IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ON $au_1 au_2$ #RG-CONTINUOUS IN BITOPOLIGICAL SPACES AND $au_1 au_2$ #RG-IRRESOLUTE FUNCTIONS

S. Sivanthi¹ and S.Thilaga Leevathi²

¹Assistant Professor of Mathematics, Pope's College(Autonomous), Sawyerpuram,

Tamil Nadu - 627 251, India.

²Assistant Professor of Mathematics, Pope's College(Autonomous), Sawyerpuram,

Tamil Nadu - 627 251, India

Abstract

In this paper we introduce $\tau_1\tau_2$ #rg-closed sets and $\tau_1\tau_2$ #rg-open sets in bitopological spaces and established their relationships with some generalized sets in bitopological spaces. The aim of this paper is to introduce $\tau_1\tau_2$ #rg-continuous functions and $\tau_1\tau_2$ #rg-irresolute functions by using $\tau_1\tau_2$ #rg-closed sets and characterize their basic properties.

Keywords: $\tau_1 \tau_2 \# \text{rg-closed}$; $\tau_1 \tau_2 \# \text{rg-ope}$ **n**; $\tau_1 \tau_2 \# \text{rg-continuous}$; $\tau_1 \tau_2 \# \text{rg-irresolute}$.

1. Introduction

The concept of continuity is connected with the concept of topology. A weaker form of continuous functions called generalized continuous (briefly, g-continuous) maps was introduced and studied by Balachandran [1]. Then many researchers studied on generalizations of continuous maps. Recently, Sivanthi and Thilaga Leevathi [2] introduced and studied the properties of $\tau_1\tau_2$ #rg-closed sets. The purpose of this paper is to introduce the concept of $\tau_1\tau_2$ #rg-continuous and #rg-irresoluteness that are characterized and their relationship with weak and generalized continuity are investigated.

2. Preliminaries

Throughout this paper $(X; \tau_1, \tau_2)$ and (Y, σ_1, σ_2) (or briefly, X and Y) represents a bitopological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a bitopological space X, τ_2 cl(A) and τ_1 int(A) denote the τ_2 closure of A and the τ_1 interior of A, respectively. $X \setminus A$ or A^c denotes the complement of A in X. We recall the following definitions and results.

Definition 2.1 A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) $\tau_1 \tau_2$ preopen set if $A \subseteq \tau_1 \text{int} \tau_2 \text{cl } (A)$ and a $\tau_1 \tau_2 \text{preclosed set if } \tau_2 \text{cl} \tau_1 \text{int } (A) \subseteq A$.
- (2) $\tau_1 \tau_2$ semiopen set[1] if $A \subseteq \tau_2 \text{cl} \tau_1 \text{int}$ (A) and a $\tau_1 \tau_2$ semiclosed set if $\tau_1 \text{int} \tau_2 \text{cl}$ (A) $\subseteq A$.
- (3) $\tau_1 \tau_2$ regular open set if $A = \tau_1 \text{int} \tau_2 \text{cl}$ (A) and a τ_2 regular closed set if $A = \tau_2 \text{cl} \tau_1 \text{int}$ (A).
- (4) $\tau_1 \tau_2 \pi$ open set if A is a finite union of regular open sets.
- (5) $\tau_1 \tau_2$ regular semi open if there is a τ_1 regular open U such U $\subseteq A \subseteq \tau_2$ cl(U).

Definition:2.2 A subset A of (X, τ_1, τ_2) is called

- (1) $\tau_1 \tau_2$ generalized closed set (briefly, $\tau_1 \tau_2$ g-closed) if τ_2 cl (A) \subseteq U whenever A \subseteq U and U is open in X.
- (2) $\tau_1 \tau_2$ regular generalized closed set (briefly, $\tau_1 \tau_2$ reg-closed) if τ_2 cl (A) \subseteq U whenever A \subseteq U and U is τ_1 -regular open in X.
- (3) $\tau_1 \tau_2$ generalized preregular closed set (briefly, $\tau_1 \tau_2$ gpr-closed) if τ_2 pcl (A) \subseteq U whenever A \subseteq U and U is τ_1 -regular open in X.
- (4) $\tau_1\tau_2$ regular weakely generalized closed set (briefly, $\tau_1\tau_2$ wg-closed) if τ_2 cl τ_1 int (A) \subseteq U whenever A \subseteq U and U is τ_1 regular open in X.

