INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT) An International Dpen Access, Peer-reviewed, Refereed Journal

The number of $\boldsymbol{i}^{t h}$ smallest parts of r-partitions of n

K.Hanuma Reddy
Department of mathematics Hindu College AcharyaNagarjuna University
Guntur,A.P-522002 India.

A.Majusree
Department of mathematics
Hindu College
AcharyaNagarjuna University
Guntur,A.P-522002
India.

Abstract: George E Andrews [1] derived generating function for the number of smallest parts of partitions of positive integer n. Hanuma Reddy [2] defined $i^{\text {th }}$ smallest part and derived a relation between the $i^{\text {th }}$ smallest and $i^{\text {th }}$ greatest parts of partitions of n in general form. Here we derive generating function for the number of the $i^{\text {th }}$ smallest parts of r-partitions of n.

Keywords: partitions, r-partitions, smallest parts of partition and $i^{\text {th }}$ smallest parts of partition of positive integer n.
Subject classification: 11P81 Elementary theory of partitions.

Introduction:

A partition of a positive integer n is a finite non increasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that $\sum_{i=1}^{r} \lambda_{i}=n$ and is denoted by $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right), n=\lambda_{1}+\lambda_{2}+\lambda_{3}+\ldots \lambda_{r}$ or $\lambda=\left(\lambda_{1}^{f_{1}}, \lambda_{2}^{f_{2}}, \lambda_{3}^{f_{3}}, \ldots\right)$ when λ_{1} repeats f_{1} times, λ_{2} repeats f_{2} times and so on. The λ_{i} are called the parts of the partition. In what follows λ stands for a partitionof $n, \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right), \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}$. The set of all partitions of n is represented by $\xi(n)$ by and its cardinolity $p(n)$.

If $1 \leq r \leq n$ then $\xi_{r}(n)$ is the set of partitions of n with r parts and its cardinality is denoted by $p_{r}(n)$. A partition of n with exactly r parts is called r-partition of n. We define

$$
p_{r}(n)= \begin{cases}0 & \text { if } \quad r=0 \text { or } r>n \\ \text { number of } r \text {-partitions of } n & \text { if } 0<r \leq n\end{cases}
$$

$\operatorname{spt}(n)$ denotes the number of smallest parts including repetitions in all partitions of $n \cdot \operatorname{spt}_{i}(n)$ denotes the number of $i^{\text {th }}$ smallest parts including repetitions in all partitions of $n . r-s p t_{i}(n)$ denotes the number of $i^{\text {th }}$ smallest parts in all r - partitions of n.The number of partitions of n with least part greater than or equal to k is represented by $p(k, n)$.
1.1 Existing generating functions are given below.

Function
Generating function
$p_{r}(n)$

$$
\frac{q^{r}}{(q)_{r}}
$$

$p_{r}(n-k)$
$\frac{q^{r+k}}{(q)_{r}}$
number of divisors

$$
\sum_{n=1}^{\infty} \frac{q^{n}}{\left(1-q^{n}\right)}
$$

sum of divisors

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n \cdot q^{n}}{\left(1-q^{n}\right)} \tag{1.1.1}
\end{equation*}
$$

where $(q)_{k}=\prod_{n=1}^{k}\left(1-q^{n}\right)$ for $k>0,(q)_{k}=1$ for $k=0$ and $(q)_{k}=0$ for $k<0$.
and $(a)_{n}=(a ; q)_{n}=(1-a)(1-a q)\left(1-a q^{2}\right) \ldots\left(1-a q^{n-1}\right)$
1.2Theorem:If $k \in N$ and $1 \leq k \leq\left[\frac{n}{r}\right]$, then the number $f_{r}^{i}(k, n)$ of r-partitions of n with k as $i^{\text {th }}$ smallest part is
i) $f_{r}(k, n)=p_{r-1}[n-(k-1) r-1]+\beta \quad$ for $i=1$
where $\beta= \begin{cases}1 & \text { if } \frac{n}{r}=k \\ 0 & \text { otherwise }\end{cases}$
ii) If $i>1$

