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1.INTRODUCTION 

In1945, R. Vaidyanathaswamy [13] introduced the concept of ideal topological spaces.  T. R. Hamlett, D. A. Rose [4] defined the local 

function and studied some topological properties using local function in ideal topological spaces in 1990.  Since then many mathematicians 

studied various topological concepts in ideal topological spaces. The first unified and extensive study on  * - topologies was done by 

Jankovic and Hamlett in [2] and proofs for the facts stated above may be found in [6]. The initial important articles on topological spaces 

are [4] and [5], a thesis [3] and a book that includes ideal is [12].. In this article we introduce the concept of ideal-connected spaces using 

ideals, called  - connected spaces and extend some important results on connectedness to  - connectedness. 

 2. PRELIMINARIES 

Given a nonempty set X, a collection  of subsets of X is called an ideal if, 

(i) A and B  A implies B  (heredity)  

(ii) A and B  implies A  B   (additivity)  

If  X , then  is called a proper ideal.  An ideal  is called a   - ideal if the following holds:  

If An  : n = 1,2, … is a countable sub collection of , then  {An  : n = 1,2, ….} 

 The notation (X,, ) denotes a nonempty set X, a topology  on X and an ideal  on X.  Given a point x X, (x) denotes the 

neighbourhood system of x; that is, (x) = U : x U. (X) denotes the collection of all subsets of X.  Given space   ( X, , )  and a 

subset A of X, we define  

A* ()  = x  X : U  A  , for every U(x) 
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We simply write A* for A*( ), when there is only one ideal   and only one topology  under consideration.   If we define cl* 

on ( X ) as, cl* (A) = A  A* , for all A  (X), 

 then  cl* is a Kuratowski closure operator.  The topology determined by this closure operator is denoted by * () .     = U 

- I : U  , I  is a basis for       * () .For every subset A of a given topological space ( X, , )  , the sets cl(A) (or A ) and cl*(A) will 

denote closure of A with respect to  and * respectively.   

3.  - CONNECTED SPACES  

  

Let  us start with a definition for   - connected spaces.  

 

Definition: 3.1  Let ( X,  )  be a topological space with an ideal  on X.   A subset of Y of X is said to  be  -connected if Y   A  B, A, 

B  such that  A   B =  = A  B  

Remark :3.1 Every connected set is  - connected.   We give the following example to show that the converse need not be true.  

Example :3.1   Let (R,) denote the real line with the usual topology and  denote the ideal of all finite subsets of X.  Let Y = 0,2  

3,4,5.   Then Y is - connected but not connected.  

Remark:3.2  Let ( X,  ) be a topological space with an ideal  on X.  Let X be - connected.  If J  is an ideal on X with   J ,then X is 

J  - connected.  

We obtain equivalent conditions for a space to be a  - connected space in the following theorem.  

Theorem: 3.2  Let ( X,) be a topological space.  Then the followings are equivalent.  

(i) X is - connected  

(ii) X cannot be expressed as a union of two disjoint non-ideal open sets.  

(iii) X cannot be expressed as a union of two disjoint non-ideal closed sets.  

Proof: (i)  (ii)  

 Suppose (ii) is not true, then X =A  B, for some subset A, B  such that A, B are open and A  B = .  Then A = A  and B = 

B  so that B  A =  = A   B This contradicts ( i ).  Therefore  (ii) is true   

(ii)  (iii) : Suppose (iii) is false.  Then X = A   B, for some subsets A,B   such that A,B are closed and A  B = .  Then X = A  B, 

where A, B , A  B =  and   A = X - B ,  B = X - A are open.  This contradicts (ii). Therefore (iii) is true.  

(iii)  (i) : Suppose X is not - connected.  Then X = A  B, for some subsets    A, B , such that A   B =  = A  B .   Then A   A 

and B   B. Hence X = A  B, where A, B ,  A  B =   and A, B are closed; which is a contradiction to (iii). So X is          -

connected.                                                                                                                  

Remark :3.3 Let (X, ) be a topological space and  be an ideal on X.  A subset Y of X is               - connected if and only if it is not 

possible to find open sets A and B in X such that 

(i) Y   A  B 

(ii) Y  A , Y    

(iii) Y A    =  

(iv) Y  A  B  =  

We know that if A :    is a collection of connected subsets of a space (X, ) such that  A  , then   A  is also connected in (X, 

) . Can this result be extended to a      - connectedness?.We first have the following  theorem to get a partial affirmative answer. 

