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1. INTRODUCTION 

From an algebraic point of view, semirings provide the most natural common generalization of the 

theories of rings and most of the techniques used in analyzing semirings are taken from ring theory and group 

theory. The set of nonnegative integers ℕ   with usual addition and multiplication provides a natural example 

of a semiring. There are many other examples of semiring such as the positive cone of a totally ordered ring. 

For a given positive integer 𝑛, the set of all 𝑛 × 𝑛 matrices over a semiring R forms a semiring with usual 

matrix addition and multiplication over R. But the situations for the set of all non-positive integers and for the 

set of all 𝑚 × 𝑛 matrices over a semiring R are different. They do not form semirings with the above 

operations, because multiplication in the above sense are no longer binary compositions. This notion provides 

a new kind of algebraic structure what is known as a Γ − semiring. 

The concept of Γ −semiring was introduced by M. M. K. Rao in 1995 [6] as a generalization of 

semiring as well as Γ − ring (it may be recalled here that the notion of “Γ” was first introduced in algebra by 

N. Nobusawa in 1964). Later it was found that  Γ − semiring also provides an algebraic home to the negative 

cones of totally ordered rings and the sets of rectangular matrices over a semiring. For further study of 

semirings, Γ −semirings and their generalization, one may referred to [2-3][4-10]. 
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In this paper, the efforts are made to characterize some results on lattices of  Γ −   semirings. 

Furthermore, since a complemented element plays an important role in the study of lattices, so we give 

characterization of some results on lattices, which are analogous to the corresponding results in semirings [2-

3]. Finally, we define harmony difference of elements of  Γ𝑅⊥(set of all complemented elements) and proved 

that if  d ∶ 𝛤𝑅⊥ ×  𝛤𝑅⊥ → 𝛤𝑅⊥ be defined by d ∶ (x, y) →  𝑥∇y. Then d is metric on 𝛤𝑅⊥ with values in R. 

 

2. PRELIMINARIES 

 

The following definitions with examples and results are felt to be an inseparable part of this paper. 

 

                        Definition 2.1: Let 𝑅 and   be two additive commutative semigroups. Then 𝑅  is called a Γ − semiring if 

there exists a mapping 𝑅 ×  × 𝑅 → 𝑅 denoted by 𝑥𝛼𝑦 for all 𝑥, 𝑦 ∈ 𝑅 and 𝛼 ∈    satistifying the following 

conditions: 

(i)  𝑥𝛼(𝑦 + 𝑧) = (𝑥𝛼𝑦) +  (𝑥𝛼𝑧). 

(ii) (𝑦 + 𝑧)𝛼𝑥 = (𝑦𝛼𝑥) + (𝑧𝛼𝑥). 

(iii) 𝑥 (𝛼 +  𝛽)𝑧 = (𝑥𝛼𝑧) + (𝑥𝛽𝑧). 

(iv) 𝑥𝛼(𝑦𝛽𝑧) = (𝑥𝛼𝑦)𝛽𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅 and 𝛼, 𝛽 ∈  Γ. 

Definition 2.3: A Γ − semiring 𝑅 is said to have a zero element if  0𝛾𝑥 = 0 =  𝑥𝛾0 and 𝑥 + 0 = 𝑥 = 0 + 𝑥 

for all 𝑥 ∈ 𝑅 and 𝛾 ∈  Γ. 

Definition 2.4: A non-empty subset 𝑇 of a Γ − semiring 𝑅 is said to be a sub Γ − semiring of 𝑅 if (𝑇, +) is a 

subsemigroup of (𝑅, +) and 𝑥𝛾𝑦 ∈  𝑇 for  all 𝑥, 𝑦 ∈  𝑇 and  𝛾 ∈  Γ.  

Definition 2.5: A Γ − semiring is said to have identity element if 𝑥𝛾1 = 𝑥 = 1𝛾𝑥 for all 𝑥 ∈  𝑅  and  ∈  Γ . 

Definition 2.6: A Γ − semiring 𝑅 is said to be a commutative if  𝑥𝛾𝑦 = 𝑦𝛾𝑥 for all 𝑥, 𝑦 ∈  𝑅  and  𝛾 ∈  Γ . 