$f_{r}^{i}(k, n)=\sum_{r_{1}=1}^{r-1} \sum_{\mu_{l}=1}^{\infty} \ldots \sum_{r_{i-2}=1}^{r_{i-3}-1} \sum_{\mu_{l-i 2}=1}^{\infty} p_{r_{i-1}-1}\left[\begin{array}{c}\left(n-r \mu_{l}-r_{1} \mu_{l-1}-\ldots-r_{i-2} \mu_{l-i+2}\right) \\ -(k-1)\left(r-\alpha_{l} \ldots-\alpha_{l-i+2}\right)-1\end{array}\right]$
$+\sum_{r_{1}=1}^{r-1} \sum_{\mu_{1}=1}^{\infty} \ldots \sum_{r_{i-2}=1}^{r_{i-3}-1} \sum_{\mu_{l-i+2}=1}^{\infty} \beta_{i-1} \quad$ for $i>1$
where $\beta_{i-1}= \begin{cases}1 & \text { if } \frac{n-r \mu_{l}-r_{1} \mu_{l-1}-\ldots-r_{i-2} \mu_{l-i+2}}{r_{i-1}}=k-\mu_{l} \ldots-\mu_{l-i+2} \\ 0 & \text { otherwise }\end{cases}$

Proof :

(i) For $i=1$

Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, k^{\alpha_{l}}\right)$ be any r - partition of n with l distinct parts.
Put $t=1$ in theorem 1.2 in [3], we get the number of r-partitions of n with k as smallest part is
$f_{r}(k, n)=p_{r-1}(k, n-k)+\beta$

$$
\text { where } \beta= \begin{cases}1 & \text { if } \frac{n}{r}=k \\ 0 & \text { otherwise }\end{cases}
$$

First replace $k+1$ by k, r by $r-1$, then replace n by $n-k$ in theorem 1.3 in [3], we get

$$
\begin{equation*}
=p_{r-1}[n-(k-1) r-1]+\beta \tag{1.2.1}
\end{equation*}
$$

(ii) $\operatorname{For} i>1$

Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$

$$
\begin{equation*}
=\left(\mu_{1}^{\alpha_{1}}, \ldots, \mu_{l-i}^{\alpha_{l-i}}, \mu_{l-i+1}^{\alpha_{l-i+1}}, \mu_{l-i+2} \alpha_{l-+2}, \ldots, \mu_{l-1}^{\alpha_{l-1}}, \mu_{l}^{\alpha_{l}}\right) \tag{1.2.2}
\end{equation*}
$$

be any r-partition of n with l distinct parts. Subtracting μ_{l} from λ_{i} for $i=1$ to r, we get

$$
\begin{gather*}
n_{1}=\left(\lambda_{1}^{(1)}, \lambda_{2}^{(1)}, \ldots, \lambda_{r_{1}}{ }^{(1)}\right)=\left(\left(\mu_{1}^{(1)}\right)^{\alpha_{1}}, \ldots,\left(\mu_{l-i}{ }^{(1)}\right)^{\alpha_{l-i}},\left(\mu_{l-i+1}{ }^{(1)}\right)^{\alpha_{l i+1}},\left(\mu_{l-i+2}{ }^{(1)}\right)^{\alpha_{l i+2}}, \ldots,\left(\mu_{l-1}^{(1)}\right)^{(1)}\right) \\
\text { where } n_{1}=n-r \mu_{l}, r_{1}=r-\alpha_{l} \text { and } \mu_{\varphi}^{(1)}=\mu_{\varphi}-\mu_{l} \forall \varphi \tag{1.2.3}
\end{gather*}
$$

From (1.2.1) we have the number of r_{1} - partitions of n_{1} having smallest element k is
$p_{r_{1}-1}\left[n_{1}-(k-1) r_{1}-1\right]+\beta_{1}$
where $\beta_{1}= \begin{cases}1 & \text { if } \frac{n_{1}}{r_{1}}=k \\ 0 & \text { otherwise }\end{cases}$
$=p_{r_{1}-1}\left[\left(n-r \mu_{l}\right)-(k-1) r_{1}-1\right]+\beta_{1}(1.2 .4)$
where $\beta_{1}= \begin{cases}1 & \text { if } \frac{n-r \mu_{l}}{r_{1}}=k-\mu_{l} \\ 0 & \text { otherwise }\end{cases}$
In (1.2.2), the part μ_{l} may vary from 1 to $\mu_{l-1}-1$ and r_{1} may vary from 1 to $r-1$ (if $\mu_{l}=\mu_{l-1}$ or $r_{1}=r$, the partition(1.2.2) does not have l distinct parts.