However, we shall find an example that gives a negative answer to this questions.  

Theorem: 3.3   Let A1  and  A2 be two -connected sets with A1  A2  .  Then     A1  A2 is  -  connected.  
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Proof :  Suppose A1  A2 is not -connected.   Then A1  A2  = C  D where C, D  and  (A1  A2 ) C   D =  = C  D   ( A1  

A2  ).We have A1  A2  =        

 (C  A1  A2 )   (D  A1  A2 ) ,  So either C  A1  A2 , or D  A1  A2 .   Suppose  C  A1  A2 ,  then   C  A1   

and C   A2 .   Since A1  = (C  A1 )  (D  A1 ) is - connected, either C  A1    or D  A1 .   As C  A1 ,  we have D  

A1  .   Similarly, we have D  A2   

 So D =  (D  A1 )   ( D   A2 ) , which is a contradiction.  Hence A1  A2 is   - connected.                                                                                                                       

Corollary:  3.4   The finite union of - connected sets  A1 ,A2 , ….. An  for which  
n

i 1
Ai is a non-ideal set, is also an - connected set.      

But arbitrary union of  - connected sets  Ai , whose intersection 





1i
iA  is a non-ideal set need not be -connected.   The following 

example justifies this statement.  

 

Example:  3.2  Let X be the real line with the usual topology .  Let An = (0,1)   n +1, for all n = 1,2… and let  be the ideal of all 

finite subsets of X.   Then An is an  -  connected. Also 





1i
 An is a non-ideal set.  However, 






1n
 An = (0,1)   2,3,….. is not   - 

connected.  

Theorem:  3.5  Let (X,) be a topological space with an ideal  on X.   If A    X is       - connected and  A      cl* (A) (closure of A 

in * ), then B is  - connected.  

Proof :  Suppose B is not -connected.  Then B = C  D, where C, D  and B C  D =  = C  D   B.   Now  A = (A  C)  ( A 

 D).   Since  A is -connected, either            A  C  or A  D .  Suppose A  D  and let x  D - A. Then for every 

neighbourhood V of x, V  A .   As  V  A  = ( V  A  C )  (V  A  D)  , we have V  A  C .   In particular V  A  C 

    V  C   x  C .   Therefore x  D - A  x  C , which is contradiction to B C   D =  .  Hence   D - A =  i.e., D  A.   

Therefore D = D  A, which is a contradiction.   Thus B is    - connected.                                                                                                                     

The above theorem is not true, if we replace * - closure with closure.   We give the following example to justify this fact. 

Example :3.3  Let X be the real line with the usual topology. Let A = 0,1 x : x is rational, 4  x  5 and let  be the ideal of zero 

measurable sets.  Then A is   - connected, but A  = cl (A) = 0,1   4,5  is not  - connected. We know that the continuous image of 

connected set is connected. We generalize this in the following theorem.  

Theorem: 3.6   Let f: (X,   )   ( Y,  ) is a continuous surjection .  If (X, ) is           - connected, then (Y, ) is f (  ) - connected, 

where f (  ) =  f ( I ) : I    

Proof :  Let f : (X, , )  (Y,) is a continuous surjection map and X is   - connected.  Assume that Y is not f () - connected, then Y 

=  B  C, where B,C  f (  ), B  C =  and B, C are open.  

Since  f is continuous, f –1( B ) , f –1( C ) are open and f –1( B )  f –1( C ) =  f –1 (B  C)  =  f –1 ()  =   .  Also f –1(B), f –1(C)  ( if f –1(B) 

   ,  then B  f ( ), gives contradiction).   Now X =  f –1(B)  f –1(C ),  where  f –1(B), f –1(C) are open,  f –1(B)  f –1(B) =  and f –1(B), 

f –1(C)  .   Hence X is not  - connected; a contradiction to our assumption.   Thus Y is f ()  - connected.                                        

In the following  lemma, we show that extensions of -connected spaces by members of  are - connected.  

