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Abstract:  Image compression aims at reducing the number of bits required to represent an image by removing the spatial and spectral 

redundancies as much as possible. The focus of the research work is only on still image compression. The lossy compression methods 

which give higher compression ratio are considered in the research work. The paper discusses the image compression using SVD (Singular 

value Decomposition) method on various images of any type and resolution. A novel method is proposed to preprocess the SVD which 

reduces the computation complexity compared (in terms of time or clock cycles) to SVD. The proposed method termed as modified SVD 

(MSVD) is compared with the SVD based on computational complexity and memory requirements. The experiments are conducted on 

TIDSP DM642 to compare modified SVD with the actual SVD. 

 

Index Terms – Singular Value Decomposition, compression ratio, computation time, modified SVD, block size, DSP Processor, image compression 

  

 

I.  INTRODUCTION 
 

Image compression is minimizing the size in bytes of a graphics file without degrading the quality of the image to an unacceptable level.  The 

reduction in file size allows more images to be stored in a given amount of disk or memory space. It also reduces the time required for 

images to be sent over the internet or downloaded from web pages. A common characteristic of most images is that the neighboring pixels 

are correlated and therefore contain redundant information. The transform coding methods involves greater computations and hence it is 

required to reduce the computation complexity. Transform coding is used to convert spatial image pixel values to transform coefficient 

values.   

 

The different transform coding techniques used for image compression includes Discrete Cosine Transform (DCT), Haar transform,  

Singular Value Decomposition (SVD), Slant transform, Hadamard transform, Kahrunen Loeve Transform (KLT), etc (Dr.Edel Garcia 

2006), (Andrew.B.Watson 1994). (Sindhu.M 2009), (Shivali.D.Kulkarni 2008), (Mr.T.Sreenivasulu Reddy 2007), (Sathish.K.Singh 2010). 

The suitability of the transform is due to energy compaction property (kamrul Hasn Talukdar 2007). Also, suitability of the transforms is 

due to subjective quality of the decompressed images in terms of PSNR (Peak signal to Noise Ratio) and quality index, computation time 

and energy compaction property.  

A variation to the SVD based image compression technique is proposed to compress the given input image. The variation can be viewed as 

a preprocessing step in which the input image is permuted as per a fixed, data independent permutation, after which it is fed to the standard 

SVD algorithm (Abhiram Ranade 2007). The DCT is used to transform the highly correlated blocks of the YCbCr components, while the 

SVD is used to transform the low correlated blocks (Y. Wongsawat, 2004). A good compromise between the quality and the compression 

rate factors that are achieved when processing images by the DCT technique are discussed (A. Messaoudi 2005). 

 

Image Compression is minimizing the size of an image without degrading the quality of the image to an unacceptable level.  The reduction 

in file size allows more images to be stored in a given amount of disk or memory space. It also reduces the time required for images/video 

to be sent over the internet or downloaded from web pages. The SVD is a fundamental concept in science and engineering, and one of the 

most central problems in numerical linear algebra. It is also known as principal component analysis (PCA) in statistics and the Karhunen-

Loeve (KL) or Hotelling expansion in pattern recognition. The beauty of the SVD is that it provides a robust method of storing larger 

images as smaller square ones. This is accomplished by representing the original image with each succeeding non-zero singular values. To 

reduce the storage size even further, one may approximate a “good enough” image with using even fewer singular values. SVD, one of the 

most useful tools of linear algebra is a factorization and approximation technique which effectively reduces any matrix into smaller 

invertible and square matrix. SVD is preferred over DCT, Haar and other transforms is due to the suitability of SVD even though matrix is 

not invertible and non-square. Also DCT, Haar transforms are linear whereas SVD is nonlinear transformation. 
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The SVD involves the decomposition of an image represented as matrix A in to U, S and V matrices where 𝑈𝑈𝑇 = 𝐼, 𝑉𝑉𝑇 = 𝐼,  I is a 

identity matrix, the columns of U are orthonormal eigenvectors of 𝐴𝐴𝑇, the columns of V are orthonormal eigenvectors of 𝐴𝑇𝐴 and S is a 

diagonal matrix containing the square roots of Eigen values from U or V in descending order. The columns of U are the left singular vectors, 

S has singular values and is diagonal and VT has rows that are the right singular vectors. The SVD represents an expansion of the original 

data in a coordinate system where the covariance matrix is diagonal. Decomposition of the image into U, S and V matrix is computationally 

very complex and for reconstruction multiplication of U, S and V matrix is also very complex. Hence method is proposed to minimize the 

complexity of the algorithm. A modified method proposed for preprocessing the SVD can be estimated in terms of the memory requirements 

and the computation time required in comparison with the SVD. The novel method of preprocessing reduces the computational complexity 

and also provides easy way of implementing SVD with reduced block size.  