It contradicts our assumption for $\mu_{l}>\mu_{l-1}$.)
Therefore the number of r-partitions of n with second smallest part k is $f_{r}^{2}(k, n)$

$$
\begin{equation*}
f_{r}^{2}(k, n)=\sum_{r_{1}=1}^{r-1} \sum_{\mu_{l}=1}^{\infty} p_{r_{1}-1}\left[\left(n-r \mu_{l}\right)-(k-1) r_{1}-1\right]+\sum_{r_{1}=1}^{r-1} \sum_{\mu_{l}=1}^{\infty} \beta_{1} \tag{1.2.5}
\end{equation*}
$$

Continuing this process in(1.2.3), we get
$n_{h}=\left(\lambda_{1}^{(h)}, \lambda_{2}^{(h)}, \ldots, \lambda_{r_{h}}{ }^{(h)}\right)=\left(\left(\mu_{1}^{(h)}\right)^{\alpha_{1}},\left(\mu_{2}^{(h)}\right)^{\alpha_{2}}, \ldots,\left(\mu_{l-h-1}^{(h)}\right)^{\alpha_{l-h-1}},\left(\mu_{l-h}^{(h)}\right)^{\alpha_{l-h}}\right)$
where $n_{0}=n, n_{h}=n_{h-1}-r_{h-1} \mu_{l-h+1}, r_{0}=r, r_{h}=r_{h-1}-\alpha_{l-h+1}$ and $\mu_{\varphi}{ }^{(h)}=\mu_{\varphi}{ }^{(h-1)}-\mu_{l-h+1} \forall \varphi$
From (1.2.1), we have the number of r_{h} - partition of n_{h} having smallest part k is

$$
p_{r_{h}-1}\left[n_{h}-(k-1) r_{h}-1\right]+\beta_{h}
$$

where $\beta_{h}= \begin{cases}1 & \text { if } r_{h} \mid n_{h} \\ 0 & \text { otherwise }\end{cases}$
Hence the number $f_{r}^{i}(k, n)$ of r_{i-1} - partitions of n_{i-1} with $i^{\text {th }}$ smallest part k as
$f_{r}^{i}(k, n)=p_{r_{i-1}-1}\left[n_{i-1}-(k-1) r_{i-1}-1\right]+\beta_{i-1}$
where $\beta_{i-1}= \begin{cases}1 & \text { if } r_{i-1} \mid n_{i-1} \\ 0 & \text { otherwise }\end{cases}$
$=\sum_{r_{1}=1}^{r-1} \sum_{\mu_{l}=1}^{\infty} \ldots \sum_{r_{i-2}=1}^{r_{i-3}-1} \sum_{\mu_{l-i+2}=1}^{\infty} p_{r_{i-1}-1}\left[\begin{array}{r}\left(n-r \mu_{l}-r_{1} \mu_{l-1}-\ldots-r_{i-2} \mu_{l-i+2}\right) \\ -(k-1)\left(r-\alpha_{l} \ldots-\alpha_{l-i+2}\right)-1\end{array}\right]$
$+\sum_{r_{1}=1}^{r-1} \sum_{\mu_{l}=1}^{\infty} \ldots \sum_{r_{i-2}=1}^{r_{i-3}-1} \sum_{\mu_{l-i+2}=1}^{\infty} \beta_{i-1}$
where $\beta_{i-1}= \begin{cases}1 & \text { if } \frac{n-r \mu_{l}-r_{1} \mu_{l-1}-\ldots-r_{i-2} \mu_{l-i+2}}{1}=k-\mu_{l} \ldots-\mu_{l-i+2} \\ 0 & r_{i-1} \\ \text { otherwise } & \end{cases}$
This completes the proof
1.3Theorem: The generating function for the number of $i^{t h}$ smallest parts of r-partitions of n such that $i^{\text {th }}$ smallest part as first part (i.e λ_{1} as $i^{\text {th }}$ smallest part $)$ is
$\sum_{n=1}^{\infty}\left(r-\operatorname{spt}_{i}(n)\right) q^{n}=\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \sum_{r_{2}=1}^{r_{i}-1} \frac{q^{r_{2}}}{\left(1-q^{r_{2}}\right)} \ldots \sum_{r_{i-1}=1}^{r_{i-2}-1} \frac{q^{r_{i-1}}}{\left(1-q^{r_{i-1}}\right)} \quad$ for $i=r$
Proof: Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)=\left(\mu^{r}\right)$ be any r partition of n with all equal parts.
We know that β is the number of smallest parts of r-partitions of n such that smallest part is the first part which is k (i.e λ_{1} as smallest part $)$.
where $\beta= \begin{cases}1 & \text { if } \frac{n}{r}=k \\ 0 & \text { otherwise }\end{cases}$