Lemma :  3.7   Let  (X, ) be a topological space with an ideal  on X.  Let A, B  X.  If A is  - connected and B then A  B is  - 

connected.  ( In particular, Let (X, ) be a topological space with an ideal  on X.  Let A  X.  If A is - connected and X - A  , then X 

is  - connected). 

Proof :  If  A  B is not  - connected,  then there exist open sets  C and D in X such that A  B  = C  D  and 

(i) ( A  B)  C  , (A  B)  D .  

(ii) ( A  B)  ( C   D) = , ( A  B)  (C D  ) =  
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As B , we have A  C  ( as  B  C )  and A  D.  

As A = (A  C)  (A  D), which is a contradiction to - connectedness of A.  Hence A  B is  - connected.                                                                                            

We have already given example for - connected spaces which are not connected.  But if the ideal  satisfies some extra conditions, then 

we can expect that the space is connected if only if it is - connected.  In the following theorem we show that if the ideal is a  - boundary 

ideal i.e.    = {}, then concept of connectedness and    - connectedness coincide.     

 Theorem:  3.8   Let  (X, ) be a topological space with an ideal  on X.  If X is -connected and     = , then X is connected.  

Proof:   Suppose X is not connected, then X = A  B, where A  , B    and A         B .  Since     , we have , 

.  So, X is not - connected, a contradiction.  Thus X is connected 

Theorem : 3.9   Let (X, ) be an  1- connected space  and let (Y,  ) be an 2- connected space.  Assume that 1   is closed under 

arbitrary unions.  If   is an ideal such that Pi
-1 (i)  , i  = 1,2, then   X x Y is - connected.  

Proof :  If X 1 , then X x Y is in the ideal  and hence  X x Y is - connected so assume that  X 1 .  

Assume that X x Y is not  - connected , then X x Y = A  B , where A, B , A  B =  and A, B are open in X x Y.  

To each y  Y, define Ay  = x  X : (x,y) A  and  By  =  x  X : (x,y) B   

 Let C = y  Y : Ay 1  and D = y  Y : By 1  

 Then X =  Ay  By .  To each y ,  both Ay  and By  are open and Ay  By   = .  As X is 1 - connected , either Ay  1  or By 1 .  

In fact, to each y Y, exactly one of Ay and  By  belongs to 1 . 

Therefore Y = C   D  and C   D = .  Now we claim that C is closed.   Fix      yC.   If Ay 1, then Ay   .  Since A is open, to each 

x Ay , there exist neighbourhoods Ux of x and Vy of y such that (x, y)  U x x Vy   A.  As y C  , there is one y  Vy  C, so Ux x y  

 A and hence Ux Ay  and as Ay  1, we have          Ux  1.  Therefore Ay    { Ux  : xAy } 1( by assumption ).  

Hence Ay  1 and hence y  C.  Therefore C is closed.  Similarly D is closed.  Since Y is 2 - connected, we have C  2 or D 2  

Case (i): If C  2 , then  X x C   .  Take E =  {By :  y  D }  1   (assumption), So E x Y    and ( X x C)  ( E x Y)  .   Fix 

(x, y)  B.  If y  C, then                    (x, y)  X x C.  If y  C,  then y  D and x  By   E.   Therefore (x,y)   E x Y.  Hence      B  (X 

x C )  (E x Y), So B  , This contradicts the fact  B   .  

Case (ii:) If D  2 ,then X x D   ; and as in case (i), we obtain a contradiction. Thus X x Y is -connected.                                                                                   

Corollary : 3.10  Let ( Xi i )  be  topological spaces with ideals i on Xi respectively for  i = 1,2,….n .  Let X = 
n

i 1
   Xi ; and  be an ideal 

such that Pi -1 ( i)  ,  i  = 1,2…..n.                  

  If {i  i  :  i = 1,2….n-1}is closed under arbitrary unions and Xi  is  i - connected, then X is  - connected.   

