|
2𝑑𝑥𝑟

𝑟

,              (3.12) 

for every 𝜌 ≤ 𝑅/2. We have to estimate the last integral in (3.12): denoting 𝑤𝑟 ≔ 𝑣𝑟 − 𝑣̃𝑟 we have, by mean 

of the first inequality in (3.10) 

(|𝑧0|
2 + (1 + 𝜖)2)

𝜖
2∑ ⨍

𝐵𝑅/2

|𝐷𝑤𝑟|
2𝑑𝑥𝑟

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

〈𝐴0𝐷𝑤𝑟 , 𝐷𝑤𝑟〉𝑑𝑥𝑟
𝑟

,                                   (3.13) 

Now, notice that by writing  

𝑎0(𝑧𝑟) − 𝑎0(𝑧0) = ∫(𝑎0)𝑧𝑟(𝑡𝑧𝑟 + (1 − 𝑡)𝑧0)𝑑𝑡(𝑧𝑟 − 𝑧0)

1

0

 , 

and applying (1.14), we obtain 

|𝑎0(𝑧𝑟) − 𝑎0(𝑧0) − 𝐴0(𝑧𝑟 − 𝑧0)| ≤ 𝑐𝑛(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝑧𝑟 − 𝑧0|

2+𝜖 + 𝑐𝑛|𝑧𝑟 − 𝑧0|
1+𝜖 .                    (3.14) 

In turn, using Young’s inequality repeatedly, and the fact that both 𝑣𝑟 and 𝑣̃𝑟 are solutions, and of course 

using (3.14), it holds that  

∑ ⨍
𝐵𝑅/2

〈𝐴0𝐷𝑤𝑟 , 𝐷𝑤𝑟〉𝑑𝑥𝑟
𝑟

            

= ∑ ⨍
𝐵𝑅/2

〈𝐴0𝐷𝑣𝑟 , 𝐷𝑤𝑟〉𝑑𝑥𝑟
𝑟

 −∑ ⨍
𝐵𝑅/2

〈𝑎0(𝐷𝑣𝑟 − 𝑎0(𝑧0) − 𝐴0(𝐷𝑣𝑟 − 𝑧0), 𝐷𝑤𝑟〉𝑑𝑥𝑟
𝑟

 

 

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

((|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

2+𝜖 + |𝐷𝑣𝑟 − 𝑧0|
1+𝜖) |𝐷𝑣𝑟 − 𝑧0|𝑑𝑥𝑟

𝑟

     

+ 𝑐𝑛∑ ⨍
𝐵𝑅/2

((|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

2+𝜖 + |𝐷𝑣𝑟 − 𝑧0|
1+𝜖) |𝐷𝑣̃𝑟 − 𝑧0|𝑑𝑥𝑟

𝑟

   

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

3+𝜖 + |𝐷𝑣𝑟 − 𝑧0|
2+𝜖𝑑𝑥𝑟

𝑟

                               

+ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣̃𝑟 − 𝑧0|

3+𝜖 + |𝐷𝑣̃𝑟 − 𝑧0|
2+𝜖𝑑𝑥𝑟

𝑟

                             

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

3+𝜖 + |𝐷𝑣𝑟 − 𝑧0|
2+𝜖𝑑𝑥𝑟

𝑟

                               

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

3+𝜖𝑑𝑥𝑟
𝑟

                  

In the last two lines we used (3.11) and then (3.9). Combining the last inequality with (3.13) yields    
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(|𝑧0|
2 + (1 + 𝜖)2)

𝜖
2∑ ⨍

𝐵𝑅/2

|𝐷𝑣𝑟 − 𝐷𝑣̃𝑟|
2𝑑𝑥𝑟

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵𝑅/2

(|𝑧0|
2 + (1 + 𝜖)2)

−1
2 |𝐷𝑣𝑟 − 𝑧0|

3+𝜖𝑑𝑥𝑟
𝑟

 

This last estimate is the analogue of the last inequality at page 38 of [15] and from this point the proof of the 

Lemma follows as in [15].                                                                                                             

     We give a version of Theorem 3.1 below the natural growth exponent. Indeed, instead of considering 

𝑉(𝐷𝑢𝑟) in 𝐿2, it will be considered in 𝐿1. To begin with we recall a preliminary result on reverse Hölder 

inequalities. 

Lemma 3.2. Let g𝑟: 𝐴 → ℝ𝑘 be an integrable map such that  

∑(⨍
𝐵𝑅

|g𝑟|𝜒0𝑑𝑥𝑟)

1/𝜒0

𝑟

≤ (1 + 𝜖)∑ ⨍
𝐵2𝑅

|g𝑟| 𝑑𝑥𝑟
𝑟

 

holds whenever 𝐵2𝑅 ⊆ 𝐴, where 𝐴 ⊆ ℝ𝑛 is an open subset, and 𝜖 > 0. Then, for every 𝑡 ∈ (0,1] and 𝜒 ∈

(0, 𝜒0] there exists a constant 𝑐𝑛−1 ≡ 𝑐𝑛−1(𝑛, 𝜖, 𝑡) such that, for every 𝐵2𝑅 ⋐ 𝐴 
it holds that                      

∑(⨍
𝐵𝑅

|g𝑟|𝜒𝑑𝑥𝑟)

1/𝜒

𝑟

≤ 𝑐𝑛−1∑(⨍
𝐵2𝑅

|g𝑟|𝑡 𝑑𝑥𝑟)

1/𝑡

𝑟

.                                  (3.15) 

     The proof of the previous result, which is based on a by now standard interpolation/covering argument, can 

be obtained with minor modifications form [13]. Next, a result which can be inferred from [25]; see also [26].  

Lemma 3.3. Let 𝑣𝑟 ∈ 𝑊
1,2+𝜖(Ω𝑟) be a weak solution to (3.1) under the assumptions (1.2), and fix 𝑧0 ∈ ℝ

𝑛. 

For every 𝑡 ∈ (0,1] there exists 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖, 𝑡) ≥ 1, but independent of 𝑧0 ∈ ℝ
𝑛 such that  

∑(⨍
𝐵2𝑅

|𝑉(𝐷𝑣𝑟) − 𝑧0|
2𝑑𝑥𝑟)

1/2

𝑟

 ≤ 𝑐𝑛∑(⨍
𝐵𝑅

|𝑉(𝐷𝑣𝑟) − 𝑧0|
2𝑡𝑑𝑥𝑟)

1/(2𝑡)

𝑟

,                             (3.16) 

holds whenever 𝐵𝑅 ⊆ Ω𝑟. 

     We now come to the decay estimate below the natural growth exponent. 

Theorem 3.2. Let 𝑣𝑟 ∈ 𝑊
1,2+𝜖(Ω𝑟) be a weak solution to (3.1) under the assumptions (1.2), with 𝜖 > 0 and 

(1.14). Then there exist constants 𝛽 ∈ (0,1] and 𝑐𝑛 ≥ 1, both depending on 𝑛, 𝜖 such that the following 

estimate:  

⨍
𝐵𝜌

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

⨍
𝐵𝑅

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|𝑑𝑥𝑟
𝑟

                            (3.17) 

holds whenever 𝐵𝜌 ⊆ 𝐵𝑅 ⊆ Ω𝑟 are concentric balls. 

Proof: Using estimate (3.2) and Hölder’s inequality we deduce    

  ⨍
𝐵𝜌

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤ ∑(⨍
𝐵𝜌

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝜌|
2

𝑑𝑥𝑟)

1/2

𝑟

 

                                     ≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

∑[ ⨍
𝐵𝑅/2

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅/2|
2

𝑑𝑥𝑟]

1/2

𝑟

 

≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

∑[ ⨍
𝐵𝑅/2

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|
2
𝑑𝑥𝑟]

1/2

𝑟

,                     (3.18)

 
Whenever 0 < 𝜌 ≤ 𝑅/2. On the other hand, we may apply estimate (3.16) with 𝑧0 = (𝑉(𝐷𝑣𝑟))𝐵𝑅 

getting 
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∑( ⨍
𝐵𝑅/2

|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|
2
𝑑𝑥𝑟)

1/2

𝑟

≤ 𝑐𝑛⨍
𝐵𝑅

∑|𝑉(𝐷𝑣𝑟) − (𝑉(𝐷𝑣𝑟))𝐵𝑅|𝑑𝑥𝑟
𝑟

 

Merging this last estimate with (3.18) yields the assertion for case 0 < 𝜌 ≤ 𝑅/2; on the other hand estimate 

(3.17) trivially holds when 𝑅/2 < 𝜌 ≤ 𝑅 and the proof is complete.       

     The next result has been proved for the case 𝜖 ≥ 0 in [8]; the proof for the case 0 < 𝜖 < 1 can be obtained 

with minor modifications. 

Theorem 3.3. Let 𝑣𝑟 ∈ 𝑊
1,1+𝜖(Ω𝑟) be a weak solution to (3.1) under the assumptions (1.2)1,2 with 𝜖 > 0. 

Then there exist constants 𝛽 ∈ (0,1] and 𝑐𝑛 ≥ 1, both depending on 𝑛, 𝜖 such that the estimate  

⨍
𝐵𝜌

∑|𝐷𝑣𝑟 − (𝐷𝑣𝑟)𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

⨍
𝐵𝑅

∑|𝐷𝑣𝑟 − (𝐷𝑣𝑟)𝐵𝑅|𝑑𝑥𝑟
𝑟

                                     (3.19) 

holds whenever 𝐵𝜌 ⊆ 𝐵𝑅 ⊆ A are concentric balls. 

     Estimates of this type, with different exponents involved, have been originally developed in [6,21,23]. 

Remark 3.2 (Stabilization of the constant ). A very careful analysis of the estimates involved in the proof of 

(3.19) reveals a continuous dependence of the constants 𝛽 > 0 and 𝑐𝑛 < ∞ appearing in (3.19). This means 

whenever 1 + 𝜖 lies in a compact subset of (1,∞) then 𝛽 and 𝑐𝑛 vary in a compact subset of (0,1) and [1,∞), 

respectively. 