Example 2.7: Let 𝑅 be the set of all even positive integers and  Γ be set of all positive integers divisible by 3. 

Then with usual addition and multiplication of integers, 𝑅 is a commutative Γ − semiring. 

Definition 2.8: An element 𝑥 of a Γ −semiring 𝑅 is said  to be additive  idempotent if and only if 𝑥 + 𝑥 = 𝑥. 

If every element of 𝑅 is additive  idempotent then 𝑅  is called additive  idempotent   Γ −  semiring. It is denoted 

by 𝐼+(Γ𝑅). 

Definition 2.9: An element 𝑥 of a Γ − semiring 𝑅 is said to be multiplicative Γ −idempotent if there exists 

𝛾 ∈  Γ such that 𝑥 = 𝑥 𝛾𝑥. If every element of 𝑅 is multiplicative Γ − idempotent then 𝑅 is called 

multiplicative Γ − idempotent Γ − semiring. It is denoted by  𝐼×(Γ𝑅). 

Definition 2.10: A Γ − semiring 𝑅 is said to be Γ − idempotent if it is both additive  idempotent and 

multiplicative Γ − idempotent. 

We will denote the set of all Γ −idempotent elements of a Γ −semiring 𝑅 by  𝐼(ΓR).  

Definition 2.11: A Γ − semiring 𝑅  with identity is simple if and only if 𝑥 + 1 = 1 = 1 + 𝑥 for all  𝑥 ∈  𝑅.   

Definition 2.12: A Γ − semiring 𝑅 is  centreless if and only if  𝑥 + 𝑦 = 0 implies that 𝑥 = 𝑦 = 0. 
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Example 2.13: Let 𝑅 = ℤ+ be a set of non negative integers and Γ = {1}. Define a mapping  𝑅 ×  × 𝑅 →

𝑅 by 𝑥1𝑦 = 𝑥𝑦 for all 𝑥, 𝑦 ∈  𝑅. Then 𝑅 is a  centreless Γ −semiring.. 

Definition 2.14: The Centre of a Γ − semiring 𝑅  is a subset of  𝑅 consisting of all elements x of 𝑅 such that 

𝑥𝛾𝑦 = 𝑦𝛾𝑥 for all 𝑦 ∈ 𝑅 and  𝛾 ∈  Γ.  It is denoted by 𝐶(𝑅). 

Definition 2.15: Let 𝑥, 𝑦 be elements of a Γ − semiring 𝑅, then 𝑥 is 𝚪 − interior 𝑦 denoted by 𝒙𝛁𝐲 if and 

only if there exists an element 𝑧 𝜖 𝑅 such that 𝑥𝛾𝑧 = 𝑧𝛾𝑥 = 0 and  𝑧 + 𝑦 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ. 

Definition 2.16: An element 𝑥 is complemented if and only if 𝑥∇x. That is, there exists an element 𝑦 ∈ 𝑅 such 

that 𝑥𝛾𝑦 = 𝑦𝛾𝑥 = 0 and 𝑥 + 𝑦 = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ. This element 𝑦 of 𝑅   is the complement of 𝑥 in 𝑅. We 

will denote complement of 𝑥 by 𝑥⊥.    

Clearly if 𝑥  is complemented then so is 𝑥⊥ and 𝑥⊥⊥ = 𝑥 . 

 

Lemma 2.17[9]: Let 𝑅 be a Γ − semiring. Then  

(i)  𝑅 is simple if and only if 𝑥 = 𝑥 + 𝑥𝛾𝑦 for all 𝑥, 𝑦 ∈  𝑅 and 𝛾 ∈  Γ. 

(ii)  𝑅 is simple if and only if 𝑥 = 𝑥 + 𝑦𝛾𝑥  for all 𝑥, 𝑦 ∈  𝑅 and 𝛾 ∈  Γ. 

(iii)  𝑅 is simple if and only if 𝑥𝛾𝑦 = 𝑥𝛾𝑦 + (𝑥𝛽𝑧)𝛾𝑦 for all 𝑥, 𝑦, 𝑧 ∈  𝑅 and  𝛽, 𝛾 ∈  Γ. 

Theorem 2.18[9]: Let 𝑅 be a Γ − semiring. Then every additive  idempotent Γ − semiring has a simple 

sub Γ − semiring. 