 $(5)\tau_1\tau_2$ rw-closed if τ_2 cl(A) \subseteq U whenever A \subseteq U and U is τ_1 regular semi open.

(6) $\tau_1 \tau_2 \# rg$ -closed if $\tau_2 \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \text{rw-open}$.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3 A map $f: X \to Y$ is called $\tau_1 \tau_2$ g-continuous [1] (resp. $\tau_1 \tau_2$ rg-continuous) if $f^{-1}(V)$ is g-closed (resp. $\tau_1 \tau_2$ rg-closed) in X for every closed subset V of Y.

Definition 2.4 For a subset A of a space (X, τ_1, τ_2) , $\tau_1 \tau_2 \# rg \setminus cl(A) = \bigcap \{F : A \subseteq F; F \text{ is } \tau_1 \tau_2 \# rg \text{ closed in } X\}$ is called the $\tau_1 \tau_2 \# rg$ -closure of A.

 $\textbf{Definition 2.5} \ \ \text{Let} \ (X; \ \tau_1 \ , \tau_2 \) \ \text{be a bitopological space and} \ \tau_{\tau_1\tau_2\#rg} = \{ V \ \subseteq \ X : \tau_1\tau_2\#rg \ - \ \tau_2\text{cl}(X \setminus V \) = X \setminus V \}$

Lemma 2.6 For any $x \in X$, $x \in \tau_1 \tau_2 \# rg - \tau_2$ cl(A) if and only if $V \cap A \neq \emptyset$ for every $\tau_1 \tau_2 \# rg$ -open set V containing x.

Lemma 2.7 Let A and B be subsets of $(X; \tau_1, \tau_2)$. Then:

- (1) $\#\operatorname{rg} \tau_2 \operatorname{cl}(\emptyset) = \emptyset$ and $\tau_1 \tau_2 \#\operatorname{rg} \tau_2 \operatorname{cl}(X) = X$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 \# rg \tau_2 \operatorname{cl}(A) \subseteq \tau_1 \tau_2 \# rg \tau_2 \operatorname{cl}(B)$.
- (3) $A \subseteq \tau_1 \tau_2 \# rg \tau_2 \operatorname{cl}(A)$.
- (4) If A is $\tau_1 \tau_2 \# \text{rg-closed}$, then $\tau_1 \tau_2 \# \text{rg} \frac{\tau_2 \text{cl}(A)}{A} = A$.
- (5) $\tau_1 \tau_2 \# rg$ -closure of a set A is not always $\tau_1 \tau_2 \# rg$ -closed.

Remark 2.8 Suppose $\tau_{\tau_1\tau_2\#rg}$ is a bitopology. If A is $\tau_1\tau_2\#rg$ -closed in $(X; \tau_1, \tau_2)$, then A is closed in $(X, \tau_{\tau_1\tau_2\#rg})$.

Lemma 2.9 A set $A \subseteq X$ is $\tau_1 \tau_2 \# rg$ -open if and only if $F \subseteq \tau_1$ int A whenever $F \subseteq A$, F is $\tau_1 \tau_2 rw$ -closed.

3. $\tau_1 \tau_2 \# RG$ -Continuous Functions

In this section, we introduce and study $\tau_1 \tau_2 \# rg$ -continuous functions.

Definition 3.1 A function $f: X \to Y$ is called #rg-continuous if $f^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in (X, τ_1, τ_2) for every closed subset V of (Y, σ_1, σ_2) .