4. Decay and Comparison Estimates 

     We now fix, for the rest of the section, a ball 𝐵(𝑥0, 2𝑅) ⊆ Ω𝑟 that will be shortly denoted by 𝐵2𝑅 Unless 

otherwise stated all the ball considered will concentric to 𝐵2𝑅. Moreover, the solution of (1.1) will be always 

considered under the assumptions of Theorem 1.1, that is of class 𝐶1. In the rest of the sections 𝑢𝑟 will be the 

solution considered in Theorems 1.1 and 1.2. 

     We derive a few crucial comparison estimates between the original solution of (1.1) and solutions to 

suitably homogeneous boundary value problems. In the case 𝜖 > 0 the main point is the use of the function 

𝑉(𝐷𝑢𝑟) replacing the gradient 𝐷𝑢𝑟, while in the second case 𝜖 ≤ 0 the main point is that the mixed quantity 

in (1.20) involving the right-hand side measure 𝜇𝑟 and the gradient average will become into the play. 

     We start defining 𝑤𝑟 ∈ 𝑢𝑟 +𝑊0
1,2+𝜖(𝐵2𝑅) as the unique solution to the homogeneous Dirichlet problem                                       

{
∇𝑎(𝑥𝑟 , 𝐷𝑤𝑟) = 0              in   𝐵2𝑅,
𝑤𝑟 = 𝑢𝑟                                  on ∂ 𝐵2𝑅.

                                                         (4.1)                                              

Remark 4.1 (Scaling). Before going on with the proofs, let us recall a few basic properties of equations of the 

type (1.1) under the assumptions (1.2), where 𝜇𝑟 ∈ 𝐿
1(Ω𝑟). Let us consider the ball 𝐵2𝑅 ≡ 𝐵(𝑥0, 2𝑅) ⊂ Ω𝑟 

and positive number 𝐴 > 0, and let us define the new functions  

𝑢̃𝑟(𝑦) ≔
𝑢𝑟(𝑥0 + 2𝑅𝑦𝑟)

2𝐴𝑅
     and     𝜇𝑟(𝑦𝑟) ≔

2𝑅𝜇𝑟(𝑥0 + 2𝑅𝑦𝑟)

𝐴1+𝜖
,                                            (4.2) 

and the new vector field 

𝑎̃(𝑦𝑟 , 𝑧𝑟) ≔
𝑎(𝑥0 + 2𝑅𝑦𝑟 , 𝐴𝑧𝑟)

𝐴1+𝜖
, 

for 𝑦𝑟 ∈ 𝐵1 
and 𝑧𝑟 ∈ ℝ

𝑛. It is now easy to see that 𝑢̃𝑟 solves the equation 

−∇𝑎̃(𝑦𝑟 , 𝐷𝑢̃𝑟) = 𝜇𝑟. 

I
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Moreover the new vector field 𝑎̃(∙) satisfies assumptions (1.2) with 1 + 𝜖 replaced by (1 + 𝜖)/𝐴 (and 𝜔(∙) 

replaced by 𝜔𝑅(∙) ≔ 𝜔(2𝑅 ∙), but in what follows the properties of 𝜔(∙) will not be important). This 

observation will be useful in a few lines, when reducing estimates on general balls to the case the ball in 

equation is 𝐵1.                                                                   

Lemma 4.1. Under the assumptions of Theorem 1.1 let 𝑤𝑟 ∈ 𝑢𝑟 +𝑊0
1,2+𝜖(𝐵2𝑅) be as in (4.1); assume that 

𝜖 ≥ 0. Then the following inequality holds for a constant 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖):    

⨍
𝐵2𝑅

 ∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

2+𝜖
2(1+𝜖)

𝑟

.                                                 (4.3) 

Proof. We start observing that by Remark 4.1, with 𝑥0 
being the center of 𝐵2𝑅, by taking              

𝐴 ≔ (
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
)

1
1+𝜖

     and     𝑤̃𝑟(𝑦𝑟) ≔
2(𝑥0 + 2𝑅𝑦𝑟)

𝐴𝑅
                                            (4.4) 

it follows that div 𝑎̃(𝑥𝑟 , 𝐷𝑤̃𝑟) = 0 and we may reduce ourselves to the case in which the following holds:   

𝐵2𝑅 ≡ 𝐵1            and in turn      |𝜇𝑟|(𝐵1) ≤ 1,                                            (4.5) 

thereby proving that  

⨍
𝐵1

 ∑|𝑉(1+𝜖)/𝐴(𝐷𝑢̃𝑟) − 𝑉(1+𝜖)/𝐴(𝐷𝑤̃𝑟)|𝑑𝑦𝑟
 

𝑟

≤ 𝑐𝑛(𝑛, 𝜖).                                                   (4.6) 

Inequality (4.3) then follows by (4.6) scaling back to 𝑢𝑟 and 𝑤𝑟 and noting that 

⨍
𝐵2𝑅

 ∑|𝑉(1+𝜖)(𝐷𝑢𝑟) − 𝑉(1+𝜖)(𝐷𝑤𝑟)|𝑑𝑥𝑟
𝑟

= 𝐴(2+𝜖)/2⨍
𝐵1

 ∑|𝑉(1+𝜖)/𝐴(𝐷𝑢̃𝑟) − 𝑉(1+𝜖)/𝐴(𝐷𝑤̃𝑟)|𝑑𝑦𝑟
𝑟

 

 

≤ 𝑐𝑛𝐴
(2+𝜖)/2. 

Therefore, from now on we shall argue under the additional assumptions (4.5); it is here needless to remark 

that we may assume 𝐴 > 0, otherwise the proof trivializes by the strict monotonicity of the vector field 𝑎(∙). 

For any integer 𝑘 ≥ 0 we define the truncation operators 

𝑇𝑘(𝑡) ≔ max{−𝑘,min{𝑘, 𝑡}},            Φ𝑘(𝑡) ≔ 𝑇1(𝑡 − 𝑇𝑘(𝑡)),          𝑡 ∈ ℝ.                 (4.7) 

Since both 𝑢𝑟 and 𝑣𝑟 are solutions agreeing on , we test the weak formulation  

∫∑〈𝑎(𝑥𝑟 , 𝐷𝑢𝑟) − 𝑎(𝑥𝑟 , 𝐷𝑤𝑟), 𝐷𝜑
𝑟〉𝑑𝑥𝑟

𝑟

 

𝐵1

= ∫∑𝜑𝑟𝑑𝜇𝑟
𝑟

 

𝐵1

                                              (4.8) 

by φ𝑟 ≡ Φ𝑘(𝑢𝑟 − 𝑤𝑟); using (2.3) – (2.4) and the bound in (4.5), we obtain  

∑ ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2 + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|

2+𝜖𝑑𝑥𝑟

 

𝐶𝑘𝑟

≤ 𝑐𝑛∑|𝜇𝑟|(𝐵1)

𝑟

≤ 𝑐𝑛,                                  (4.9) 

where  

𝐶𝑘 ≔ {𝑥𝑟 ∈ 𝐵1: 𝑘 < |𝑢𝑟(𝑥𝑟) − 𝑤𝑟(𝑥𝑟)| ≤ 𝑘 + 1},                                                  (4.10) 

and 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). By Hölder’s inequality, and the very definition of 𝐶𝑘, for 𝑘 > 0 we find  

∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

𝑟

 

𝐶𝑘

 

1B
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≤ 𝑐𝑛 |𝐶𝑘|
1
2∑(∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|

2 + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
2+𝜖𝑑𝑥𝑟

 

𝐶𝑘

)

1 2⁄

𝑟

                       

≤(4.9) 𝑐𝑛 |𝐶𝑘|
1
2 ≤

𝑐𝑛

𝑘
1+𝜖
2

∑(∫|𝑢𝑟 − 𝑤𝑟|
1+𝜖𝑑𝑥𝑟

 

𝐶𝑘

)

1 2⁄

𝑟

                                        (4.11) 

where we choose 1 + 𝜖 in order to satisfy 

1 < 1 + 𝜖 <
𝑛(2 + 𝜖)

2(𝑛 − 1)
.                                                                      (4.12) 

Notice that this is possible since 𝜖 ≥ 0. Still, again by Hölder’s inequality we have  

∑ ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

 

𝐶0𝑟

≤ 𝑐𝑛(𝑛, 𝜖).                               (4.13) 

Using (4.11), (4.13) and (4.12), and finally Sobolev’s embedding theorem, we have  

∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

𝑟

 

𝐵1

 

= ∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

𝑟

 

𝐶0

 

      +∑ ∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

𝑟

 

𝐶𝑘

∞

𝑘=1

 

                                                   ≤ 𝑐𝑛 + 𝑐𝑛∑
1

𝑘
1+𝜖
2

∑(∫|𝑢𝑟 − 𝑤𝑟|
1+𝜖𝑑𝑥𝑟

 

𝐶𝑘

)

1
2

𝑟

∞

𝑘=1

 

                                                    ≤ 𝑐𝑛 + 𝑐𝑛 [∑
1

𝑘1+𝜖

∞

𝑘=1

]

1
2

∑(∫|𝑢𝑟 − 𝑤𝑟|
1+𝜖𝑑𝑥𝑟

 

𝐵1

)

1
2

𝑟

 

≤ 𝑐𝑛 + 𝑐𝑛 [∑
1

𝑘1+𝜖

∞

𝑘=1

]

1
2

∑(∫|𝑢𝑟 − 𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

 

𝐵1

)

1+𝜖
2+𝜖

𝑟

.                                 (4.14) 

The constant 𝑐𝑛 in the last line also depends on 1 + 𝜖. Observe now that by (4.12) it follows 
1+𝜖

2+𝜖
< 1 and 

therefore applying Young’s inequality in (4.14) yields    

∑ ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| + |𝐷𝑢𝑟 − 𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

 

𝐵1𝑟

≤ 𝑐𝑛(𝑛, 𝜖). 

from which (4.6) follows. The proof is complete by making a suitable choice of 1 + 𝜖 in (4.12).     