 

Let us denote the set of all complemented elements of 𝑹 by  𝚪𝑹⊥. Clearly  Γ𝑅⊥ ≠ 𝜙, since 0⊥=1. Indeed, if 

𝑥 ∈ Γ𝑅⊥, 𝛾 ∈  Γ. Then  𝑥 + 𝑥⊥ = 1,   𝑥𝛾𝑥⊥ =  𝑥⊥𝛾𝑥 = 0 , for all  𝛾 ∈  Γ.  Therefore 𝑥 = 𝑥𝛾1 = 𝑥𝛾(𝑥 + 𝑥⊥) =

 𝑥𝛾𝑥 + 𝑥𝛾𝑥⊥ = 𝑥𝛾𝑥. Thus Γ𝑅⊥ is multiplicative Γ − idempotent, that is,  Γ𝑅⊥ ⊆ 𝐼×(Γ𝑅).   Again let  𝑥 ∈ 

Γ𝑅⊥ 𝑎𝑛𝑑 𝛾 ∈  Γ. Set  𝑥 ⊛ 𝑦 = 𝑥 + 𝑥⊥𝛾𝑦, for all  ∈  Γ . Then 𝑥 ⊛ 𝑥⊥ = 𝑥 + 𝑥⊥𝛾𝑥⊥ = 𝑥 + 𝑥⊥ = 1 for all 𝑥 ∈ 

Γ𝑅⊥. Also, if 𝑥 + 𝑦 = 1 then 𝑥⊥ = 𝑥⊥𝛾1 =  𝑥⊥𝛾(𝑥 + 𝑦) =  𝑥⊥𝛾𝑥 +  𝑥⊥𝛾𝑦 =  𝑥⊥𝛾𝑦. Thus 𝑥 ⊛ 𝑦 = 𝑥 +

𝑥⊥𝛾𝑦 = 𝑥 +  𝑥⊥ = 1. 

 

Lemma 2.19[10]: Let 𝑅 be a Γ − semiring  such that 𝑥, 𝑦 ∈ Γ𝑅⊥. Then x𝛾𝑦, 𝑥 ⊛ 𝑦 ∈ Γ𝑅⊥. 

Lemma 2.20[10]: Let 𝑅 be a Γ − semiring  and  𝑥, 𝑦 ∈ Γ𝑅⊥. Then  𝑥𝛾𝑦 = 𝑦𝛾𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ. 

Lemma 2.21[10]: Let 𝑅 be a centreless Γ − semiring.  If  𝑥, 𝑦 ∈ Γ𝑅⊥ and   β, 𝛾 ∈  Γ.  Then (𝑥𝛾𝑦)𝛽𝑥⊥ =

(𝑥⊥𝛾𝑦)𝛽𝑥 = 0. 

Theorem 2.22[10]: Let 𝑅 be a centreless Γ − semiring. Then Γ𝑅⊥ is Γ − idempotent, commutative, simple 

Γ − semiring with the mapping ⊛ : Γ𝑅⊥ × Γ × Γ𝑅⊥ →  Γ𝑅⊥ defined by 𝑥 ∗ 𝛾 ∗ 𝑦 = 𝑥𝛾𝑦, for all 𝑥, 𝑦 ∈ 

Γ𝑅⊥, 𝛾 ∈ Γ. 

Proposition 2.23[10] Let 𝑅 be a centreless Γ −semiring. Then Γ𝑅⊥is a sub Γ −semiring of 𝑅 if and only if 

𝑥 + 𝑦, 𝑥𝛾𝑦 ∈  Γ𝑅⊥, 𝑥, 𝑦 ∈ Γ𝑅⊥. 

Remark 2.24: Throughout this paper, 𝑅 will denote a Γ − semiring with zero element ′𝟎′ and identity 

element  ′𝟏′ unless otherwise stated. 
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3. LATTICES IN A GAMMA SEMIRING 

 

Complemented elements play an important role in study of lattices. Another major source of inspiration 

for the theory of Γ − semirings is lattice theory.  