Theorem 3.2 Every continuous map is $\tau_1 \tau_2 \# rg$ -continuous map

Proof Let $f: X \to Y$ is continuous map then for every closed set A in Y, f^{-1} (A) is closed in X. Since every closed set is $\tau_1 \tau_2 \# rg$ -closed, f^{-1} (A) is $\tau_1 \tau_2 \# rg$ -closed in X. Hence f is $\tau_1 \tau_2 \# rg$ -continuous map.

Example 3.3 Let $X = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}$. Let $Y = \{1, 2, 3, 4, 5\}$ with topologies $\sigma_1 = \{\emptyset, \{1\}, \{2, 3, 4, 5\}, Y\}$ and $\sigma_2 = \{\emptyset, \{2\}, \{3\}, \{2, 3\}, \{2, 3, 4, 5\}, Y\}$. A function $F: (X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is defined as follows: $F(a) = \{2, 3\}, F(b) = \{1, 2\}, F(c) = \{1, 4, 5\}$. Then, F is $\tau_1 \tau_2 \# r_2$ -continuous.

Corollary 3.1 Every $\tau_1 \tau_2$ regular continuous map is $\tau_1 \tau_2$ #rg-continuous

Proof Follows from Theorem 3.2 and the fact that every $\tau_1 \tau_2$ regular continuous map is $\tau_1 \tau_2$ continuous.

Theorem 3.4 Every $\tau_1\tau_2$ #rg-continuous map is $\tau_1\tau_2$ g-continuous map (resp. $\tau_1\tau_2$ rg-continuous).

Proof Suppose $f: X \to Y$ is $\tau_1 \tau_2 \# rg$ -continuous. Let V be a closed set in Y. Since f is $\tau_1 \tau_2 \# rg$ -continuous, then $f^{-1}(V)$ is $\tau_1 \tau_2 \# rg$ -closed set in X. Since every $\tau_1 \tau_2 \# rg$ -closed set is $\tau_1 \tau_2 g$ -closed (resp. $\tau_1 \tau_2 rg$ -closed) set, then $f^{-1}(V)$ is also $\tau_1 \tau_2 g$ -closed (resp. $\tau_1 \tau_2 rg$ -closed) set in X. Thus f is $\tau_1 \tau_2 g$ -continuous (resp. $\tau_1 \tau_2 rg$ -continuous).

The converse of the above theorem is not necessarily true as seen from the following example.

Example 3.5 Let $X = Y = \{a, b, c\}$ with topologies $\tau_1 = \{\emptyset, \{a\}, X\}, \tau_2 = \{\emptyset, \{a\}, \{a, b\}, X\}, \sigma_1 = \{\emptyset, \{b, c\}, Y\}$ and $\sigma_2 = \{\emptyset, \{b, c\}, Y\}$, define $f: X \rightarrow Y$ by f(a) = b, f(b) = a and f(c) = c then f is $\tau_1 \tau_2 g$ -continuous but not $\tau_1 \tau_2 \# rg$ -continuous.

Corollary 3.2 Every $\tau_1\tau_2$ #rg-continuous is $\tau_1\tau_2$ rwg-continuous and $\tau_1\tau_2$ gpr-continuous.

Proof Follows from Theorem 3.4 and the fact that every $\tau_1 \tau_2$ rg-continuous map is $\tau_1 \tau_2$ rwg-continuous and $\tau_1 \tau_2$ gpr-continuous.

Corollary 3.3 Every $\tau_1\tau_2$ #rg-continuous is $\tau_1\tau_2$ gs-continuous.

Proof Follows from Theorem 3.4 and the fact that every g-continuous map is gs-continuous.

Corollary 3.4 Every $\tau_1 \tau_2 \# rg$ -continuous is $\tau_1 \tau_2 gsp$ -continuous.