 

II. RESEARCH METHODOLOGY 

Consider an input image represented as matrix 𝐴 of dimension 𝑀 𝑋 𝑁 where 𝑀 is the number of rows and 𝑁 is the number of columns. 

Total number of pixels present in the image is 𝑀𝑁. Hence in most cases, it is required to use reduced SVD compared to full SVD to achieve 

image compression by reducing spatial redundancies.  

 

The input image without SVD requires 𝑀𝑁 entries for storage and with SVD input image requires 𝑁2 entries if 𝑀 > 𝑁 and 𝑀2 entries 

if 𝑀 < 𝑁. Applying SVD results in (2𝑀2 + 𝑀) values if 𝑀 < 𝑁  and (2𝑁2 + 𝑁) values if 𝑀 > 𝑁 for an exact representation of the image. 

Therefore the approximation must be at most rank 𝑁
(2𝑀 + 1)⁄  if 𝑀 < 𝑁  and 𝑀 (2𝑁 + 1)⁄  if 𝑀 > 𝑁  in order to compress the image 

otherwise storage requirement will increase. Any video frame or image with dimension 𝑀 𝑋 𝑁 has values 𝑀 > 𝑁 due to the fact that width 

is greater that height (aspect ratio). Hence the input image requires 𝑁2 entries and applying SVD results in (2𝑁2 + 𝑁) values and the 

approximation must be at most rank 𝑀 (2𝑁 + 1)⁄  in order to compress the image to reduce the storage space. 

 

The SVD process has higher computational needs and hence it is very slow for images of larger resolutions (for higher values of  𝑀 and 𝑁). 

If the image is broken in to smaller blocks and if each block is handled separately, overall processing time can be reduced to a greater 

extent. 

 

In the proposed approach, instead of directly applying SVD on the entire image, the image is segmented into blocks of smaller sub images 

of size 𝑏𝑙  𝑥 𝑏𝑙   where 𝑏𝑙 is the block size. The algorithm used to compute SVD is then applied onto these sub-images individually. To 

reconstruct the image, individual sets of U, S and V matrices are used to re-compute the respective 𝑏𝑙 x 𝑏𝑙 blocks. These blocks are then 

arranged and re-placed in their original positions to obtain the complete image. The fundamental concept of the SVD based image 

compression scheme is to use a smaller number of ranks to approximate the original matrix. The lower rank approximation is sufficient to 

represent the given image in most cases and hence it is possible to achieve a very high compression ratio. 

 

The Rank ‘r’ approximation to matrix A is given by 𝐴𝑟 =  𝑈𝑟Σ𝑟𝑉𝑟
𝑇, where Σ𝑟 is the top-left 𝑟 × 𝑟 sub-matrix of Σ, 𝑈𝑟 consists of the first r 

columns of U, and 𝑉𝑟
𝑇 the first r rows of 𝑉𝑇. The SVD decomposition is advantageous because 𝑈𝑟 , Σ𝑟 , 𝑉𝑟 provide the best rank r 

approximation to A in the sense of packing the maximum energy from A. Also even with small r, the approximation 𝐴𝑟 gets most of the 

energy of A and hence the attractiveness of the method.  

 

In the proposed approach, the dimensions of the given image are scaled up to the next integral multiples of  𝑏𝑙, by replicating the last row 

and/or column required number of times or padding the required number of zeros.  Further, it is divided into 𝑏𝑙 x 𝑏𝑙 blocks and SVD is 

applied on each block independently. SVD of rank ‘r’ is computed where ‘r’ is the rank of each block. The total number of elements in the 

three component matrices for a rank ‘r’ approximation of one block of dimensions 𝑏𝑙 × 𝑏𝑙 is  

𝑏𝑙 ∗ 𝑟 + 𝑟 + 𝑏𝑙 ∗ 𝑟 = (2 ∗ 𝑏𝑙 ∗ 𝑟 + 𝑟)                                                                       

Compared to 𝑏𝑙
2 pixel values of the original block, we are left with (2 × 𝑏𝑙 × 𝑟) + 𝑟 number of pixels. Thus for an image of dimension 