 

Definition 3.1: Let 𝑎 and 𝑏 be two elements in a partially ordered set (𝐴, ≤). An element 𝑐 is said to be an 

upper bound of 𝑎 and 𝑏 if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐, and an element 𝑐 is said to be a least upper bound of 𝑎 and 𝑏 if 𝑐 

is an upper bound of 𝑎 and 𝑏, and there is no other upper bound 𝑑 of 𝑎 and 𝑏 such that 𝑑 ≤ 𝑐. Similarly, an 

element 𝑐 is said to be a lower bound of 𝑎 and 𝑏 if 𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏, and an element 𝑐 is said to be a greatest 

lower bound of 𝑎 and 𝑏 if 𝑐 is a lower bound of 𝑎 and 𝑏, and if there is no other lower bound 𝑑 of 𝑎 and 𝑏  

such that 𝑐 ≤ 𝑑. 

Remark 3.2: A lattice is a partially ordered set in which every two elements have a unique least upper bound 

and a unique greatest lower bound. Let (𝐴, ≤) be a lattice. We define an algebraic system (𝐴, ⋁, ⋀), where ⋁ 

and ⋀ are two binary operations on 𝐴 such that for 𝑎 and 𝑏 in 𝐴, 𝑎⋁𝑏 is equal to the least upper bound of 𝑎 

and 𝑏 and 𝑎⋀𝑏 is equal to the greatest lower bound of 𝑎 and 𝑏. 

Definition 3.3: A lattice is said to be a distributive lattice if the meet operation distributes over the join 

operation and the join operation distributes over the meet operation. That is, for any 𝑎, 𝑏 and c 

   𝑎⋀(𝑏⋁𝑐) = (𝑎⋀𝑏)⋁(𝑎⋀𝑐) and  𝑎⋁(𝑏⋀𝑐) = (𝑎⋁𝑏)⋀(𝑎⋁𝑐) 

Definition 3.4: An element 𝑎 in a lattice (𝐴, ≤)is called a universal lower bound if for every element 𝑏 ∈

𝐴, we have  𝑎 ≤ 𝑏. An element 𝑎 in a lattice (𝐴, ≤) is called a universal upper bound if for every element 𝑏 ∈

𝐴,  we have 𝑏 ≤ 𝑎.  

 

We shall use ′𝟎′ to denote the universal lower bound and ′𝟏′ to denote the universal upper bound of a 

lattice (if such bounds exist). 

 

Definition 3.5: Let (𝐴, ≤) be a lattice with universal lower bound and upper bounds ′0′ and ′1′ respectively. 

For an element 𝑎 in 𝐴, an element 𝑏 is said to be a complement of 𝑎 if 𝑎⋁𝑏 = 1 and 𝑎⋀𝑏 = 0. 

Definition 3.6:  A lattice is said to be a complemented lattice if every element in the lattice has a complement. 

(Clearly, a complemented lattice must have universal lower and upper bounds). 

Definition 3.7: A complemented and distributive lattice is called Boolean lattice. A Boolean lattice 

(𝐴, ≤)defines an algebraic system (𝐴, ⋁, ⋀, ⊥) is known as Boolean algebra, where ⋁, ⋀ and ⊥are the join, 

meet and the complementation operations respectively. 

Definition 3.8: A  Γ − semiring 𝑅 is lattice ordered if and only if it also has the structure of a lattice such that 

for all 𝑥, 𝑦 ∈ 𝑅 and 𝛾 ∈  Γ 

               (i)  𝑥 + 𝑦 = 𝑥 ⋁ 𝑦 

              (ii)  𝑥 𝛾𝑦 = 𝑥 ⋀ 𝑦, where partial order is one induced by the lattice structure on 𝑅 . 
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Theorem 3.9: Let 𝑅 be a Γ − semiring. Then 𝑅 is a bounded distributive lattice having unique minimal 

element 0 and unique maximal element 1 if and only if  𝑅 is commutative, Γ −idempotent and simple 

Γ −semiring. 

Proof: Let 𝑅 be a bounded distributive lattice having unique minimal element 0 and unique maximal 

element1. Then 𝑅 becomes a commutative, Γ −idempotent and simple Γ −semiring by defining 𝑥 + 𝑦 = 𝑥⋁𝑦 

and  𝑥𝛾𝑦 = 𝑥⋀𝑦  for all, 𝑥, 𝑦 ∈ 𝑅. 