Proof Follows from Corollary 3.3 and the fact that every $\tau_1 \tau_2$ gs-continuous map is $\tau_1 \tau_2$ gsp-continuous.

Theorem 3.6 Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

- (1) f is $\tau_1 \tau_2 \# rg$ -continuous,
- (2) The inverse image of each open set in Y is $\tau_1 \tau_2 \# rg$ -open in X.
- (3) The inverse image of each closed set in Y is $\tau_1 \tau_2 \# rg$ -closed in X.

Proof

Suppose (1) holds. Let G be open in Y . Then Y \ G is closed in Y . By (1) f^{-1} (Y \ G) is $\tau_1\tau_2$ #rg-closed in X. But f^{-1} (Y \ G) = X \ f^{-1} (G) which is $\tau_1\tau_2$ #rg-closed in X. Therefore f^{-1} (G) is $\tau_1\tau_2$ #rg-open in X. This proves (1) \Rightarrow (2).

Suppose (2) holds. Let V be any closed set in Y. Then Y \ V is open set in Y . By (2), f^{-1} (Y \ V) is $\tau_1\tau_2$ #rg-open. But f^{-1} (Y \ V) = X \ f^{-1} (V) which is $\tau_1\tau_2$ #rg-open. Therefore f^{-1} (V) is $\tau_1\tau_2$ #rg-closed. This proves (2) \Rightarrow (3).

The implication (3) \Rightarrow (1) follows from Definition 3.1.

Theorem 3.7 If a function $f: X \to Y$ is $\tau_1 \tau_2 \# rg$ -continuous, then $f(\tau_1 \tau_2 \# rg - \tau_2 \operatorname{cl}(A)) \subseteq \tau_2 \operatorname{cl}(f(A))$ for every subset A of X.

Proof

Let $f: X \to Y$ be $\tau_1 \tau_2 \# rg$ -continuous. Let $A \subseteq X$. Then $\tau_2 \operatorname{cl}(f(A))$ is closed in Y. Since f is $\tau_1 \tau_2 \# rg$ -continuous, $f^{-1}(\tau_2 \operatorname{cl}(f(A)))$ is $\tau_1 \tau_2 \# rg$ -closed in X and $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\tau_2 \operatorname{cl}(f(A)))$, implies $\tau_1 \tau_2 \# rg \setminus \tau_2 \operatorname{cl}(A) \subseteq f^{-1}(\tau_2 \operatorname{cl}(f(A)))$. Hence $f(\tau_1 \tau_2 \# rg - \tau_2 \operatorname{cl}(A)) \subseteq \tau_2 \operatorname{cl}(f(A))$.

Theorem 3.8 Let X be a space in which every singleton set is $\tau_1 \tau_2$ rw-closed. Then $f: X \to Y$ is $\tau_1 \tau_2$ #rg-continuous, if $x \in \tau_1$ int $(f^{-1}(V))$ for every open subset V of Y contains f(x).

Proof Suppose $f: X \to Y$ is $\tau_1 \tau_2 \# rg$ -continuous. Fix $x \in X$ and an open set V in X such that $f(x) \in V$. Then $f^{-1}(V)$ is $\tau_1 \tau_2 \# rg$ -open. Since $x \in (f^{-1}(V))$ and $\{x\}$ is $\tau_1 \tau_2 \# rg$ -closed, $x \in \tau_1 \inf(f(f^{-1}(V)))$ by Lemma 2.9.

Conversely, assume that $x \in \tau_1 \text{int}((f^{-1}(V)))$ for every open subset V of Y containing f(x). Let V be an open set in Y. Suppose $F \subseteq f^{-1}(V)$ and F is $\tau_1 \tau_2 \text{rw-closed}$. Let $x \in F$, then $f(x) \in V$ so that $x \in \tau_1 \text{int}((f^{-1}(V)))$. That implies $F \subseteq x \in \tau_1 \text{int}((f^{-1}(V)))$. Therefore by Lemma 2.9, $f^{-1}(V)$ is $\tau_1 \tau_2 \text{rrg-open}$. This proves that f is rrg-continuous.