The generating function for the number of smallest parts of r-partitions of n such that smallest part is the first part (i.e λ_{1} as smallest part) is
$\sum_{n=1}^{\infty}\left(r-s p t_{1}(n)\right) q^{n}=\sum_{k=1}^{\infty} q^{k r}=\frac{q^{r}}{\left(1-q^{r}\right)}$ for $r=1$
Let $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)=\left(\mu_{1}^{\alpha_{1}}, \mu_{2}^{\alpha_{2}}\right)$ be any $r-$ partition of n with two distinct parts.
Subtracting μ_{2} from each λ_{i} for $i=1$ to r, we get
$n_{1}=\left(\mu_{1}^{(1)}\right)^{\alpha_{1}}$ where $n_{1}=n-r \mu_{2}, \quad r_{1}=r-\alpha_{2} \quad$ and $\quad \mu_{1}^{(1)}=\mu_{1}-\mu_{2}$
The number of smallest parts of r_{1}-partitions of n_{1} such that the smallest part is the first part and having k as a smallest part is β_{1}
where $\beta_{1}= \begin{cases}1 & \text { if } r_{1} \mid n_{1} \\ 0 & \text { otherwise }\end{cases}$
Since $n=n_{1}+r \mu_{2}$ and $\mu_{1}=k-\mu_{2}$, the number of second smallest parts of r-partitions of n such that second smallest part is the first part and having k as a smallest part is β_{1}
where $\beta_{1}= \begin{cases}1 & \text { if } \frac{n-r \mu_{2}}{r_{1}}=k-\mu_{2} \\ 0 & \text { otherwise }\end{cases}$
Therefore the generating function for the number of second smallest parts of r-partitions of n such that second smallest part is the first part (i.e λ_{1} as second smallest part $)$ is
$\sum_{n=1}^{\infty}\left(r-s p t_{2}(n)\right) q^{n}=\sum_{\mu_{2}=1}^{\infty} \sum_{r_{1}=1}^{r-1} \sum_{k-\mu_{2}=1}^{\infty} q^{\mu_{2} r+\left(k-\mu_{2}\right) r_{1}}$
$=\sum_{\mu_{2}=1}^{\infty} \sum_{r_{1}=1}^{r-1} \sum_{\mu_{1}=1}^{\infty} q^{\mu_{1} \gamma_{1}+\mu_{2} r}$
$=\sum_{\mu_{2}=1}^{\infty} q^{\mu_{2} r} \sum_{\mu_{1}=1}^{\infty} \sum_{\gamma_{i}=1}^{r-1} q^{\mu_{1} r_{1}}$
$=\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)}$ for $r=2$
Continuing this process, we getthe generating function for the number of $i^{\text {th }}$ smallest parts of r - partitions of n such that $i^{\text {th }}$ smallest part as first part (i.e λ_{1} as $i^{\text {th }}$ smallest part $)$ is

$$
\sum_{n=1}^{\infty}\left(r-s p t_{i}(n)\right) q^{n}=\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{i}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \sum_{r_{2}=1}^{r_{1}-1} \frac{q^{r_{2}}}{\left(1-q^{r_{2}}\right)} \ldots \sum_{r_{i-1}=1}^{r_{i-2}-1} \frac{q^{r_{i-1}}}{\left(1-q^{r_{i-1}}\right)} \text { for } i=r
$$