Conversely, Let 𝑅 be commutative, Γ − idempotent and simple Γ − semiring. Then define a relation ‘≤’ on 𝑅 

by 𝑥 ≤ 𝑦 if 𝑥 + 𝑦 = 𝑦 and 𝑥𝛾𝑦 = 𝑥. 

(i)  𝑥 ≤ 𝑥 as 𝑥 + 𝑥 = 𝑥 and 𝑥𝛾𝑦 = 𝑥.  

(ii)  If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 + 𝑦 = 𝑦, 𝑦 + 𝑥 = 𝑥 and 𝑥𝛾𝑦 = 𝑥, 𝑦𝛾𝑥 = 𝑦. Thus 𝑥 = 𝑦. 

     (iii)         If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 + 𝑦 = 𝑦, 𝑦 + 𝑧 = 𝑧 and 𝑥𝛾𝑦 = 𝑥, 𝑦𝛾𝑧 = 𝑦. 

Thus 𝑥 + 𝑧 = 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 = 𝑦 + 𝑧 = 𝑧 and 𝑥𝛾𝑧 = (𝑥𝛾𝑦)𝛾𝑧 = 𝑥𝛾(𝑦𝛾𝑧) = 𝑥𝛾𝑦 = 𝑥. This 

implies that 𝑥 ≤ 𝑧. Hence (𝑅, ≤) is a partially ordered set. Define the operation ⋁ and ⋀ on 𝑅 by 𝑥 + 𝑦 =

𝑥⋁𝑦 and 𝑥𝛾𝑦 = 𝑥⋀𝑦 for all 𝑥, 𝑦 ∈ 𝑅, 𝛾 ∈ Γ. Then it is easy to see that 𝑅 is a bounded distributive lattice 

having unique minimal element 0 and unique maximal element 1. 

 

Another well-known characterization of bounded distributive lattices is the following.  

 

Proposition 3.10: Let 𝑅 be a Γ − semiring. 𝑅 is a bounded distributive lattice having unique minimal element 

0 and unique maximal element 1 if and only if it is commutative, Γ − idempotent Γ −semiring and 𝑥⋀(𝑥⋁𝑦) =

𝑥 = 𝑥⋁(𝑥⋀𝑦) for all 𝑥. 𝑦 ∈ 𝑅. 

Proof: Let 𝑅 be a bounded distributive lattice having unique minimal element 0 and unique maximal element 

1. Let  𝑥, 𝑦, 𝑧 ∈  𝑅. Since 𝑥 ⋁(𝑥 ⋀ 𝑦) is the join of 𝑥 and 𝑥 ⋀ 𝑦  we have 𝑥 ≤ 𝑥⋁(𝑥 ⋀𝑦). Again, 𝑥 ≤ 𝑥 

and(𝑥⋀𝑦) ≤ 𝑥, we have 𝑥⋁(𝑥⋀𝑦) ≤ 𝑥⋁𝑥 = 𝑥. Therefore 𝑥⋁(𝑥⋀𝑦) = 𝑥. By principal of duality, 𝑥⋀(𝑥⋁𝑦) =

𝑥. Now the result follows from Theorem 3.9. Conversely, let 𝑅 be a commutative, Γ − idempotent Γ − 

semiring and 𝑥⋀(𝑥⋁𝑦) = 𝑥 = 𝑥⋁(𝑥⋀𝑦) for all , 𝑦 ∈ 𝑅 . In the light of theorem 3.9, it is sufficient to show 

that 𝑅 is simple. Putting 𝑥 = 1 in 𝑥⋀(𝑥⋁𝑦) = 𝑥 = 𝑥⋁(𝑥⋀𝑦) as  𝑥 + 𝑦 = 𝑥⋁𝑦,   𝑥𝛾𝑦 = 𝑥⋀𝑦, we get 

1𝛾(1 + 𝑦) = 1 for all 𝑦 ∈ 𝑅. That is 1 + 𝑦 = 1 for all 𝑦 ∈ 𝑅. Hence 𝑅 is simple. 

Theorem 3.11: Let 𝑅 be a Γ − semiring. A commutative Γ − semiring is a bounded distributive lattice if and 

only if it is simple multiplicative Γ − idempotent Γ − semiring. 

Proof: This is a direct consequence of Lemma 2.17, Proposition 3.10. and Theorem 3.9. 