Theorem 3.9 Let $f: X \to Y$ be a function. Let X and Y be any two spaces such that $\tau_{\tau_1 \tau_2 \# rg}$ is a bitopology on X. Then the following statements are equivalent:

- (1) For every subset A of X, $f(\tau_1\tau_2\#rg \setminus \tau_2cl(A)) \subseteq \tau_2cl(f(A))$ holds,
- (2) $f: (X; \tau_{\tau_1\tau_2 \# rg}) \rightarrow (Y, \sigma_1, \sigma_2)$ is continuous.

Proof Suppose (1) holds. Let A be closed in Y . By hypothesis $f(\tau_1\tau_2\#rg \setminus \tau_2 cl(f^{-1}(A))) \subseteq \tau_2 cl(f((f^{-1}(A)))) \subseteq \tau_2 cl(A) = A$. i.e., $\tau_1\tau_2\#rg - \tau_2 cl(f^{-1}(A)) \subseteq f^{-1}(A)$. Also $f^{-1}(A) \subseteq \tau_1\tau_2\#rg - \tau_2 cl((f^{-1}(A)))$. Hence, $\tau_1\tau_2\#rg - \tau_2 cl((f^{-1}(A))) = f^{-1}(A)$. This implies $((f^{-1}(A)))^c \in \tau_{\tau_1\tau_2\#rg}$ Thus $f^{-1}(A)$ is closed in $(X; \tau_{\tau_1\tau_2\#rg})$ and so f is continuous. This proves (2).

Suppose (2) holds. For every subset A of X, $\tau_2 \text{cl}(f(A))$ is closed in Y . Since $f: (X, \tau_{\tau_1\tau_2\#rg}) \to (Y, \sigma_1, \sigma_2)$ is continuous, $(f^{-1}(\tau_2 \text{cl}(f(A))))$ is closed in $(X, \tau_{\tau_1\tau_2\#rg})$ that implies by Definition 2.5 $\tau_1\tau_2\#rg - \tau_2 \text{cl}((f^{-1}(\tau_2 \text{cl}(f(A))))) = (f^{-1}(\tau_2 \text{cl}(f(A)))$. Now we have, $A \subseteq (f^{-1}(f(A))) \subseteq (f^{-1}(\tau_2 \text{cl}(f(A))))$ and by Lemma 2.7 (2), $\tau_1\tau_2 rg - \tau_2 \text{cl}(A) \subseteq \tau_1\tau_2 \#rg \subseteq \tau_2 \text{cl}((f^{-1}(\tau_2 \text{cl}(f(A))))) = (f^{-1}(\tau_2 \text{cl}(f(A))))$. Therefore $f(\tau_1\tau_2\#rg - \tau_2 \text{cl}(A)) \subseteq \tau_2 \text{cl}(A)$.

Theorem 3.10 Let X, Y and Z be bitopological spaces such that $\sigma_{\tau_1\tau_2\#rg} = \sigma$. Let $f: X \to Y$ and $g: Y \to Z$ be $\tau_1\tau_2\#rg$ -continuous functions. Then the composition $g \circ f: X \to Z$ is $\tau_1\tau_2\#rg$ -continuous.

Proof Let V be closed in (Z, μ_1, μ_2) . Since g is $\tau_1 \tau_2 \# rg$ -continuous, $g^{-l}(V)$ is $\tau_1 \tau_2 \# rg$ -closed in Y. Since $\sigma_{\tau_1 \tau_2 \# rg} = \sigma$, by Remark 2.8. $g^{-1}(V)$ is closed in Y. Since f is $\tau_1\tau_2$ #rg-continuous, $(f^{-1}(g^{-1}(V)))$ is $\tau_1\tau_2$ #rg-closed. i.e. $(g \circ f)^{-1}(V)$ is $\tau_1 \tau_2 \# rg$ -closed in X. Therefore $g \circ f$ is $\tau_1 \tau_2 \# rg$ -continuous.