     We now switch to the subquadratic case 𝜖 ≤ 0, which involves a more delicate argument, and a scaling 

procedure with some non-standard quantities reflecting the behavior of (2 + 𝜖)-Laplacian type operators for 

𝜖 ≤ 0. 
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Lemma 4.2. Under the assumptions of Theorem 1.2, let 𝑤𝑟 ∈ 𝑢𝑟 +𝑊0
1,2+𝜖(𝐵2𝑅) be as in (4.1); assume that 

𝜖 <
1

𝑛
. Then the following inequality holds for a constant 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖):    

∑ ⨍
𝐵2𝑅

 |𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

. (4.15) 

Proof. As in the proof of Lemma 4.1 we start by a preliminary reduction appealing to Remark 4.1. In this case 

we set  

𝐴 ≔ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

. 

Scaling as in Remark 4.1, and in particular using the notation established in (4.2), we observe that    

∑[|𝜇𝑟|(𝐵1)]
1
1+𝜖

𝑟

+∑[|𝜇𝑟|(𝐵1)] (⨍
𝐵1

 (|𝐷𝑢̃𝑟| + (1 + 𝜖)/𝐴)𝑑𝑦𝑟
 
)

−𝜖

𝑟

 

=
𝑐𝑛(𝑛, 2 + 𝜖)

𝐴
∑[

|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+
𝑐𝑛(𝑛, 2 + 𝜖)

𝐴
∑[

|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

 

                                           

                      ≤ 𝑐𝑛(𝑛, 𝜖). 

Therefore, up to scaling as in Remark 4.1, we may reduce the proof to the case in which 𝐵2𝑅 ≡ 𝐵1 
and  

∑|𝜇𝑟|(𝐵1)

𝑟

+∑[|𝜇𝑟|(𝐵1)](∫(|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟
 

 

𝐵1

)

−𝜖

𝑟

≤ 𝑐𝑛                                            (4.16) 

holds for a constant 𝑐𝑛 depending on 𝑛 and 𝜖, thereby ultimately reducing ourselves to prove that  

∑⨍
𝐵1

 |𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟
𝑟

≤ 𝑐𝑛                                                       (4.17) 

in turn holds for a constant 𝑐𝑛 depending on 𝑛, 𝜖.  

     We start observing that the assumed lower bound 𝜖 < 1/𝑛 allows to determine 𝛾 ∈ (0,1) such that 𝜖 <

𝛾/𝑛 and therefore 

𝑛(1 + 𝜖)

𝑛 − 𝛾
> 1.                                                                              (4.18) 

As for the proof of Lemma 4.1, we obtain  

∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2𝑑𝑥𝑟

𝑟

 

𝐶𝑘

≤ 𝑐𝑛(𝑛, 𝜖)∑[|𝜇𝑟|(𝐵1)]

𝑟

,                                    (4.19) 

where 𝐶𝑘 is defined as in (4.10). For every integer 𝑘 > 0 we have    

∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2/(2+𝜖)𝑑𝑥𝑟

𝑟

 

𝐶𝑘

≤ 𝑐𝑛|𝐶𝑘|
1+𝜖
2+𝜖 (∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|

2𝑑𝑥𝑟
𝑟

 

𝐶𝑘

)

1
2+𝜖

 

≤ 𝑐𝑛|𝐶𝑘|
1+𝜖
2+𝜖∑[|𝜇𝑟|(𝐵1)]

1
2+𝜖

𝑟
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≤
𝑐𝑛

𝑘
𝑛(1+𝜖)

(2+𝜖)(𝑛−𝛾)

∑(∫|𝑢𝑟 − 𝑤𝑟|
𝑛
𝑛−𝛾𝑑𝑥𝑟

 

𝐶𝑘

)

1+𝜖
2+𝜖

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

           (4.20) 

and, again by Hölder’s inequality 

 
∑ ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|

2/(2+𝜖)𝑑𝑥𝑟

 

𝐶0𝑟

≤ 𝑐𝑛(𝑛, 𝜖)∑[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

. 

Therefore, keeping (4.18) in mind, we have    

           ∑  ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2
2+𝜖𝑑𝑥𝑟

 

𝐵1𝑟

 

=∑ ∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2/(2+𝜖)𝑑𝑥𝑟

 

𝐶0𝑟

+∑ ∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2/(2+𝜖)𝑑𝑥𝑟

𝑟

 

𝐶𝑘

∞

𝑘=1

                           

≤ 𝑐𝑛[|𝜇𝑟|(𝐵1)]
1
2+𝜖 + 𝑐𝑛∑

1

𝑘
𝑛(1+𝜖)

(2+𝜖)(𝑛−𝛾)
[
 
 
 
 

∑(∫|𝑢𝑟 − 𝑤𝑟|
𝑛
𝑛−𝛾𝑑𝑥𝑟

 

𝐶𝑘

)

1+𝜖
2+𝜖

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟
]
 
 
 
 ∞

𝑘=1

                        

≤ 𝑐𝑛∑[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

+ 𝑐𝑛 [∑
1

𝑘
𝑛(1+𝜖)

(2+𝜖)(𝑛−𝛾)

∞

𝑘=1

]

1
2+𝜖

∑

[
 
 
 
 

(∑ ∫|𝑢𝑟 − 𝑤𝑟|
𝑛
𝑛−𝛾𝑑𝑥𝑟

 

𝐶𝑘

∞

𝑘=1

)

1+𝜖
2+𝜖

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

]
 
 
 
 

𝑟

 

≤ 𝑐𝑛∑[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

+ 𝑐𝑛 [∑
1

𝑘
𝑛(1+𝜖)

(2+𝜖)(𝑛−𝛾)

∞

𝑘=1

]

1
2+𝜖

∑

[
 
 
 
 

( ∫|𝑢𝑟 − 𝑤𝑟|
𝑛
𝑛−𝛾𝑑𝑥𝑟

 

𝑩1

)

1+𝜖
2+𝜖

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

]
 
 
 
 

𝑟

        

≤ 𝑐𝑛∑[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

+ 𝑐𝑛∑

[
 
 
 
 

( ∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
(2+𝜖)(𝑛−𝛾)

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

]
 
 
 
 

𝑟

.                     (4.21) 

In (4.21) the constant obviously depends on 𝛾 too. In turn, let us write     

∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟

=∑[(|𝐷𝑢𝑟|
2 + |𝐷𝑤𝑟|

2 + (1 + 𝜖)2)
𝜖
2|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

2]

1
2
∙ (|𝐷𝑢𝑟|

2 + |𝐷𝑤𝑟|
2 + (1 + 𝜖)2)

−𝜖
4

𝑟

 

≤ 𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| ∙ (|𝐷𝑢𝑟|
2 + |𝐷𝑤𝑟|

2 + (1 + 𝜖)2)
−𝜖
4

𝑟

                   

≤ 𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)| ∙ [|𝐷𝑢𝑟 − 𝐷𝑤𝑟|
−𝜖
2 + |𝐷𝑢𝑟|

−𝜖
2 + (1 + 𝜖)

−𝜖
2 ]

𝑟

,                      (4.22) 

where in the second-last line we used (2.2). Therefore, when 𝜖 ≠ 0, using Young’s in the form  

𝑎𝑏
−𝜖
2 ≤

(2 + 𝜖) 𝜖𝜖/(2+𝜖) 𝑎2/(2+𝜖)

2
+
−𝜖2𝑏

2
,        𝜖 ∈ (0,1) 

we again 

∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟

≤ 𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2
2+𝜖

𝑟

+ (
1

2
)∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟
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+𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|(|𝐷𝑢𝑟| + 1 + 𝜖)
−𝜖
2

𝑟

        (4.23) 

 

and therefore  

∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟

≤ 𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2
2+𝜖

𝑟

+ 𝑐𝑛∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|(|𝐷𝑢𝑟| + 1 + 𝜖)
−𝜖
2

𝑟

 

By using this last estimate together with Hölder’s inequality we get

   
∫∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟

𝑑𝑥𝑟

 

𝐵1

≤ 𝑐𝑛 ∫∑|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2 (2+𝜖)⁄

𝑟

𝑑𝑥𝑟

 

𝐵1

 

+𝑐𝑛∑(∫|𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑤𝑟)|
2
2+𝜖𝑑𝑥𝑟

 

𝐵1

)

(2+𝜖) 2⁄

(∫(|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟

 

𝐵1

)

−𝜖 2⁄

𝑟

.     (4.24) 

In turn, combining (4.24) with (4.21) yields       

∫∑|𝐷𝑢𝑟 − 𝐷𝑤𝑟|

𝑟

𝑑𝑥𝑟

 

𝐵1

≤ 𝑐𝑛∑[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

+ 𝑐𝑛∑(∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
(2+𝜖)(𝑛−𝛾)

[|𝜇𝑟|(𝐵1)]
1
2+𝜖

𝑟

 

+𝑐𝑛

{
 

 
∑[|𝜇𝑟|(𝐵1)] (∫(|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟

 

𝐵1

)

−𝜖
2

𝑟
}
 

 

1
2

                

+𝑐𝑛∑

{
 

 
[|𝜇𝑟|(𝐵1)](∫(|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟

 

𝐵1

)

−𝜖
2

}
 

 
1 2⁄

(∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
2(𝑛−𝛾)

𝑟

   

≤ 𝑐𝑛 + 𝑐𝑛∑(∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
(2+𝜖)(𝑛−𝛾)

(∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
2(𝑛−𝛾)

𝑟

  (4.25) 

and, keeping in mind (4.16) and the fact that 𝜖 ≤ 0, ultimately  

∑ ∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝐵1𝑟

≤ 𝑐𝑛 + 𝑐𝑛∑(∫|𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟

 

𝑩1

)

𝑛(1+𝜖)
(2+𝜖)(𝑛−𝛾)

𝑟

.                                    (4.26) 

Now observe that since 𝜖 ≥ 2 − 𝑛 we have 

 𝑛(1 + 𝜖)

(2 + 𝜖)(𝑛 − 𝛾)
<

𝑛(1 + 𝜖)

(2 + 𝜖)(𝑛 − 1)
≤ 1                                                                (4.27) 

so that (4.17) follows from (4.26) applying Young’s inequality. The proof is complete.                                                                                                                                      

Remark 4.2 (Stabilization of the consants ). The dependence of the constants in (4.2) is stable in the sense 

that letting 𝜖 ↗ 0 in (4.2) we obtain the estimate  

⨍
𝐵2𝑅

 |𝐷𝑢𝑟 − 𝐷𝑤𝑟|𝑑𝑥𝑟 ≤
𝑐𝑛|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
, 

II
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and in fact the proof is such that the previous estimate can be obtained taking 𝜖 = 0. The stability of the 

constant follows in particular by the use of Young’s inequality in (4.23) and (4.26). 