1.4Theorem: The number of smallest parts of r-partitions of n having k as a smallest part is
$\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]+\beta$
where $\beta= \begin{cases}1 & \text { if } r \mid n \\ 0 & \text { otherwise }\end{cases}$
Proof:From (1.2.10), the number of r-partitions of n with the smallest part k is
$f_{r}(k, n)=p_{r-1}[n-(k-1) r-1]+\beta$
Fix $k \in\{1,2, \ldots, n\}$. For $1 \leq i \leq r$ the number of r-partitions of n with the $(r-i)$ smallest parts each being k is the number of r-partitions of $n-(r-i) k$. Summing over $i=1$ to r we get the total number of r-partitions of n with k as the smallest parts .
This number $\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]+\beta$ where $\beta= \begin{cases}1 & \text { if } r n \\ 0 & \text { otherwise }\end{cases}$
1.5Theorem: The generating function for the number of $i^{\text {th }}$ smallest parts of r-partitions of n is

$$
\sum_{n=1}^{\infty} r-s p t_{i}(n) q^{n}=\frac{q^{n}}{\left(1-q^{n}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \sum_{r_{2}=1}^{r_{i}-1} \frac{q^{r_{2}}}{\left(1-q^{r_{2}}\right)} \ldots \sum_{r_{i-1}=1}^{r_{i-2}-1} \frac{q^{r_{i-1}}}{\left(1-q^{r_{i-1}}\right)}\left(\sum_{r_{i}=1}^{r_{i-1}-1} \frac{1}{(q)_{r_{i}}}+1\right)
$$

Proof: From theorem1.4, we have the number of smallest parts of r - partitions of n having k as a smallest part is $\sum_{i=0}^{\infty} p_{r-1-i}[n-(k-1) r-1-i]+\beta$ where $\beta= \begin{cases}1 & \text { if } \frac{n}{r}=k \\ 0 & \text { otherwise }\end{cases}$

The generating function for the number of smallest parts of r-partitions of n is
$\sum_{n=1}^{\infty} r-\operatorname{spt}(n) q^{n}=\sum_{k=1}^{\infty} \sum_{i=0}^{\infty} \frac{q^{r-1-i+(k-1) r+1+i}}{(q)_{r-1-i}}+\frac{q^{r}}{\left(1-q^{r}\right)}$
$=\sum_{k=1}^{\infty} \sum_{i=0}^{\infty} \frac{q^{k r}}{(q)_{r-1-i}}+\frac{q^{r}}{\left(1-q^{r}\right)}$
$=\sum_{i=0}^{\infty} \frac{\left(q^{r}+q^{2 r}+q^{3 r}+\ldots\right)}{(q)_{r-1-i}}+\frac{q^{r}}{\left(1-q^{r}\right)}$
$=\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{i=1}^{r-1} \frac{1}{(q)_{i}}+\frac{q^{r}}{\left(1-q^{r}\right)}$

$$
\begin{aligned}
& =\frac{q^{r}}{\left(1-q^{r}\right)}\left(\sum_{i=1}^{r-1} \frac{1}{(q)_{i}}+1\right) \\
& =\frac{q^{r}}{\left(1-q^{r}\right)}\left(\sum_{i=1}^{r-1} \frac{1}{(q)_{i}}+1\right) \\
& =\frac{q^{r}}{\left(1-q^{r}\right)}\left(\sum_{r_{i}=1}^{r-1} \frac{1}{(q)_{r_{1}}}+1\right)
\end{aligned}
$$

From theorem 1.4 and theorem1.6, we get the number of second smallest parts of r-partitions of n with second least part $k \neq \lambda_{1}$ is

$$
f_{r}^{2}(k, n)=\sum_{r=1}^{\infty} \sum_{\mu_{0}=1}^{\infty} \sum_{r_{1}=1}^{r-1} \sum_{i=1}^{\infty} p_{r_{1}-1-i}\left[\left(n-r \mu_{0}\right)-(k-1) r_{1}-1-i\right]
$$