Corollary:  3.11  Let (X, ) be a connected space and (Y,) be  2  - connected.   If   be an ideal containing P2 -1 ( 2), then  X x Y is  - 

connected.  

Proof:  Consider  1 = {}, then   1 is closed under arbitrary unions, so by theorem 2.9, X x Y is -connected.                                                                                                  

Definition:  3.2  Let ( X,  ) be a topological space and  be an ideal in X. A connected component C of X with respect to   is called  - 

connected component of X .  A  - connected component C of X is said to be an ideal component in X if C  .  

Example : 3.4  Let X = { [0,1]  [2,3] [4,5]  …… [2n, 2n+1]  ……..} with the subspace topology induced by  the usual topology of 

R.  If  is the set of all bounded subsets, then every component of X is an ideal component.                                                                     

Theorem : 3.10  Let ( X, 1 ) be  1 - connected and (Y, 2 ) be   2 - connected. Assume that any union of ideal components is a member 

of 1 . If   is an ideal in X x Y containing P1 -1 ( 1) and   P2
-1( 2), then X x Y is  - connected.   

Proof:  If X  1 then X x Y is in the ideal  and hence X x Y is  - connected. So we  assume that X  1.  Assume that X x Y is not  - 

connected .   Then X x Y = A  B, where A, B  ,  A  B =  and  A,B are open sets.   For every component C of X and D of Y,C x D is 

a connected subset of X x Y and hence C x D  A or   C x D  B…………….(1)  
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For every component D of Y, write  

  AD  =   { C : C is a component of X and C x D  A }.  

  BD  =  { C : C is a component of X and C x D  B }.  

Now we claim that AD is open.  Let x  AD , then there exists a component C of X such that x  C and C x D A.  Fix y  D.  Therefore 

(x,y)  C x D  A.  Since A is open, there exist neighbourhoods Ux , Vy  of x, y respectively such that Ux x Vy   A.  If   x  cl (BD), then 

Ux  BD  .  Let x  Ux  BD i.e. x Ux  C0, for some component C0  where C0  x D  B.  Let (x, y)  Ux x Vy   B, where Ux , Vy 

are some neighbourhoods of  x, y respectively.  Then (x, y)  (Ux  Ux ) x ( Vy  Vy )  A  B, which contradicts A  B = .  

Therefore  x  AD implies that x is not a limit point of BD .  That is, AD is open.  Similarly BD  is open.  Thus X = AD  BD , and AD BD are 

open. So exactly one of AD, BD is in 1 , because X 1.  

Le       D1 = { D  Y : D is  component of Y and AD 1} and 

           D2  = { D  Y : D is  component of Y and BD 1}. 

 Write  and  Then Y = D1  D2  and D1 D2  =  

We claim that D1  is closed .  Fix d  D 1.  Let D  be the component of Y such that d  D.  Suppose d D1. Then D  D1  AD  1 so BD 

 1.  By (1) and our assumption, there is a component C of X such that C 1, C x D  A. Fix a member c C. Then (c,d)  A.  Since A 

is open, there exist neighborhoods Uc , Vd  of c, d in X, Y respectively, such that  (c, d)  Uc x Vd  A .  So there is a member d Vd   D1 

and there is a component D of Y such that d  D and AD  1, so that (c, d)  (Uc x Vd )  A.  Therefore (C x D)  A and C  1 , 

because C  AD  1.  This contradicts C  1.Therefore d D1 .  i.e. D1 is closed.   Similarly D2  is closed. Thus Y = D1 D2, where D1, 

D2 are closed  and         D1  D2 = .    Since  Y is 2  - connected, either D1  2 or D2  2.  Without loss of generality, we assume that  

D1  2 .Then X x D1.  Take Take  ( by assumption ).  So E x Y  and hence (X x D1)   (E x Y)  .  It is 

enough to prove that B  ( X x D1 )   (E x Y ).  Fix  (x, y)  B.   Then there exist components C and D such that ( x, y)  C x D   B.  If      

y  D1, then   (x, y)  X x  D1.   If y  D1  then Take    and hence x  C  BD   E , for some D D2 .  Therefore 

(x,y)  E x Y.  Hence B   ( X x D1 )  (E x Y )  .  This is a contradiction to B  .   Hence X x Y is  - connected.   