     We prove a decay estimate for solutions to (1.1) which is obtained using the comparison estimates of the 

previous section.  

     With 𝑤𝑟 been defined in (4.1) – and keeping the ball 𝐵2𝑅 ⊂ Ω𝑟 fixed as specified at the beginning of the 

section – we define 𝑣𝑟 ∈ 𝑤𝑟 +𝑊0
1,2+𝜖(𝐵𝑅)as the unique solution to the homogeneous Dirichlet problem   

                                                    {
∇𝑎(𝑥0, 𝐷𝑣𝑟) = 0            in   𝐵𝑅,

𝑣𝑟 = 𝑤𝑟                               on ∂ 𝐵𝑅,
                                                         (4.28)  

And prove yet another comparison estimate. We remark that 𝐵𝑅 
is concentric to 𝐵2𝑅. This time we start by the 

case 𝜖 < 0. 

Lemma 4.3. Under the assumptions of Theorem 1.1, with 𝑤𝑟 as in (4.1) and 𝑣𝑟 as in (4.28), there exists a 

constant 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖) such that the following inequality holds:    

   ∑⨍
𝐵𝑅

 |𝐷𝑢𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

 

+𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
𝑟

.                        (4.29) 

Proof. We start proving that the inequality  

∑⨍
𝐵𝑅

 |𝐷𝑤𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)𝑑𝑥𝑟
𝑟

                                   (4.30) 

holds for a constant 𝑐𝑛 depending on 𝑛, 𝜖. Indeed by [13] and assumptions (1.2) we have that 𝑣𝑟 is a 𝑄𝑛- 

minimizer of the functional  

𝑧𝑟 ∈ 𝑊
1,2+𝜖(𝐵𝑅) ⟼ ∫(|𝐷𝑧𝑟| + 1 + 𝜖)

2+𝜖𝑑𝑥𝑟

 

𝐵𝑅

                                     (4.31) 

for some 𝑄𝑛 ≡ 𝑄𝑛(𝑛, 𝜖) ≥ 1, and therefore    

∑ ∫|𝐷𝑣𝑟|
2+𝜖𝑑𝑥𝑟

 

𝐵𝑅𝑟

≤ 𝑄𝑛∑ ∫(|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟

 

𝐵𝑅𝑟

.                                   (4.32) 

Moreover, a well-known version of Gehring’s lemma applies to 𝑤𝑟 here – see for instance the version 

presented in [13] – and leads to find a constant 𝜒0 ≡ 𝜒0(𝑛, 𝜖) > 1 such that the reverse Hölder type inequality 

(∑ ⨍
𝐵𝜌/2

 (|𝐷𝑤𝑟| + 1 + 𝜖)
𝜒0(2+𝜖)𝑑𝑥𝑟

 

𝑟

)

1/𝜒0

≤ 𝑐𝑛∑⨍
𝐵𝜌

(|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟

𝑟

                     

holds whenever 𝐵𝜌 ⊆ 𝐵2𝑅 (this time not necessarily concentric to 𝐵𝑅) for a constant 𝑐𝑛 depending on 𝑛, 𝜖. In 

turn, applying Lemma 3.2 with g𝑟 ≡ (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖, leads to establish that also 

(∑ ∫(|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟

 

𝐵𝑅𝑟

)

1/(2+𝜖)

≤ 𝑐𝑛∑ ∫(|𝐷𝑤𝑟| + 1 + 𝜖)𝑑𝑥𝑟

 

𝐵2𝑅𝑟

                               (4.33) 

holds. Now using (2.2) and eventually (2.3), the fact that both 𝑣𝑟 and 𝑤𝑟 are solutions, (1.2)3 and again 

Young’s inequality, we have  
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∑ ∫(|𝐷𝑣𝑟|
2 + |𝐷𝑤𝑟|

2 + (1 + 𝜖)2)𝜖/2|𝐷𝑤𝑟 − 𝐷𝑣𝑟|
2𝑑𝑥𝑟

 

𝐵𝑅𝑟

 

    ≤ 𝑐𝑛∑ ∫|𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|
2𝑑𝑥𝑟

 

𝐵𝑅𝑟

                            

         ≤ 𝑐𝑛∑ ∫〈𝑎(𝑥0, 𝐷𝑤𝑟) − 𝑎(𝑥0, 𝐷𝑣𝑟), 𝐷𝑤𝑟 − 𝐷𝑣𝑟〉𝑑𝑥𝑟

 

𝐵𝑅𝑟

 

          = 𝑐𝑛∑ ∫〈𝑎(𝑥0, 𝐷𝑤𝑟) − 𝑎(𝑥𝑟 , 𝐷𝑣𝑟), 𝐷𝑤𝑟 − 𝐷𝑣𝑟〉𝑑𝑥𝑟

 

𝐵𝑅𝑟

    

 ≤ 𝑐𝑛(1 + 𝜖)𝜔(𝑅)∑ ∫(|𝐷𝑤𝑟|
2 + (1 + 𝜖)2)(1+𝜖)/2|𝐷𝑤𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟

 

𝐵𝑅𝑟

                    

≤ 𝑐𝑛(1 + 𝜖)𝜔(𝑅)∑ ∫(|𝐷𝑣𝑟|
2 + |𝐷𝑤𝑟|

2 + (1 + 𝜖)2)(1+𝜖)/2|𝐷𝑤𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟

 

𝐵𝑅𝑟

  

≤
1

2
∑ ∫(|𝐷𝑣𝑟|

2 + |𝐷𝑤𝑟|
2 + (1 + 𝜖)2)

𝜖
2|𝐷𝑤𝑟 − 𝐷𝑣𝑟|

2𝑑𝑥𝑟

 

𝐵𝑅𝑟

                                     

+𝑐𝑛[(1 + 𝜖)𝜔(𝑅)]
2∑ ∫(|𝐷𝑣𝑟|

2 + |𝐷𝑤𝑟|
2 + (1 + 𝜖)2)(2+𝜖)/2𝑑𝑥𝑟

 

𝐵𝑅𝑟

                     

Therefore, using again (2.2) we obtain  

∑ ∫|𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|
2𝑑𝑥𝑟

 

𝐵𝑅𝑟

≤ 𝑐𝑛[(𝜔(𝑅)]
2∑ ∫(|𝐷𝑣𝑟|

2 + |𝐷𝑤𝑟|
2 + (1 + 𝜖)2)(2+𝜖)/2𝑑𝑥𝑟

 

𝐵𝑅𝑟

 

and by (4.32) also  

∑ ∫|𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|
2𝑑𝑥𝑟

 

𝐵𝑅𝑟

≤ 𝑐𝑛[(𝜔(𝑅)]
2∑ ∫(|𝐷𝑤𝑟| + 1 + 𝜖)

2+𝜖𝑑𝑥𝑟

 

𝐵𝑅𝑟

                                 (4.34) 

for 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). Similarly to (4.22) we now have   

∑|𝐷𝑤𝑟 − 𝐷𝑣𝑟|
2+𝜖

𝑟

≤ 𝑐𝑛∑|𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|
2+𝜖(|𝐷𝑣𝑟|

2 + |𝐷𝑤𝑟|
2 + (1 + 𝜖)2)−𝜖(2+𝜖)/4

𝑟

 

and therefore using the last estimate, (4.32) and Hölder’s inequality in (4.34) yields  

∑⨍
𝐵𝑅

 |𝐷𝑤𝑟 − 𝐷𝑣𝑟|
2+𝜖𝑑𝑥𝑟

 

𝑟

 

≤ 𝑐𝑛∑(⨍
𝐵𝑅

 |𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|
2𝑑𝑥𝑟

 
)

2+𝜖
2

(⨍
𝐵𝑅

 (|𝐷𝑣𝑟|
2 + |𝐷𝑤𝑟|

2 + (1 + 𝜖)2)(2+𝜖)/2𝑑𝑥𝑟
 
)

−𝜖
2

𝑟

 

≤ 𝑐𝑛[(𝜔(𝑅)]
2+𝜖∑⨍

𝐵𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟

𝑟

.                                                                        (4.35) 

In turn, using first Hölder’s inequality, (4.35) and finally (4.33) we have 

∑⨍
𝐵𝑅

 |𝐷𝑤𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑(⨍
𝐵𝑅

 |𝐷𝑤𝑟 − 𝐷𝑣𝑟|
2+𝜖𝑑𝑥𝑟

 
)

1/(2+𝜖)

𝑟
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≤ 𝑐𝑛𝜔(𝑅)∑(⨍
𝐵𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟

 
)

1/(2+𝜖)

𝑟

                 

≤ 𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)𝑑𝑥𝑟
𝑟

,                                       

so that the proof of (4.30) follows. Using (4.30) together with (4.15) we have   

  ∑⨍
𝐵𝑅

 |𝐷𝑢𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

 

+𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)𝑑𝑥𝑟
𝑟

                                       

and using again (4.15) to estimate the last integral in the previous inequality (and recalling that 𝜔(𝑅) ≤ 1) we 

finally conclude with (4.29).    