4. $\tau_1 \tau_2 \# RG$ -Irresolute Functions

In this section $\tau_1\tau_2$ #rg-irresolute function is introduced and their basic properties are discussed.

Definition 4.1 A function $f: X \to Y$ is called $\tau_1 \tau_2 \# rg$ -irresolute if $f^{-1}(V)$ is $\tau_1 \tau_2 \# rg$ -closed in X for every $\tau_1 \tau_2 \# rg$ -closed subset V of

Theorem 4.2 Every $\tau_1 \tau_2$ #rg-irresolute function is $\tau_1 \tau_2$ #rg-continuous but converse is not necessarily true.

Proof Suppose $f: X \rightarrow Y$ is $\tau_1 \tau_2 \# rg$ -irresolute. Let V be any closed subset of Y, then V is $\tau_1 \tau_2 \# rg$ - closed set in Y. Since f is $\tau_1 \tau_2 \# rg$ irresolute, f^{-1} (V) is $\tau_1 \tau_2 \# rg$ -closed in X. Hence f is $\tau_1 \tau_2 \# rg$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

 $\{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$ and $\sigma_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Define $f: X \to Y$ by identity mapping then f is $\tau_1 \tau_2$ #rg-continuous but not $\tau_1 \tau_2 \# rg$ -irresolute.

Theorem 4.4 If map $f: X \to Y$ is $\tau_1 \tau_2 \# rg$ -continuous map and Y is $T_{\tau_1 \tau_2 \# rg}$ -space, then f is $\tau_1 \tau_2 \# rg$ -irresolute.

Proof Let $f: X \to Y$ is $\tau_1 \tau_2 \# rg$ -continuous map then inverse image of every closed set in Y is $\tau_1 \tau_2 \# rg$ -closed set in X. Since Y is T#rg-space, inverse image of every $\tau_1\tau_2$ #rg-closed set in Y is $\tau_1\tau_2$ #rg-closed set in X. i.e., f is $\tau_1\tau_2$ #rg-irresolute.

Theorem 4.5 Let $f: X \to Y$ be $\tau_1 \tau_2$ rw-irresolute and closed. Then f maps a $\tau_1 \tau_2$ #rg-closed set in X into a $\tau_1 \tau_2$ #rg-closed set in Y. **Proof** Let A be $\tau_1 \tau_2$ #rg-closed in X. Let $f(A) \subseteq U$, where U is $\tau_1 \tau_2$ rw-open. Then $A \subseteq f^{-1}(U)$. Since f is $\tau_1 \tau_2$ rw-irresolute, $f^{-1}(U)$ is $\tau_1 \tau_2$ rw-open in X. Since A is $\tau_1 \tau_2 \# rg$ -closed, $\tau_2 cl(A) \subseteq f^{-1}(U)$ that implies $f(\tau_2 cl(A)) \subseteq U$

IJCRI Since f is closed $f(\tau_2 cl(A))$ is closed that implies $\tau_2 cl(f(A)) \subseteq \tau_2 cl(f(\tau_2 cl(A))) = f(\tau_2 cl(A)) \subseteq U$. Hence f(A) is $\tau_1 \tau_2 \# rg$ -closed in Y.

Theorem 4.6 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be any two functions. Let $h = g \circ f$. Then:

- (1) h is $\tau_1 \tau_2 \# rg$ -continuous if f is $\tau_1 \tau_2 \# rg$ -irresolute and g is $\tau_1 \tau_2 \# rg$ -continuous,
- (2) h is $\tau_1 \tau_2$ #rg-irresolute if both f and g are both $\tau_1 \tau_2$ #rg-irresolute and,
- (3) h is $\tau_1 \tau_2 \# rg$ -continuous if g is continuous and f is $\tau_1 \tau_2 \# rg$ -continuous.