The generating function for the number of second smallest parts $\neq \lambda_{1}$ of r-partitions of n

$$
\begin{align*}
& \sum_{r=1}^{\infty} \sum_{\mu_{0}=1}^{\infty} \sum_{r_{1}=1}^{r-1} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \frac{q^{r_{1}-1-i+r \mu_{0}+(k-1) r_{1}+1+i}}{(q)_{r_{1}-1-i}} \\
& =\sum_{r=1}^{\infty} \sum_{\mu_{0}=1}^{\infty} \sum_{r_{1}=1}^{r-1} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \frac{q^{r \mu_{0}+k r_{1}}}{(q)_{r_{1}-1-i}} \\
& =\sum_{\mu_{0}=1}^{\infty} \sum_{r=1}^{\infty} q^{r \mu_{0}}\left[\sum_{r_{1}=1}^{r-1} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \frac{q^{k r_{1}}}{(q)_{r_{1}-1-i}}\right] \\
& =\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)}\left(\sum_{r_{2}=1}^{r_{1}-1} \frac{1}{(q)_{r_{2}}}\right) \tag{1.5.1}
\end{align*}
$$

From(1.3.4) the generating function for the number of second smallest parts of r-partitions of n with second smallest part equal to λ_{1} is
$\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \quad$ for $r=2$
From (1.5.1) and (1.5.2) we get the generating function for the number of second smallest parts of r - partitions of n which is given by

$$
\begin{align*}
\sum_{n=1}^{\infty} r-s p t_{2}(n) q^{n}= & \frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)}\left(\sum_{r_{2}=1}^{r_{1}-1} \frac{1}{(q)_{r_{2}}}\right)+\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \\
& =\frac{q^{r}}{\left(1-q^{r}\right)} \sum_{r_{1}=1}^{r-1} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)}\left(\sum_{r_{2}=1}^{r_{1}-1} \frac{1}{(q)_{r_{2}}}+1\right) \tag{1.5.3}
\end{align*}
$$

By induction, the generating function for the number of $i^{t h}$ smallest parts of r-partitions of n is

$$
\sum_{n=1}^{\infty} r-s p t_{i}(n) q^{n}=\frac{q^{n}}{\left(1-q^{n}\right)} \sum_{r_{i}=1}^{r-1} \frac{q^{r_{i}}}{\left(1-q^{r_{1}}\right)} \sum_{r_{2}=1}^{r_{i}-1} \frac{q^{r_{2}}}{\left(1-q^{r_{2}}\right)} \cdots \sum_{r_{i-1}=1}^{r_{r-1}-1} \frac{q^{r_{i-1}}}{\left(1-q^{r_{i-1}}\right)}\left(\sum_{r_{i}=1}^{r_{i-1}-1} \frac{1}{(q)_{r_{i}}}+1\right)
$$

1.7 Corollary:

The generating function for the number of $k^{\prime} s$ as smallest part of
r-partitions of n is
$q^{k r}\left[\sum_{i=1}^{r-1} \frac{1}{(q)_{i}}+1\right]$
1.8 Corollary:The generating function for the number of k ' s as smallest parts of partitionsof n is
$\sum_{r=1}^{\infty} q^{k r}\left[\sum_{i=1}^{r-1} \frac{1}{(q)_{i}}+1\right]$
1.9 Corollary: The generating function for the number of r - partitions of n having i distinct integers is
$\sum_{r_{i}=1}^{\infty} \frac{q^{r_{1}}}{\left(1-q^{r_{1}}\right)} \sum_{r_{2}=1}^{r_{1}-1} \frac{q^{r_{2}}}{\left(1-q^{r_{2}}\right)} \ldots \sum_{r_{i}=1}^{r_{i-1}-1} \frac{q^{r_{i}}}{\left(1-q^{r_{i}}\right)}$
1.10 Corollary:The generating function for the number of smallest parts of r-partitions of n which are multiples of c is
$\sum_{n=1}^{\infty} c\left(r-s p t_{i}(n)\right) q^{n}=\frac{q^{c r}}{\left(1-q^{c r}\right)}\left[\sum_{r_{1}=1}^{r-1} \frac{1}{(q)_{r_{1}}}+1\right]$

References

1. Andrews G. E. (1998), The Theory of Partitions, Cambridge University Press, Cambridge. MR 99c: 11126.
2. B.Hanuma Reddy K. (2010), A Study of r - partitions, submitted to AcharyaNagarjuna University, awarded of Ph.D. in Mathematics.
3. Hanuma Reddy K, Manjusree A (2015), The number of smallest parts in the partitions of n, International Journal in IT and Engineering, vol.03, Issue-03, ISSN:2321-1776.