     We proceed with the case 𝜖 ≤ 0. 

Lemma 4.4. Let 𝑢𝑟 ∈ 𝐶
1(Ω𝑟) be as in Theorem 1.1, then there exist constants 𝛽 ∈ (0,1], 𝑐𝑛+1 ≥ 1 depending 

on 𝑛, 𝜖 such that the following estimate holds whenever 𝐵𝜌 ⊆ 𝐵𝑅 ⊆ 𝐵2𝑅 ⊆ Ω𝑟 are concentric balls:   

 ∑⨍
𝐵𝜌

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤  𝑐𝑛+1 (
𝜌

𝑅
)
𝛽

∑ ⨍
𝐵2𝑅

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵2𝑅|𝑑𝑥𝑟
𝑟

+ 𝑐𝑛∑(
𝑅

𝜌
)
𝑛

[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

 

            +𝑐𝑛 (
𝑅

𝜌
)
𝑛

∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
] (⨍

𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
 
)

−𝜖

𝑟

 

+𝑐𝑛 (
𝑅

𝜌
)
𝑛

∑𝜔(𝑅)⨍
𝐵2𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑥𝑟
𝑟

.                                                    (4.36) 

Proof. We report the simple proof for the sake of completeness. Starting by 𝐵2𝑅 we define the comparison 

functions 𝑣𝑟 and 𝑤𝑟 as in (4.28) and (4.1), respectively. Then we compare 𝐷𝑢𝑟 and 𝐷𝑣𝑟 by mean of (4.29), 

using (3.1) as basic reference estimate for 𝑣𝑟, that we eventually transfer to 𝑢𝑟:

  
∑⨍

𝐵𝜌

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤ 2∑  ⨍
𝐵𝜌

|𝐷𝑢𝑟 − (𝐷𝑣𝑟)𝐵𝜌| 𝑑𝑥𝑟
𝑟

 

                   ≤ 2∑  ⨍
𝐵𝜌

|𝐷𝑣𝑟 − (𝐷𝑣𝑟)𝐵𝜌| 𝑑𝑥𝑟
𝑟

+ 2 ∑⨍
𝐵𝜌

|𝐷𝑢𝑟 −𝐷𝑣𝑟|𝑑𝑥𝑟
𝑟

 

≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

∑⨍
𝐵𝑅

|𝐷𝑣𝑟 − (𝐷𝑣𝑟)𝐵𝑅|𝑑𝑥𝑟
𝑟

+ 𝑐𝑛 (
𝑅

𝜌
)
𝑛

∑⨍
𝐵𝑅

|𝐷𝑢𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
𝑟

             

≤ 𝑐𝑛 (
𝜌

𝑅
)
𝛽

∑ ⨍
𝐵2𝑅

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵2𝑅|𝑑𝑥𝑟
𝑟

+ 𝑐𝑛 (
𝑅

𝜌
)
𝑛

∑⨍
𝐵𝑅

|𝐷𝑢𝑟 − 𝐷𝑣𝑟|𝑑𝑥𝑟
𝑟

         

In order to get (4.36) it is now sufficient to estimate the last integral in the previous inequality by means of 

(4.29).  

     We now give the suitable version of the last two lemmata in the case 𝜖 ≥ 0; this involves the use of the 𝑉(∙

)- map. 
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Lemma 4.5. Under the assumptions of the Theorem 1.2, with  𝑣𝑟 as in (4.28) and 𝑤𝑟 as in (4.1), there exists a 

constant 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖) such that the following inequality holds:   

             ∑⨍
𝐵𝑅

 |𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑣𝑟)|𝑑𝑥𝑟
 

𝑟

 

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

2+𝜖
2(1+𝜖)

𝑟

+ 𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝑉(𝐷𝑢𝑟)| + (1 + 𝜖)
(2+𝜖)/2)𝑑𝑥𝑟

𝑟

. 

Proof. The proof is a modification of that of Lemma 4.3. We restart from (4.34) – that holds for 𝜖 ≥ 0 as well 

– then, using Hölder’s inequality we have                         

∑⨍
𝐵𝑅

 |𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑣𝑟)|𝑑𝑥𝑟
 

𝑟

≤ 𝑐𝑛∑(⨍
𝐵𝑅

 |𝑉(𝐷𝑢𝑟) − 𝑉(𝐷𝑣𝑟)|
2𝑑𝑥𝑟

 
)

1/2

𝑟

 

 ≤ 𝑐𝑛𝜔(𝑅)∑(⨍
𝐵𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟)

1/2

𝑟

 

Applying lemma 3.2 with g𝑟 ≡ (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖,, leads to    

∑(⨍
𝐵𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
2+𝜖𝑑𝑥𝑟)

1/(2+𝜖)

𝑟

≤ 𝑐𝑛∑(⨍
𝐵2𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
(2+𝜖)/2𝑑𝑥𝑟)

2/(2+𝜖)

𝑟  

holds. Combining the two last inequalities we obtain 

∑⨍
𝐵𝑅

 |𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|𝑑𝑥𝑟
𝑟

≤ 𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝐷𝑤𝑟| + 1 + 𝜖)
(2+𝜖)/2𝑑𝑥𝑟

𝑟

.                         (4.37) 

In turn, using Young’s inequality we observe that when 𝜖 ≥ 0 it holds that  

|𝑧𝑟|
(2+𝜖)/2 ≤ |𝑉(𝑧𝑟)|                                                                       (4.38) 

and therefore (4.3) yields  

∑ ⨍
𝐵2𝑅

 |𝐷𝑤𝑟|
(2+𝜖)/2𝑑𝑥𝑟

𝑟

≤∑ ⨍
𝐵2𝑅

 |𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑢𝑟)|𝑑𝑥𝑟
𝑟

+∑ ⨍
𝐵2𝑅

 |𝑉(𝐷𝑢𝑟)|𝑑𝑥𝑟
𝑟

                                

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

2+𝜖
2(1+𝜖)

𝑟

+∑ ⨍
𝐵2𝑅

 |𝑉(𝐷𝑢𝑟)|𝑑𝑥𝑟
𝑟

.

 

Combining the last estimate with (4.37) yields 

∑ ⨍
𝐵2𝑅

 |𝑉(𝐷𝑤𝑟) − 𝑉(𝐷𝑣𝑟)|𝑑𝑥𝑟
𝑟

≤ 𝑐𝑛∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

2+𝜖
2(1+𝜖)

𝑟

+ 𝑐𝑛𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝑉(𝐷𝑢𝑟)| + (1 + 𝜖)
(2+𝜖)/2)𝑑𝑥𝑟

𝑟

,

 

and the proof is complete.   

     The next lemma can be now obtained as Lemma 4.4 using Lemma 4.5 in place of Lemma 4.3, and the 

decay estimate (3.17) in place of (3.19).    

Lemma 4.6. Let 𝑢𝑟 ∈ 𝐶
1(Ω𝑟) be as in Theorem 1.2, then there exist constants 𝛽 ∈ (0,1], 𝑐𝑛+1 ≥ 1 depending 

on depending on 𝑛𝜖 such that the following estimate holds whenever 𝐵𝜌 ⊆ 𝐵𝑅 ⊆ 𝐵2𝑅 ⊆ Ω𝑟 are concentric 

balls:   
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 ∑⨍
𝐵𝜌

|𝑉(𝐷𝑢𝑟) − (𝑉(𝐷𝑢𝑟))𝐵𝜌| 𝑑𝑥𝑟
𝑟

 ≤  𝑐𝑛+1 (
𝜌

𝑅
)
𝛽

∑ ⨍
𝐵2𝑅

|𝑉(𝐷𝑢𝑟) − (𝑉(𝐷𝑢𝑟))𝐵2𝑅|𝑑𝑥𝑟
𝑟

  

+𝑐𝑛 (
𝑅

𝜌
)
𝑛

∑[
|𝜇𝑟|(𝐵2𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

+  𝑐𝑛 (
𝑅

𝜌
)
𝑛

𝜔(𝑅)∑ ⨍
𝐵2𝑅

 (|𝑉(𝐷𝑢𝑟)| + (1 + 𝜖)
(2+𝜖)/2)𝑑𝑥𝑟

𝑟

.             (4.39) 

5. Proof of Theorem 1.1 

      In the rest of the proof all the balls will be concentric and centered at the point 𝑥𝑟 ∈ Ω𝑟 identified by the 

statement of the theorem; all of them will be contained in Ω𝑟. In particular we start with a ball 𝐵(𝑥𝑟 , 2𝑅) ≡

𝐵2𝑅 ⊂ Ω𝑟 as in the statement of the Theorem. All the radii 𝑅 will be such that 𝑅 ≤ 𝑅̃ where the quantity 𝑅̃ >

0 will be chosen along the proof in dependence of the data 𝑛, 𝜖, 𝜔(∙). The main point of the proof is to show 

how the peculiar quantity (1.20) appearing in the right-hand side of (4.15) can be reabsorbed in a way that 

make the Riesz potential appear, along the iteration/summation procedure.   