𝑀 × 𝑁 where M and N are the integral multiples of 𝑏𝑙  we need to store  

𝑀×𝑁

𝑏𝑙×𝑏𝑙
× (2 × 𝑏𝑙 × 𝑟) + 𝑟 = (𝑚 × 𝑛 × 2 × 𝑏𝑙 × 𝑟) + 𝑟                                          

Where 𝑚 = 𝑀/𝑏𝑙  and 𝑛 = 𝑁/𝑏𝑙  

Thus, an equivalent rank ‘R’ of the entire image would be such that the total number of elements in the three component matrices should 

equal to the number of elements when rank ‘r’ approximations of individual blocks of size  𝑏𝑙 × 𝑏𝑙  are considered. This implies that 

(𝑀 ∗ 𝑅 + 𝑅 + 𝑁 ∗ 𝑅) =
𝑀

𝑏𝑙
∗

𝑁

𝑏𝑙
∗ (2 ∗ 𝑏𝑙 ∗ 𝑟 + 𝑟)                                                           

(𝑀 + 𝑁 + 1)𝑅 = (𝑚 ∗ 𝑛 ∗ (2 ∗ 𝑏𝑙 + 1))𝑟                                                                     

  𝑅 = 𝑟 ×
(𝑚∗𝑛∗(2∗𝑏𝑙+1))

(𝑀+𝑁+1)
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Figure 1: Relation between rank r and R for block sizes of 16, 32 and 64 

                                                   
The figure 1 shows the relation between r and R for different block sizes such as 16, 32 and 64. In the computation of SVD of rank ‘R’ 

approximation for the entire image, the rank ‘R’ varies linearly in relation to rank ‘r’ approximation for each block of the image as shown 

in figure 1. 

If the dimension 𝑀 < 𝑁, the decomposition is done using reduced SVD to obtain the U, S and VT. The compression ratio is given by 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑀∗𝑁

𝑅(2∗𝑀+1)
                                                                                     

If the dimension 𝑀 > 𝑁, the decomposition is done using reduced SVD to obtain the U, S and VT. The compression ratio is given by 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑀∗𝑁

𝑅(2∗𝑁+1)
                                                                                      

If the dimension 𝑀 = 𝑁, the decomposition is done using full SVD to obtain the U, S and VT. The compression ratio is given by 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑀∗𝑁

𝑅(2∗𝑁+1)
                                                                                       

Table 1: The relation between r and R for different ranks for a block size of 32  

Rank r of the block, Block size=32 Rank R of the entire image Compression ratio 

5 41    3.12 

7 57    2.24 

9 73 1.75 

11 90    1.42 

12 98 1.3 

Table 2: The relation between r and R for different ranks for a block size of 64  

Rank r of the block, Block size=64 Rank R of the entire image Compression ratio 

10 41 3.12 

14 57 2.24 

18 73 1.75 

22 89 1.43 

23 93 1.37 

The table 1 shows the relation between r and R for different ranks for a block size of 32 and compression ratios and the table 2 shows the 

relation for a block size of 64 for different ranks with compression ratios. The table shows the result for a PSNR of 30 to 45 dB (PSNR of 

range 30 to 45 dB indicates very good quality). During the process of reconstruction, the values of U, S and V for each block are used to 

reconstruct the block and then these 𝑚 × 𝑛 blocks are arranged in the same fashion as they are segmented from the original image matrix. 

Thus the entire image is reconstructed from the decomposed values. This reconstructed version of the original image is similar to an SVD 

approximation of rank R applied to the entire image at once.   

III. IMPLEMENTATION DETAILS 

The experiments are conducted by considering different images of various resolutions. The proposed method is compared with SVD using 

different parameters. The SVD and the proposed method are ported on a digital signal processor DM642 to estimate the computational 

complexity and memory requirements (memory required to fit the code). The sample of the result obtained is displayed for the further 

discussion. Also, for different set of input images, different ranks are considered for the discussion. The experiments are conducted by 

selecting block size of 2, 4, 8, 16, 32 and 64 for an input image. The similar experiments can be conducted for different resolution.  
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The comparison parameters considered are MSE and PSNR are given by 

Mean Square Error (MSE): The Mean Square Error measures the difference between the frames which is usually applied to Human 

Visual System. It is based on pixel-pixel comparison of the image frames.  

𝑑(𝑋, 𝑌) =
∑ (𝑋𝑖,𝑗−𝑌𝑖,𝑗)

2𝑚,𝑛
𝑖−1 𝑗−1

𝑚𝑛
                                                                                         (1) 

Peak Signal to Noise Ratio (PSNR): PSNR is measured on a logarithmic scale and depends on the mean squared error (MSE) of between 

an original and an impaired image or video frame, relative to (2n −1)2 (the square of the highest-possible signal value in the image, where 

n is the number of bits per image sample). 