Proof Let V be closed in Z. (1) Suppose f is $\tau_1\tau_2$ #rg-irresolute and g is $\tau_1\tau_2$ #rg-continuous. Since g is $\tau_1\tau_2$ #rg-continuous, $g^{-1}(V)$ is $\tau_1 \tau_2$ #rg-closed in Y. Since f is $\tau_1 \tau_2$ #rg-irresolute, using Definition 4.1, f^{-1} (g⁻¹(V)) is $\tau_1 \tau_2$ #rg-closed in X. This proves (1).

- (2) Let f and g be both $\tau_1\tau_2$ #rg-irresolute. Then $g^{-1}(V)$ is $\tau_1\tau_2$ #rg-closed in Y. Since f is $\tau_1\tau_2$ #rg-irresolute, using Definition 4.1 f^{-1} $(g^{-1}(V))$ is #rg-closed in X. This proves (2).
- (3) Let g be continuous and f be $\tau_1\tau_2$ #rg-continuous. Then g^{-1} (V) is closed in Y. Since f is $\tau_1\tau_2$ #rg-continuous, using Definition 3.1, $f^{-1}(g^{-1}(V))$ is $\tau_1\tau_2\#rg$ -closed in X. This proves (3).

The next theorem follows easily as a direct consequence of definitions.

Theorem 4.7 A function $f: X \rightarrow Y$ is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute if and only if the inverse image of every $\tau_1 \tau_2 \# rg$ -open set in Y is $\tau_1 \tau_2 \# rg$ -irresolute. open in X.

Definition 4.8 A function f: $X \rightarrow Y$ is said to be $\tau_1 \tau_2 \# rg$ -closed (resp. $\tau_1 \tau_2 \# rg$ -open) if for every # rg-closed (resp. $\tau_1 \tau_2 \# rg$ -open) set U of X the set f(U) is $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open) in Y.

Theorem 4.9 Let $f: X \rightarrow Y$ be a bijection. Then the following are equivalent:

- (1) f is $\tau_1 \tau_2 \# rg$ -open,
- (2) f is $\tau_1 \tau_2 \# rg$ -closed,
- (3) f^{-1} is $\tau_1 \tau_2 \# rg$ -irresolute.

Proof Suppose f is $\tau_1\tau_2$ #rg-open. Let F be $\tau_1\tau_2$ #rg-closed in X. Then X \ F is $\tau_1\tau_2$ #rg-open. By Definition 4.8.

 $f(X \setminus F)$ is $\tau_1 \tau_2 \# rg$ -open. Since f is a bijection, $Y \setminus f(F)$ is $\tau_1 \tau_2 \# rg$ -open in Y. Therefore f is $\tau_1 \tau_2 \# rg$ -closed. This proves $(1) \Rightarrow (2)$.

Let $g = f^{-1}$. Suppose f is $\tau_1 \tau_2 \# rg$ -closed. Let V be $\tau_1 \tau_2 \# rg$ -open in X. Then X \ V is $\tau_1 \tau_2 \# rg$ -closed in X.

Since f is $\tau_1\tau_2$ #rg-closed, f(X \ V) is $\tau_1\tau_2$ #rg-closed. Since f is a bijection, Y \ f(V) is $\tau_1\tau_2$ #rg-closed that implies f(V) is $\tau_1\tau_2$ #rg-open in Y . Since $g = f^{-1}$ and since g and f are bijection $g^{-1}(V) = f(V)$ so that $g^{-1}(V)$ is $\tau_1\tau_2$ #rg-open in Y . Therefore f^{-1} is $\tau_1\tau_2$ #rg-irresolute. This proves (2) \Rightarrow (3).