     Step 1: A preliminary estimate. Referring to estimate (4.36), we select an integer 𝐻𝑟 ≡ 𝐻𝑟(𝑛, 𝜖) ≥ 1 large 

enough to have 

𝑐𝑛 (
1

𝐻𝑟
)
𝛽

≤
1

4
.                                                                       (5.1) 

Applying (4.36) on arbitrary balls 𝐵𝜌 ≡ 𝐵𝑅/2𝐻𝑟 ⊆ 𝐵𝑅/2 ⊂ 𝐵𝑅
 

and using the fact that 𝜔(∙) in non-decreasing 

we gain  

∑ ⨍
𝐵𝑅/2𝐻𝑟

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑅/2𝐻𝑟 | 𝑑𝑦𝑟
𝑟

≤
1

4
∑⨍

𝐵𝑅

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑅|𝑑𝑦𝑟
𝑟

+  𝑐𝑛+2∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

 

+ 𝑐𝑛+2∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
] (⨍

𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

+  𝑐𝑛+2𝜔(𝑅)∑⨍
𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟
𝑟

,                (5.2) 

where  𝑐𝑛+2 depends on 𝑛, 𝜖, 𝐻𝑟 and therefore ultimately on 𝑛, 𝜖. We reduce the value of 𝑅̃- in a way that 

makes it depending on 𝑛, 𝜖 and 𝜔(∙) - to get   

 𝑐𝑛+2𝜔(𝑅̃) ≤
1

4
,                                                                       (5.3) 

and using some further elementary estimates we gain   

∑ ⨍
𝐵𝑅/2𝐻𝑟

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑅/2𝐻𝑟 | 𝑑𝑦𝑟
𝑟

 ≤
1

2
∑⨍

𝐵𝑅

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑅|𝑑𝑦𝑟
𝑟

+  𝑐𝑛+2∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
]

1
1+𝜖

𝑟

 

+𝑐𝑛+2∑[
|𝜇𝑟|(𝐵𝑅)

𝑅𝑛−1
] (⨍

𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

+  𝑐𝑛+2𝜔(𝑅)∑(|(𝐷𝑢𝑟)𝐵𝑅| + 1 + 𝜖)

𝑟

.                (5.4) 

With the ball 𝐵(𝑥𝑟 , 2𝑅) ⊆ Ω𝑟 being fixed at the beginning of statement of Theorem 1.2, for 𝑖 ∈ {0,1,2,⋯ }, 

let us define               

𝐵𝑖 ≔ 𝐵(𝑥𝑟 , 𝑅/(2𝐻
𝑟)𝑖) =:𝐵(𝑥𝑟 , 𝑅𝑖)    and    𝑘𝑖 ≔ |(𝐷𝑢𝑟)𝐵𝑖|,                                        (5.5) 

and  

𝐴𝑖 ≔ ⨍
𝐵𝑖

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑖|𝑑𝑦𝑟 .                                                                   (5.6) 
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For every integer 𝑚 ∈ ℕ we define and estimate  

𝑘𝑚+1 =∑(𝑘𝑖+1 − 𝑘𝑖)

𝑚

𝑖=0

+ 𝑘0 ≤∑ ⨍
𝐵𝑖+1

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑖|𝑑𝑦𝑟

𝑚

𝑖=0

+ 𝑘0 ≤ (2𝐻𝑟)𝑛∑𝐴𝑖

𝑚

𝑖=0

+ 𝑘0.                         (5.7) 

To estimate the right-hand side in (5.7) we observe that (5.4) used with 𝑅 ≡ 𝑅𝑖−1 yields, when ever 𝑖 ≥ 1  

    𝐴𝑖 ≤
1

2
𝐴𝑖−1 +  𝑐𝑛+2∑[

|𝜇𝑟|(𝐵𝑖−1)

𝑅𝑖−1
𝑛−1 ]

1
1+𝜖

𝑟

+ 𝑐𝑛+2∑[
|𝜇𝑟|((𝐵𝑖−1))

𝑅𝑖−1
𝑛−1 ] ( ⨍

𝐵𝑖−1

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

 

                                     + 𝑐𝑛+2𝜔(𝑅𝑖−1)(𝑘𝑖−1 + 1 + 𝜖). 

Summing up over 𝑖 ∈ {1,⋯ ,𝑚} the previous inequality yields  

∑𝐴𝑖

𝑚

𝑖=1

≤
1

2
∑ 𝐴𝑖

𝑚−1

𝑖=0

+  𝑐𝑛+2∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚−1

𝑖=0𝑟

+ 𝑐𝑛+2∑∑ [
|𝜇𝑟|((𝐵𝑖))

𝑅𝑖
𝑛−1 ]

𝑚−1

𝑖=0

(⨍
𝐵𝑖

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

 

+ 𝑐𝑛+2 ∑𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

,                                                                      

and therefore  

∑𝐴𝑖

𝑚

𝑖=1

≤ 𝐴0 + 2𝑐𝑛+2∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚−1

𝑖=0𝑟

+ 2𝑐𝑛+2∑∑ [
|𝜇𝑟|((𝐵𝑖))

𝑅𝑖
𝑛−1 ]

𝑚−1

𝑖=0

(⨍
𝐵𝑖

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

 

+2𝑐𝑛+2 ∑ 𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

.                                            (5.8) 

Using the last inequality in (5.7) yields, for every integer 𝑚 ≥ 1     

𝑘𝑚+1 ≤ 𝑐𝑛𝐴0 + 𝑐𝑛𝑘0 + 𝑐𝑛∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚−1

𝑖=0𝑟

+ 𝑐𝑛∑∑ [
|𝜇𝑟|((𝐵𝑖))

𝑅𝑖
𝑛−1 ]

𝑚−1

𝑖=0

(⨍
𝐵𝑖

 (|𝐷𝑢𝑟| + 1 + 𝜖)𝑑𝑦𝑟)

−𝜖

𝑟

 

+𝑐𝑛 ∑ 𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

.                                          (5.9) 

and the constant 𝑐𝑛 depends on 𝑛, 𝜖 - keep in mind the dependence of 𝐻𝑟.  

     Step 2: A conditional estimate. This step is dedicated to the proof of an estimate that holds provided in turn 

a certain pointwise bound holds as well, and the radius 𝑅̃ is further reduced. This is in the following: 

Lemma 5.1. Assume that there exists an integer 𝑚̃ ∈ ℕ ∪ {∞} such that  𝑚̃ ≥ 1 and  

                        

 ⨍
𝐵𝑖

 |𝐷𝑢𝑟|𝑑𝑦𝑟 ≤ |𝐷𝑢𝑟(𝑥𝑟)|          ℎ𝑜𝑙𝑑𝑠 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟            0 ≤ 𝑖 ≤ 𝑚̃ −

1.                                   (5.10)                                         

Then for every 𝜖 ∈ (0,1) there exists a constant 𝑐̃𝑛 ≡ 𝑐̃𝑛(𝜖) ≥ 1 such that  

𝑘𝑚 ≤ 2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖|𝐷𝑢𝑟(𝑥𝑟)|                                                             (5.11) 

holds whenever 𝑚 ≤ 𝑚̃ + 1 and provided 𝑅 ≤ 𝑅̃. Here 𝑐𝑛+3, 𝑐𝑛+4 ≥ 1 and 𝑅̃ > 0 are constants depending 

on 𝑛, 𝜖, while                                                                               

𝑀 ≡ 𝑀(𝜖) ≔∑⨍
𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ (1 + 𝑐𝑛+3𝑐̃𝑛(𝜖))∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

.                       (1.12) 
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Proof. By (5.10), whenever 1 ≤ 𝑚 ≤ 𝑚̃ it holds that  

𝑘𝑚+1 ≤ 𝑐𝑛 (𝐴0 + 𝑘0 +∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚−1

𝑖=0𝑟

)+ 𝑐𝑛∑(|𝐷𝑢𝑟(𝑥𝑟)|
−𝜖 + (1 + 𝜖)−𝜖) ∑ [

|𝜇𝑟|((𝐵𝑖))

𝑅𝑖
𝑛−1 ]

𝑚−1

𝑖=0𝑟

 

+𝑐𝑛 ∑𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

.                                        (5.13) 

We now notice that 

 

  

                               ∑∑
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1

𝑚−1

𝑖=0𝑟

≤∑∑
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1

∞

𝑖=0𝑟

 

≤
2𝑛−1

log 2
∑∫

|𝜇𝑟|(𝐵(𝑥0, 𝜌))

𝜌𝑛−1
𝑑𝜌

𝜌

2𝑅

𝑅𝑟

+∑
(2𝐻𝑟)𝑛−1

log 2𝐻𝑟
∑ ∫

|𝜇𝑟|(𝐵(𝑥0, 𝜌))

𝜌𝑛−1
𝑑𝜌

𝜌

𝑅𝑖

𝑅𝑖+1

∞

𝑖=0𝑟

 

≤∑𝑐𝑛(𝐻
𝑟)𝐈1

|𝜇𝑟|(𝑥𝑟 , 2𝑅)

𝑟

.                                                                            (5.14) 

Moreover, using the elementary inequality (1.17) with 𝜖 = 0 - notice that 𝜖 ≥ 0 as we are here assuming that 

𝜖 ≤ 0- together with (5.14), we also have that    

∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚−1

𝑖=0𝑟

≤∑[∑
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1

∞

𝑖=0

]

1
1+𝜖

𝑟

≤∑𝑐𝑛(𝐻
𝑟) [𝐈1

|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

,                      (5.15) 

holds. Finally, as 𝜔(∙) is non-decreasing, we have 

∑ 𝜔(𝑅𝑖)

𝑚−1

𝑖=0

≤∑𝜔(𝑅𝑖)

∞

𝑖=0

≤∑𝑐𝑛(𝐻
𝑟)∫ 𝜔(𝜌)

𝑑𝜌

𝜌

2𝑅

0𝑟

=∑𝑐𝑛(𝐻
𝑟)𝑑(2𝑅)

𝑟

,                                         (5.16) 

where the quantity 𝑑(∙) has been defined in (1.3). We now further reduce 𝑅̃ in order to have that 𝑑(2𝑅̃) ≤ 1 

so that             

                                                                               𝑑(2𝑅) ≤ 1.                                                                           (5.17)                                                      

Moreover, we record the elementary estimates  

𝐴0 + 𝑘0 + 𝑑(2𝑅)(1 + 𝜖) ≤ 3∑⨍
𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

,                                              (5.18) 

𝑘1 ≤ 2𝑛∑(𝐻𝑟)𝑛⨍
𝐵𝑅

 |𝐷𝑢𝑟|𝑑𝑦𝑟
𝑟

 ≤ 𝑐𝑛𝑀                                       (5.19) 

where the constant 𝑐𝑛 again depends on 𝑛, 𝜖 since 𝐻𝑟 depends on such quantities. Notice that although 𝑀 in 

(5.12) has not been fully defined, (5.19) holds for any 𝑀 having the structure in (5.12).  