Lemma 3.12: Let R be a simple Γ − semiring then (𝐼×(Γ𝑅), +) is a sub  monoid of   (R, +) and 𝐼×(Γ𝑅)⋂ 

C(R) is a bounded distributive lattice. 

Proof: Let 𝑥, 𝑦 ∈ 𝐼×(Γ𝑅). Then 𝑥𝛾𝑥 = 𝑥 𝑎𝑛𝑑 𝑦𝛾𝑦 = 𝑦. Therefore by Lemma 2.17 we have(𝑥 + 𝑦)𝛾(𝑥 + 𝑦) 

= (𝑥 + 𝑦)𝛾𝑥 + (𝑥 + 𝑦)𝛾𝑦 = 𝑥𝛾𝑥 + 𝑦𝛾𝑥 + 𝑥𝛾𝑦 + 𝑦𝛾𝑦 = 𝑥 + 𝑦𝛾𝑥 + 𝑥𝛾𝑦 + 𝑦 = 𝑥 + 𝑦 . So, 𝑥 + 𝑦 ∈

𝐼×(Γ𝑅), that is,   𝐼×(Γ𝑅) is closed under addition. Since it contains ‘0’ so 𝐼×(Γ𝑅)is a sub monoid of (R, +). 

Further, let 𝑥, 𝑦 ∈ 𝐶(𝑅) then 𝑥 + 𝑦 ∈ 𝐶(𝑅). Therefore 𝑥 + 𝑦 ∈ 𝐼×(Γ𝑅)⋂𝐶(𝑅). Since 0, 1  ∈ 𝐼×(Γ𝑅)⋂𝐶(𝑅) 
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so 𝐼×(Γ𝑅)⋂𝐶(𝑅) ≠ 𝜙. Let 𝑥, 𝑦 ∈ 𝐼×(Γ𝑅)⋂𝐶(𝑅) then surely 𝑥𝛾𝑦 ∈ 𝐼×(Γ𝑅)⋂𝐶(𝑅). Thus 𝐼×(Γ𝑅)⋂𝐶(𝑅) is a 

sub 𝛤-semiring of 𝑅 which is also simple, since 𝑥 + 1 = 1  for all 𝑥 ∈ 𝐼×(Γ𝑅)⋂𝐶(𝑅). Now the result follows 

from Theorem 3.11. 

Lemma 3.13: Let 𝑅 be a 𝛤 −semiring. Then every additive idempotent 𝛤 − semiring has a sub 𝛤 − semiring 

which is bounded distributive lattice. 

Proof: Result immediate follows from Theorem 2.18 and Lemma 3.12. 

Theorem 3.14: Let  𝑅 be a  centreless Γ − semiring then 𝛤𝑅⊥ is a Γ − Boolean algebra. 

Proof: By Theorem 3.9, a commutative, Γ − idempotent and simple Γ − semiring is a bounded distributive 

lattice having unique minimal element 0 and unique maximal element 1. Thus, by Theorem 2.22., we find that 

𝛤𝑅⊥ is such a lattice, which is complemented and so is a Γ −Boolean algebra. 

Theorem 3.15: Let 𝑅 be a  centreless 𝛤 − semiring then the relation ‘⩽′ on 𝑅 defined by 𝑥 ⩽ 𝑦 if and only 

if there exist an element 𝑡 ∈ 𝛤𝑅⊥ such that 𝑥 = 𝑡𝛾𝑦, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ is a partial order relation on 𝑅. 

Proof: Since 𝑥 = 1𝛾𝑥 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛾 ∈ Γ so 𝑥 ⩽ 𝑥 for all 𝑥 ∈ 𝑅. Assume that 𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑥 then there exist  

𝑝, 𝑞 ∈ 𝛤𝑅⊥,  𝛽, 𝛾 ∈ Γ such that 𝑥 = 𝑝𝛾𝑦, 𝑦 = 𝑞𝛽𝑥. This implies that 𝑝𝛼𝑥 = 𝑝𝛼(𝑝𝛾𝑦) = (𝑝𝛼𝑝)𝛾𝑦 = 𝑝𝛾𝑦 =