 

4. STRONGLY  - CONNECTED SETS 

Let us begin with following definition.  

Definition: 4.1 Let (X, ) be a topological space and let   be a  ideal on X.  A subset A of X is said to be strongly  -  connected if there is 

a  -  connected subset B of X such that A = B  C , where C   .  

 Every connected set is strongly  -  connected set, but converse need not be true.  It follows from the following example.  

Example: 4.1 Let (R, ) denote the set of real numbers with the usual topology and  be the ideal of all finite subsets of R.  Let A = 

[0,2]  {3,4,5}. Then A is strongly  - connected, but not connected.  

The following theorem gives the relation between  -  connectedness and strongly    -  connectedness.  

Theorem: 4.1 Let (X,  ) be a  topological space with a ideal  on X. If (X,  ) is strongly    -  connected, then it is - connected.  

Proof: Assume that (X,  ) is strongly  - connected and X = B  C where B is   -  connected and C  .  Suppose X = D1  D2 , where 

D1 , D2  are open and  D1  D2  =  .  Then    B = (D1  B)  (D2  B) and D1  B =  or  D2  B  =     D1  X - B or     D2   X - B      

D1  C or  D2  C  D1   or  D2   .  Hence X is  - connected.  

 The converse of the above theorem is not true.  

Example: 4.2 Let X = {0, 1, 1/2, 1/3, …....} and  be the  topology denoted by the usual  topology in R.  Let  be the  ideal of all finite 

subsets.  Then X is  - connected.  For if X is not   -  connected, then X = B  C, where B, C, B  C =  and B, C are open.   

 Therefore 0 B or 0 C, which implies that C is finite or B is finite, so that C  or      B  which is a contradiction.  But  X is not 

strongly  - connected because only  connected subsets of X are singletons whose its compliments are not in .  
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Theorem: 4.2  Given (X, ,  ) such that the  ideal  is a  - boundary ideal. Then the following are equivalent:  

(i) X is  connected  

(ii) X is -  connected  

(iii) X is strongly - connected  

 

Remark:4.1  Let (X,) be a topological space with a ideal  on X.  Let A, B  X.   If A is strongly  - connected and B , then A  B is 

strongly - connected.  

Theorem: 4.3   Let Ai ( i = 1,2……n)  be strongly - connected sets such that 
n

i 1
Ai , then  

n

i 1
  Ai is strongly - connected.  

Proof:  Since each Ai ( i = 1,2,…n) is strongly -  connected, we have Ai = Bi  Ci , where Bi is  connected and Ci .  As  Ai , we 

get Ai , and Bj , for all j. Let   Fj  = (Ai )  Cj .  Then Fj , for all j.     

Therefore 
n

i 1
  Fj ,.  Put E =  (  Ai ) – (  Fj) . Then E , because  Ai   

and Fj .  Now E   Bj for all j and hence E    Bj  . In particular  Bj                 

Hence 
n

i 1
  Bj is  connected and hence 

n

i 1
  Ai  = (

n

i 1
 Bj )  C, where  

C   
n

i 1
 (Ai - Bi )  

n

i 1
  Ci .  Thus 

n

i 1
  Ai is strongly  - connected.   

This theorem need not be true, if the family {Ai}  is an infinite family whose intersection is a non ideal set, as this may be seen from the 

following example. 

Example: 4.3  Let X be the real line with the usual topology .  Let An = (0,1)   n +1 for all  n = 1,2… and let  be the  ideal of all 

finite subsets of X.   Then An is strongly  - connected.   

Also  





1n
 An is a non  ideal set.  However, 






1n
  An = (0,1)   2,3,….. is not strongly   -  connected.  

 It is well known that the continuous image of a connected set is connected.  This result can be generalized as follows.  

Theorem: 4.4  Let f: ( X, , )   ( Y, ) be a continuous surjection.  If (X,  ) is strongly    - connected, then ( Y,) is strongly f () – 

connected, where  f () = {f ( I ): I  }.   