      Connecting (5.14) – (5.19) to (5.13) now yields 

     𝑘𝑚+1 ≤ 𝑐𝑛∑⨍
𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟
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                                              +𝑐𝑛+3∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)(|𝐷𝑢𝑟(𝑥𝑟)|

−𝜖 + (1 + 𝜖)−𝜖)

𝑟

 

+𝑐𝑛 ∑ 𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

,                                                           (5.20) 

 that holds whenever 1 ≤ 𝑚 ≤ 𝑚̃ and for constants 𝑐𝑛, 𝑐𝑛+3 
depending on 𝑛, 𝜖. In order to estimate the terms 

appearing in the right-hand side of (5.20), when 𝜖 < 0 we apply Young’s inequality with conjugate exponents 

−1/𝜖 and 1/(1 + 𝜖), and with 𝜖 ∈ (0,1) (to be chosen towards the end of the proof) we again  

∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)|𝐷𝑢𝑟(𝑥𝑟)|

−𝜖

𝑟

≤ 𝑐̃𝑛(𝜖)∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

− 𝜖2∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

                                  (5.21) 

where    

𝑐̃𝑛(𝜖) ≔ (1 + 𝜖)𝜖
𝜖
1+𝜖                                                          (5.22) 

and similarly  
                                             

                                      

∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)(1 + 𝜖)

−𝜖

𝑟

≤ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

+ 1 + 𝜖.                                        (5.23) 

At this stage 𝜖 is still a free parameter to be chosen later and affecting the constant 𝑐̃𝑛(𝜖) in (5.22).   

Now, with 𝑀 defined as in (5.12), incorporating 𝑐̃(𝜖) introduced in (5.22), using (5.18), we have that (5.20) 

gives that           

𝑘𝑚+1 ≤ 𝑐𝑛+4𝑀 + 𝑐𝑛+5 ∑𝜔(𝑅𝑖)𝑘𝑖

𝑚−1

𝑖=0

+ 𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

                                             (5.24) 

holds whenever 1 ≤ 𝑚 ≤ 𝑚̃, where the new constants 𝑐𝑛+4, 𝑐𝑛+5 ≥ 1 also depend on 𝑛, 𝜖.                                                                                                                                   

     Now we come to the induction argument and we determine the value of 𝑅̃ by further reducing it; indeed we 

take 𝑅̃ such that  

𝑑(2𝑅̃) ≤ min{1/(8𝑐𝑛+5),1/(8𝑐𝑛+4),1/(8𝑐𝑛+3)}.                                                (5.25) 

Notice that the previous choice determines a smaller value of the radius 𝑅̃, that nevertheless can be chosen in 

a way that makes it depending on 𝑛, 𝜖 and 𝜔(∙) since 𝑐𝑛+3, 𝑐𝑛+4, 𝑐𝑛+5 
depends on 𝑛, 𝜖.   

     In order to complete the proof of the lemma, we recall (5.18) and then prove that the following inequality 

holds whenever 0 ≤ 𝑖 ≤ 𝑚̃ + 1:       

𝑘𝑖 ≤ 2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

,                                                      (5.26) 

where 𝑐𝑛+3, 𝑐𝑛+4 
are again the constants appearing in (5.24) and depending on

 
𝑛, 𝜖. The proof is of course by 

induction. The cases 𝑖 = 0,1 simply follow from (5.18) – (5.19). Next, we assume the validity of (5.26) for 

every 𝑖 ≤ 𝑚 with 𝑚 ≤ 𝑚̃, and prove it for 𝑖 = 𝑚 + 1. By using estimate (5.24) and the induction assumption 

(5.26) for 𝑖 ≤ 𝑚 − 1, and finally using also (5.25) we have  

𝑘𝑚+1 ≤ 𝑐𝑛+4𝑀 + 2𝑐𝑛+4𝑐𝑛+5𝑀∑ 𝜔(𝑅𝑖)𝑘𝑖

𝑚−1

𝑖=0

+∑[𝑐𝑛+3𝜖 + 2𝑐𝑛+4𝑐𝑛+3𝜖 ∑ 𝜔(𝑅𝑖)

𝑚−1

𝑖=0

] |𝐷𝑢𝑟(𝑥𝑟)|

𝑟
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≤ 𝑐𝑛+4𝑀 + 2𝑐𝑛+4𝑐𝑛+5𝑑(2𝑅)𝑀 + 𝑐𝑛+3𝜖∑[1 + 2𝑐𝑛+4𝑐𝑛+5𝑑(2𝑅)]|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

                      

≤ 2𝑐𝑛+4𝑀 + 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

.                                                                                      (5.27) 

This is (5.26) for 𝑖 = 𝑚 + 1 so that by induction (5.26) holds whenever 𝑖 ≤ 𝑚̃ + 1. The proof of Lemma 5.1 

is now complete.     

     Step 3: Alternative. We define the set  

𝕊 ≔ {𝑖 ∈ ℕ:∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≥∑⨍
𝐵𝑖

 |𝐷𝑢𝑟|
 𝑑𝑦𝑟

𝑟

}, 

and distinguish two cases. 

     Case 1: 𝕊 = ℕ. In this case we have that 

∑⨍
𝐵𝑖

 |𝐷𝑢𝑟|
 𝑑𝑦𝑟

𝑟

≤∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

        for every         𝑖 ∈ ℕ 

and therefore we may apply Lemma 5.1 with 𝑚̃ = ∞. In particular, this gives that 

𝑘𝑚 ≤ 2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

, 

holds whenever 𝑚 ∈ ℕ, where 𝑀 is defined in (5.12) and 𝜖 ∈ (0,1) is still a free parameter affecting 𝑀 via 

the constant 𝑐̃𝑛(𝜖) defined in (5.22). Now, letting 𝑚 → ∞ in the previous inequality, and recalling that 𝐷𝑢𝑟 is 

here assumed to be continuous, yields                                    

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

= lim
𝑚→∞

𝑘𝑚 ≤ 2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

.                                                   (5.28) 

We now choose 𝜖 = 1/(4𝑐𝑛+3) so the previous inequality gives 

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 2𝑐𝑛+4𝑀.                                                                     (5.29) 

We now notice that since 𝑐𝑛+3 depends 𝑛, 𝜖 we have that so is the dependence of 𝜖 and therefore of the (large) 

constant 𝑐̃𝑛(𝜖) appearing in the definition of the quantity 𝑀in (5.12) and in (5.22). All in all, using (5.12) in 

(5.29) we have proved that  

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

                                (5.30) 

holds for a constant 𝑐𝑛 depending on 𝑛, 𝜖, whenever 𝑅 ≤ 𝑅̃, where 𝑅̃ in turn depends on 𝑛, 𝜖, 𝜔(∙). By 

obviously changing the radius – see Step 4 below – estimate (5.30) implies (1.10) when 𝑅 ≤ 𝑅̃. We shall 

remove this restriction later, finally obtaining the validity of (1.10) for every ball 𝐵(𝑥𝑟 , 2𝑅) ⊂ Ω𝑟, but with a 

new constant that depends on 𝑛, 𝜖 and 𝜔(∙), as prescribed in the statement of the theorem. This will be done in 

step 4, at the end of the proof.                                          

     We now proceed with the proof; our aim is to prove (5.30) in the case 𝕊 ≠ ℕ. 

      Case 2: 𝕊 ≠ ℕ.Then we let 𝑚̃ ≔ min(ℕ\𝕊) ≥ 0; this means that 

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

<∑ ⨍
𝐵𝑚̃

 |𝐷𝑢𝑟|
 𝑑𝑦𝑟

𝑟

                     

                           

                 (5.31) 
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and 

∑⨍
𝐵𝑖

 |𝐷𝑢𝑟|
 𝑑𝑦𝑟

𝑟

≤∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

    ,   whenever  0 ≤ 𝑖 ≤ 𝑚̃ − 1  ,                                (5.32) 

with the last estimate that holds whenever 𝑚̃ > 0.We further distinguish two cases; the first is when 𝑚̃ = 0; 

this means that ∑ |𝐷𝑢𝑟(𝑥𝑟)|𝑟 < ∑ (|𝐷𝑢𝑟|)𝐵0𝑟  and therefore (5.30) trivially follows. The other case is when 

𝑚̃ ≥ 1; we then use (5.31) as follows: 

                 ∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

<∑ ⨍
𝐵𝑚̃

 |𝐷𝑢𝑟|
 𝑑𝑦𝑟

𝑟

 

≤∑ ⨍
𝐵𝑚̃

 |𝐷𝑢𝑟−(𝐷𝑢𝑟)𝐵𝑚̃|
 
𝑑𝑦𝑟

𝑟

+∑|(𝐷𝑢𝑟)𝐵𝑚̃|

𝑟

= 𝐴𝑚̃ + 𝑘𝑚̃.                                  (5.33)

 

Next, we use Lemma 5.1 that gives (5.11) and in particular     

𝑘𝑚̃ ≤ 2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

,                                                    (5.34) 

with 𝜖 ∈ (0,1) free to be chosen, affecting 𝑀 in the way described in (5.12). On the other hand, combining 

(5.8) and (5.32) and again using (5.11) gives  

𝐴𝑚̃ ≤ 𝐴0 + 𝑐𝑛∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

1
1+𝜖

𝑚̃−1

𝑖=0𝑟

+ 𝑐𝑛∑(|𝐷𝑢𝑟(𝑥𝑟)|
−𝜖 + (1 + 𝜖)−𝜖) ∑

|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1

𝑚̃−1

𝑖=0𝑟

 

+𝑐𝑛∑[2𝑐𝑛+4𝑀+ 2𝑐𝑛+3𝜖|𝐷𝑢𝑟(𝑥𝑟)| + 1 + 𝜖] ∑ 𝜔(𝑅𝑖)

𝑚̃−1

𝑖=0𝑟

.             