𝑥, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈ Γ and so by the Lemma 2.20, 𝑥 = 𝑝𝛾𝑦 = 𝑝𝛾(𝑞𝛽𝑥) = 𝑝𝛾(𝑥𝛽𝑞) = (𝑝𝛾𝑥)𝛽𝑞 = 𝑥𝛽𝑞 = 𝑞𝛽𝑥 =

𝑦. Again, if 𝑥 ⩽ 𝑦 and𝑦 ⩽ 𝑧 then there exist 𝑝, 𝑞 ∈ 𝛤𝑅⊥, 𝛽, 𝛾 ∈ Γ such that 𝑥 = 𝑝𝛾𝑦, 𝑦 = 𝑞𝛽𝑧. Thus 𝑥 =

𝑝𝛾𝑦 = 𝑝𝛾(𝑞𝛽𝑧) = (𝑝𝛾𝑞)𝛽𝑧,   𝑝𝛾𝑞 ∈ 𝛤𝑅⊥ (c.f. Lemma 2.19). This implies that 𝑥 ⩽ 𝑧.  

 

For a 𝛤 − semiring R we define the harmony difference of elements of 𝛤𝑅⊥ by  𝑥∇y = x𝛾𝑦⊥ + 𝑥⊥𝛾𝑦. 

In particular if  R is a centreless 𝛤 − semiring satisfying the condition that 𝛤𝑅⊥ is a sub Γ − semiring of R 

(c.f. proposition 2.23) then by Theorem 3.14, 𝛤𝑅⊥  is a 𝛤 −boolean algebra and this is just the harmony 

difference in the usual sense. 

 

Now, we have the following theorem: 

 

Theorem 3.16: Let 𝑅 be a  centreless 𝛤 − semiring. If  d ∶ 𝛤𝑅⊥ ×  𝛤𝑅⊥ → 𝛤𝑅⊥ be defined by d ∶ (x, y) →

 𝑥∇y. Then d is metric on 𝛤𝑅⊥ with values in R. 

Proof: If R is arbitrary centreless 𝛤 − semiring then it is clear that d (x, y) = d(y, x) ≥ 0 for all x, y ∈ R 

and d(x, x) = 0 , for all x ∈ R. Conversely, assume that d (x, y) = 0. Since R is centreless 𝛤 − semiring, so 

x𝛾𝑦⊥ = 0 = 𝑥⊥𝛾𝑦 and 𝑥 = 𝑥𝛾1 = 𝑥𝛾(𝑦⊥ + 𝑦) = x𝛾𝑦⊥ + x𝛾𝑦 = 𝑥𝑦, proving that x ≤ y . Similarly, y ≤ x 

and so 𝑥 = 𝑦. If 𝑥, 𝑦, 𝑧 ∈ 𝑅 then (𝑥∇z)γ(𝑥∇y + 𝑦∇z) = (x𝛾𝑧⊥ + 𝑥⊥𝛾𝑧)(x𝛾𝑦⊥ + 𝑥⊥𝛾𝑦 + y𝛾𝑦𝑧⊥ + 𝑦⊥𝛾𝑧) =

 x𝛾𝑦⊥𝛾𝑧⊥ + 𝑥𝛾𝑦𝑧⊥ + 𝑥⊥𝛾𝑦𝛾𝑧 + 𝑥⊥𝛾𝑦⊥𝛾𝑧 =  𝑥(𝑦⊥ + 𝑦)𝑧⊥ + 𝑥⊥(𝑦 + 𝑦⊥)𝛾𝑧 = 𝑥𝛾𝑧⊥ + 𝑥⊥𝛾𝑧 = 𝑥∇z (c.f.  

Lemma 2.19, 2.20 and 2.21) and so d (x, z) =  𝑥∇z ≤  𝑥∇y = 𝑦∇z =  d (x, y) + d (y, z). Thus, d is metric on 

𝛤𝑅⊥ with values in R. Note that if 𝑥 ∈ 𝛤𝑅⊥ then  d (x, 0) = 𝑥𝛾1 + 𝑥⊥𝛾0 = 𝑥. Also d (x, 𝑥⊥) = 𝑥𝛾𝑥 +

𝑥⊥𝛾𝑥⊥ = 𝑥 + 𝑥⊥ = 1 for all x ∈ 𝛤𝑅⊥. 
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