𝑃𝑆𝑁𝑅𝑑𝑏 = 10𝑙𝑜𝑔10 (
(2𝑛−1)2

𝑀𝑆𝐸
)                                                                                      (2)   

 

IV.  EXPERIMENTAL RESULTS AND DISCUSSIONS        

 
The fundamental concept of the SVD based image compression scheme is to use a smaller number of ranks to approximate the original 

image. A sample of the result is displayed for an input image of dimension 256 X 256 for block size of 32 and 64.  

 

Case 1: Block size: 32 

Table 3: The comparison parameters for rank 5 to 12  

Rank MSE PSNR Compression ratio Elapsed time (sec) 

5 46.727 31.435 3.12 0.75001 

7 18.633 35.427 2.24 0.98283 

9 7.4972 39.38 1.75 1.4136 

11 2.8986 43.508 1.42 1.8890 

12 1.7214 45.772 1.3 2.0299 

 

For block size of 32 for the given set of input image, rank 5 to 12 gives a PSNR of 30 to 45 dB. The table 3 shows the output result in terms 

of objective measures for a block size of 32. The different parameters are selected to measure the quality of the images for different ranks.  

Case 2: Block size: 64 

Table 4: The comparison parameters for rank 8 to 22 

Rank MSE PSNR Compression ratio Elapsed time (sec) 

10 39.7367 32.138 3.12 0.5905 

14 15.9475 36.103 2.24 0.6997 

18 5.9818 40.362 1.75 0.8034 

22 2.2134 44.680 1.43 1.0035 

 

For block size of 64 for the given set of input image, rank 8 to 22 gives a PSNR of 30 to 45 dB. The table 4 shows the output result in terms 

of objective measures for a block size of 64. The different parameters are selected to measure the quality of the images for different ranks. 

Table 5: Comparison parameters for r = 33 to 90 to get PSNR 30 - 45 dB 

Rank MSE PSNR Compression ratio Elapsed time (sec) 

35 57.019 30.570 3.6500 0.4243 

50 24.169 34.298 2.5550 0.6572 

70 7.6763 39.279 1.8250 0.9276 

90 2.0876 44.934 1.4194 1.1340 

The experiments are conducted for a given input image by using direct SVD and the table 5 shows the result of direct SVD for different 

rank to achieve a PSNR of 30 to 45 dB. 

 

Table 6: Comparison of modified SVD with SVD for PSNR=30 dB  

Block size Rank Compression ratio computation time (sec) 
Memory 

Usage 

Modified SVD Block size 32 5 3.12 16 10604 

Modified SVD 

Block size 64 
8 3.87 10 11920 

Direct SVD 33 3.87 24 10316 
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Computation complexity and memory complexity is found by porting proposed algorithm and direct SVD on TIDSP DM642. Table 6 

shows the profiling result of proposed method and direct SVD obtained for the given image. Table 6 indicates that the computation time 

(computation complexity) can be reduced by block processing of SVD as it consumes 0.666 times that of direct SVD to achieve a PSNR of 

30 dB and gives a compression ratio of 3.12 for each block if block size is 32. To achieve a PSNR of 30 dB, rank of 5 is required if the 

block size is 32 and 8 is required if the block size is 64. A rank of 33 is required if direct SVD is employed which gives a compression ratio 

of 3.87.  Hence decrease in the block size, also decreases the rank but the computation time required for computation increases. Selection 

of block size is very important criteria in modified SVD.  Parallel implementation of reduced block size is possible on TI DSP which 

reduces the computation time further. The proofing result gives the estimation of clock cycles and computation time for different function 

used in implementation of proposed method and the direct SVD.  

 

V. SUMMARY AND CONCLUSIONS  

The experimental results indicate that the proposed method performs better than the SVD in terms of computation complexity by reducing 

the computational time. Also the proposed method can be modified to achieve higher compression ratio. The methodology is discussed as 

follows to achieve a higher compression ratio. For 𝑛 𝑥 𝑛 block with rank R requires 2nR elements. If the block is split in to four quarters 

block of size 𝑛 2 ⁄ 𝑋 𝑛
2⁄  with each sub block having rank R1, R2, R3, R4 respectively, the number of storage element is  

 

n(R1+R2+R3+R4) 

𝑛(𝑅1 + 𝑅2 + 𝑅3 + 𝑅4) < 2𝑛𝑅                                                                                   

Hence  (𝑅1 + 𝑅2 + 𝑅3 + 𝑅4) < 2𝑅              

The key to SVD compression is to use low rank approximation to the image. For the less complicated images, lower rank is sufficient to 

accurately represent it. For highly complicated images, higher rank is necessary for accurate representation.  
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