Suppose f^{-1} is $\tau_1\tau_2$ #rg-irresolute. Let V be $\tau_1\tau_2$ #rg-open in X. Then $X \setminus V$ is $\tau_1\tau_2$ #rg-closed in X. Since f^{-1} is $\tau_1\tau_2$ #rg-irresolute and $(f^{-1})^{-1}(X \setminus V) = f(X \setminus V) = Y \setminus f(V)$ is $\tau_1\tau_2$ #rg-closed in Y that implies f(V) is $\tau_1\tau_2$ #rg-open in Y. Therefore f is $\tau_1\tau_2$ #rg-open. This proves f(X) = f(X) = f(X) that implies f(X) = f(X) = f(X) for f(X) = f(X) is f(X) = f(X) for f(X) = f(X

Theorem 4.10 Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Suppose f and g are $\tau_1 \tau_2 \# rg$ -closed (resp. $\tau_1 \tau_2 \# rg$ -open). Then g o f is $\tau_1 \tau_2 \# rg$ -closed (resp. $\tau_1 \tau_2 \# rg$ -open).

Proof Let U be any $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open) set in X. Since f is $\tau_1\tau_2$ #rg-closed, using Definition 4.8, f(U) is $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open) in Y. Again since g is $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open), using Definition 4.8, g(f(U)) is $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open) in Z. This shows that gof is $\tau_1\tau_2$ #rg-closed (resp. $\tau_1\tau_2$ #rg-open).

References

- [1] K. Balachandran, P. Sundram, and H. Maki. On generalized continuous maps in topological spaces. Mem. Fac. Sci. Kochi Univ. (Math), 12:5:13, 1991.
- [2] S.Sivanthi and S.Thilaga Leevathi, On #Regular Generalized Closed sets in Bitopological spaces, jetir., volume 6, Issue 2 (2019) S. Syed Ali Fathima and M. Mariasingam. On #regular generalized closed sets in topological spaces. Int. J. Math. Archive, 2(11):2497:2502, 2011.
- [3] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb. On pre continuous mappings and weak pre-continuous mappings. Proc. Math. Phys. Soc. Egypt, 53:47:53, 1982.
- [4] N. Levine. Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70:36:41, 1963.
- [5] M. Stone. Application of the theory of boolean rings to general topology. Trans. Amer. Math. Soc., 41:374:481, 1937.
- [6] V. Zaitsav. On certain classes of topological spaces and their bicompacti_cations. Dokl. Akad. Nauk SSSR, 178:778:779, 1968.
- [7] D. E. Cameron. Properties of s-closed spaces. Proc. Amer. Math. Soc., 72:581:586, 1978.
- [8] N. Levine. Generalized closed sets in topology. Rend. Circ. Mat. Palermo, 19:89:96, 1970.
- [9] N. Palaniappan and K. C. Rao. Regular generalized closed sets. Kyungpook Math. J., 33:211:219, 1993.
- [10] Y. Gnanambal. On generalized preregular closed sets in topological spaces. Indian J. Pure Appl. Math., 28:351:360, 1997.
- [11] N. Nagaveni. Studies on generalizations of homeomorphisms in topological spaces. Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- [12] S. S. Benchalli and R. S. Wali. On rw-closed sets in topological spaces. Bull. Malays. Math. Sci. Soc., 30(2):99:110, 2007.
- [13] R. Devi, K. Balachandran, and H. Maki. Semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces. Indian J. Pure. Appl. Math., 26(3):271:284, 1995.
- [14] J. Dontchev. On generalizing semi-pre-open sets. Mem. Fac. Sci. Kochi Univ. ser. A Math., 16:35:48, 1995.
- [15] S. Syed Ali Fathima and M. Mariasingam. On #regular generalized open sets in topological spaces. Int. J. Comput. Appl., 42(7):37:41, 2012.
- [16]S. Syed Ali Fathima and M. Mariasingam. On #regular generalized closed sets in topological spaces. Int. J. Math. Archive, 2(11):2497:2502, 2011.