Again using (5.14) – (5.16) and (5.18) in the previous estimate yields  

𝐴𝑚̃ ≤ 𝑐𝑛∑⨍
𝐵𝑅

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)]

1
1+𝜖

𝑟

 

                        +𝑐𝑛∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 2𝑅)(|𝐷𝑢𝑟(𝑥𝑟)|

−𝜖 + (1 + 𝜖)−𝜖)

𝑟

 

+𝑐𝑛𝑑(2𝑅) [2𝑐𝑛+4𝑀 + 2𝑐𝑛+3𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

+ 1 + 𝜖],                    (5.35) 

where 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). Estimating as in (5.21) – (5.23) in (5.35), and using (5.25), we have   

𝐴𝑚̃ ≤ 𝑐𝑛𝑀 + 𝑐𝑛𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

                                                             (5.36) 

for yet a new constant 𝑐𝑛 depending on 𝑛, 𝜖 and where 𝑀 is defined accordingly to (5.29). Using (5.36) and 

(5.34) in (5.33) finally gives  

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛𝑀 + 𝑐𝑛𝜖∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

 

for 𝑐𝑛 ≡ 𝑐𝑛(𝑛, 𝜖). Choosing 𝜖 = 1/(2𝑐𝑛) again gives |𝐷𝑢𝑟(𝑥𝑟)| ≤ 𝑐𝑛𝑀 and recalling the definition of 𝑀 in 

(5.12) we once again obtain (5.30), which is valid under the same conditions of the Case 1, that is, provided 

𝑅 ≤ 𝑅̃. 
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     Step 4: Getting rid of the condition 𝑅 ≤ 𝑅̃. We finally prove estimate (1.10) also in the case 𝑅 > 𝑅̃. Take a 

ball 𝐵𝑅 ≡ 𝐵(𝑥𝑟 , 𝑅) ⊂ Ω𝑟, with 𝑅 > 𝑅̃; (5.30) gives  

∑|𝐷𝑢𝑟(𝑥𝑟)|

𝑟

≤ 𝑐𝑛∑ ⨍
𝐵(𝑥𝑟,𝑅̃/2)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

+ 𝑐𝑛∑[𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅̃)]

1
1+𝜖

𝑟

 

and then we estimate 

               𝑐𝑛∑ ⨍
𝐵(𝑥𝑟,𝑅̃/2)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

≤ 𝑐𝑛2
𝑛 (
𝑅

𝑅̃
)
𝑛

∑ ⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

 

                                                       ≤∑(
dim(Ω𝑟)

𝑅̃
)

𝑛

⨍
𝐵(𝑥𝑟,𝑅)

 (|𝐷𝑢𝑟| + 1 + 𝜖)
 𝑑𝑦𝑟

𝑟

       

 

and trivially  

∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅̃)

𝑟

≤∑𝐈1
|𝜇𝑟|(𝑥𝑟 , 𝑅)

𝑟

, 

so that (1.10) follows with a new constant – 𝑐𝑛/𝑅̃
𝑛 instead of  𝑐𝑛 – which depends on 𝑛, 𝜖, and additionally on 

𝜔(∙) due to the presence of 𝑅̃, which has been previously by determined by choosing 𝜔(𝑅̃) suitably small. 

The proof is complete. 

6. Proof of Theorem 1.2 

     The proof is similar to that of Theorem 1.1, being actually much simpler as no mixed quantity of the type 

(1.20) shows up in the right-hand side of (4.39) and consequently no alternative – i.e. Case 1 and Case 2 in the 

proof of Theorem 1.2 – is needed. A minor difference will occur in that the constants involved will exhibit an 

additional dependence on the number 1 + 𝜖 introduced in (1.13). We shall therefore confine ourselves to give 

just a sketch of the proof. After choosing 𝐻𝑟 exactly as in (5.1) – but this time referring to Lemma 4.6 for the 

constants 𝑐𝑛+1 and 𝛽 – we everywhere consider the quantity  

∑ ⨍
𝐵𝑅/2𝐻𝑟

|𝑉(𝐷𝑢𝑟) − (𝑉(𝐷𝑢𝑟))𝐵𝑅/2𝐻𝑟 | 𝑑𝑦𝑟
𝑟

 

 in place of the “linear excess” 

∑ ⨍
𝐵𝑅/2𝐻𝑟

|𝐷𝑢𝑟 − (𝐷𝑢𝑟)𝐵𝑅/2𝐻𝑟 | 𝑑𝑦𝑟
𝑟

. 

We choose the balls as in (5.5) while now we define  

𝑘𝑖 ≔ |(𝑉(𝐷𝑢𝑟))𝐵𝑖|    and    𝐴𝑖 ≔ ⨍
𝐵𝑖

|𝑉(𝐷𝑢𝑟) − (𝑉(𝐷𝑢𝑟))𝐵𝑖|𝑑𝑦𝑟 .                                   (6.1) 

In other words, instead of dealing with averages of 𝐷𝑢𝑟 as in the proof of Theorem 1.1, we deal with averages 

of 𝑉(𝐷𝑢𝑟). Proceeding as in the proof of Theorem 1.1 we arrive at the following analog of (5.9):                                 

𝑘𝑚+1 ≤ 𝑐𝑛𝐴0 + 𝑐𝑛𝑘0 + 𝑐𝑛 ∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

2+𝜖
2(1+𝜖)

𝑚−1

𝑖=0

+ 𝑐𝑛 ∑𝜔(𝑅𝑖)(𝑘𝑖 + 1 + 𝜖)

𝑚−1

𝑖=0

.                                     (6.2) 

Exactly as in (5.14) we observe that 

                        

                                                               

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2021 IJCRT | Volume 9, Issue 1 January 2021 | ISSN: 2320-2882 

IJCRT2101179 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1487 
 

∑∑ [
|𝜇𝑟|(𝐵𝑖)

𝑅𝑖
𝑛−1 ]

2+𝜖
2(1+𝜖)

𝑚−1

𝑖=0𝑟

≤
2
(2+𝜖)(𝑛−1)
2(1+𝜖)

log 2
∑∫ [

|𝜇𝑟|(𝐵(𝑥0, 𝜌))

𝜌𝑛−1
]

2+𝜖
2(1+𝜖) 𝑑𝜌

𝜌

2𝑅

𝑅𝑟

                  

+∑
(2𝐻𝑟)

(2+𝜖)(𝑛−1)
2(1+𝜖)

log 2𝐻𝑟
∑ ∫ [

|𝜇𝑟|(𝐵(𝑥0, 𝜌))

𝜌𝑛−1
]

2+𝜖
2(1+𝜖) 𝑑𝜌

𝜌

𝑅𝑖

𝑅𝑖+1

∞

𝑖=0𝑟

                          

≤∑𝑐𝑛(𝐻
𝑟)∫ (

|𝜇𝑟|(𝐵(𝑥0, 𝜌))

𝜌𝑛−1
)

2+𝜖
2(1+𝜖) 𝑑𝜌

𝜌

2𝑅

0𝑟

.                                    (6.3) 

Defining this time  

𝑀 ≔∑⨍
𝐵𝑅

(|𝑉(𝐷𝑢𝑟)| + (1 + 𝜖)
(2+𝜖)/2)𝑑𝑦𝑟

𝑟

+∑∫ (
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

2+𝜖
2(1+𝜖) 𝑑𝜌

𝜌

2𝑅

0𝑟

 

≤∑⨍
𝐵𝑅

(|𝐷𝑢𝑟| + 1 + 𝜖)
(2+𝜖)/2𝑑𝑦𝑟

𝑟

+∑∫ (
|𝜇𝑟|(𝐵(𝑥𝑟 , 𝜌))

𝜌𝑛−1
)

2+𝜖
2(1+𝜖) 𝑑𝜌

𝜌

2𝑅

0𝑟

,     

and making (6.3) into account, we have that (6.2) implies 

𝑘𝑚+1 ≤ 𝑐𝑛+4𝑀+ 𝑐𝑛+5 ∑ 𝜔(𝑅𝑖)𝑘𝑖

𝑚−1

𝑖=0

                                                          (6.4) 

for constants 𝑐𝑛+4, 𝑐𝑛+5 depending on 𝑛, 𝜖. Arguing as in the proof of Theorem 1.1 we then prove by 

induction that 𝑘𝑚 ≤ 2𝑐𝑛+4𝑀 holds for every 𝑚 ∈ ℕ; indeed, observe that this time no alternative as in Step 3 

of Theorem 1.1 occurs and the induction of Lemma 5.1 can be performed without assuming (5.10). Therefore, 

by (4.38), we conclude observing that  

∑|𝐷𝑢𝑟(𝑥𝑟)|
(2+𝜖)/2

𝑟

≤∑|𝑉(𝐷𝑢𝑟(𝑥𝑟))|

𝑟

≤ lim
𝑚→∞

𝑘𝑚 ≤ 2𝑐𝑛+4𝑀. 

The previous relation proves (1.15) whenever 𝑅 ≤ 𝑅̃ and 𝑅̃ is a fixed radius depending on 𝑛, 𝜖, and found as 

in the proof of Theorem 1.1. The general case 𝑅 > 0 follows as in Step 4 of Theorem 1.1.
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