Proof :  Let f: ( X, , )  ( Y, ) be a  continuous surjection and let ( X,  ) is strongly   -  connected.  Then X = B  C, where B is 

connected and C .  Therefore Y = f (X) =  f ( B  C)  = f (B)  f(C), where f (B) is  connected and f (C)  f ().  Thus ( Y, ) is 

strongly  f () - connected.  

Theorem: 4.5  If I , for all I  then whenever A is strongly - connected, then B is also strongly   -  connected, for all B with A  

B  A .   In particular A  is strongly     - connected, if I  , for all   I .   

Proof:  Suppose A is strongly -  connected.  Then A = C   D, where C is connected and  D .   Since  A  B  A  and A = C   D  

B, we have  B = ( C  B)  ( D   B), where C    B is  connected as C C   B  C and D   B .   Hence B is strongly  - 

connected.  As a particular case when A is strongly - connected, A  is strongly  -  connected, for  all I  .  

The condition of I  implies I  can not be relaxed from the previous theorem 4.5. This is justified by the next example. 

http://www.ijcrt.org/


www.ijcrt.org                                                                       © 2020 IJCRT | Volume 8, Issue 3 March 2020 | ISSN: 2320-2882 

IJCRT2003255 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1831 
 

Example: 4.4  Let (R,) denote the real line with the usual  topology and let  be the  ideal of all with zero measure.  Let A = [0,1] {x : x 

is rational, 4 < x < 5 }.   Then A is strongly  -  connected, but A  = [0,1]  [ 4,5]  is not strongly  -  connected.  

Example :4.5  Let X = [0,1]  {2,3,4,5} with the usual topology and let  be the ideal of all finite subsets of X.  Then X is strongly - 

connected, but X x X is not strongly  x  - connected.  

Now we discuss strong- ideal connectedness of product of two strongly     - connected sets with a suitable ideal in the product space.  

Theorem: 4.6  Let (X, 1) be strongly 1-  connected and ( Y, 2) be strongly 2 -  connected.   If  is a ideal on X x Y such that pi
-1(i)  

, i = 1,2 ,   then X x Y is strongly  - connected, where p1 : X x Y  X , p2 : X x Y   Y are the projections and pi
-1(i) = { pi

-1(Ii): Ii 

i, i=1,2.} 

Proof:  Suppose X is strongly 1- connected and Y is strongly  2 - connected. Then X = A  C1 and Y = B  C2 , where A,B are 

connected subsets of X and Y respectively and C1, C2 .  

 Then X x Y = (A x B)  [(C1 x Y)  ( X x  C2) ].  Since A x B is connected with respect to the product topology 1x2 and C1 x Y, 

X x C2  , we have  (C1 x Y)  ( X x  C2 ) .  Thus X x Y is strongly  - connected.  

Corollary 4.7  Let (Xi ,i),  i = 1,2…n be a  topological space with a ideal i on Xi, for i = 1,2,3,....,n.  If each Xi, i =  1,2….n  is strongly i- 

connected and if   is a  ideal containing pi
-1(i), then  

n

i 1
 Xi is strongly  - connected, where pi :

n

j 1
 Xj  Xi are the projection and  pi

-1(i) 

= { pi
-1( Ii ):  Ii  i , i=1,2,3,......n.}   

Corollary: 4.8  Let (X ,1) and (Y,2) be two topological spaces with ideals 1, 2  on X, Y respectively. Let (X ,1) be a  strongly 1 - 

connected and (Y,2) be 2 - connected.  If  is a  ideal containing  p1
-1(1)  and p2

-1(2 ),  then X x Y is  -  connected.   

Consider the following definition.  

Definition: 4.2  Let (X ,) be a  topological space with a ideal  on X.  A subset A  X is said to be   - well linked if A  is strongly  - 

connected  

From the theorem 2.9, it follows that if I , for all I , then every strongly   -  connected subsets of X are   - well linked. The 

converse of the observation is not true if I     for some I .This may be seen from the following example.    

Example 4.6  Let Q be a set of all rational numbers and let  = { }.Take X = Q  {} .  Then X  is strongly - connected and hence X is 

 - well linked but X is not strongly   - connected.    
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