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Abstract :  Manufacturing Engineers are facing new challenges during machining of electrically non-conducting or partially conducting 

materials such as glass, quartz, ceramics and composites. Traveling Wire Electrochemical Spark Machining (TW-ECSM), a largely unknown 

technology, has been applied successfully for cutting, these types of electrically non-conducting or partially conducting materials. However, 

very few theoretical works have been reported related to machining performance of TW-ECSM process. This paper reports, an intelligent 

approach for the modelling of TW–ECSM process using Finite Element Method (FEM) and Artificial Neural Network (ANN) in integrated 

manner. First, a 3-D finite element transient thermal model has been developed for the determination of MRR during TW–ECSM process. Using 

results from the FEM simulation, a three layer Back Propagation (BP) neural network process model was developed to predict MRR. The BP 

neural network process model was found to accurately predict TW–ECSM process response for chosen process conditions. Further, this paper 

also presents parameter optimization for MRR during TW–ECSM using Taguchi Method (TM). By analyzing, it is observed that spark on-time 

has more effect on MRR rather than supply voltage or current. 
 

 

IndexTerms - Traveling Wire-Electro-Chemical Spark Machining (TW-ECSM), Material Removal Rate (MRR), Finite Element 

Method (FEM), Artificial Neural Network (ANN), Taguchi Method (TM). 

 

________________________________________________________________________________________________________  

I. INTRODUCTION 

Precision machining of electrically non-conducting or partially conducting engineering ceramics, composites, etc. is an urgent 

need of present industries. Machining of these materials by conventional methods is a serious problem yet to be resolved. Some 

of the advanced machining processes that can be used for machining these materials are Ultrasonic Machining (USM), 

Abrasive Jet Machining (AJM), Laser Beam Machining (LBM), and Electron Beam Machining (EBM). But these processes 

have their own limitations too. Electro Chemical Spark Machining (ECSM) process is an effective spark-based machining 

method suitable for machining of low machinability, high strength electrically conducting as well as non-conducting materials. 

ECSM is a hybrid process, which employs features of Electro Chemical Machining (ECM) and Electro Discharge Machining 

(EDM). However, ECSM can be applied to electrically non-conducting materials while the other two cannot be.  

 

 The ECSM process uses Electro-Chemical Discharge (ECD) phenomenon for generating heat for the purpose of 

removing work material by melting and vaporization. This was presented for the first time in 1968 by Kurafuji as 

“Electrochemical Discharge Drilling” for micro holes in glass (Kurafuli and Suda, 1968). Several other names of ECSM are 

used in literature by different researchers, such as “Electrochemical Arc Machining (ECAM)” by Kubota, “Electrochemical 

Discharge Machining (ECDM)” by Ghosh et al., and “Spark Assisted Chemical Engraving (SACE)” by Langen et al. 

(Wuthrich and Fascio, 2005). The diversity of names illustrates the complexity of the process. After almost 40 years of its first 

mention in literature, the basic mechanism of the process is not yet completely understood and is still a matter of research 

investigations. Various researchers have put forth explanations of ECD phenomenon based on their experimental studies 

(Basak and Ghosh, 1996, Jain et al, 1999, Kulkarni et al, 2002, Wuthrich and Bleuler, 2004,Yerokhin et al, 1999, Vogt, 1999, 

Fascio et al, 2004, Wuthrich et al, 2005) ECSM with ECD have been tried in many ways: Hole making using sinking tool 

electrode, Hole making using rotating tool electrode, Cutting using traveling wire tool electrode and Contour Milling (CM) 

using a simple shape tool electrode to produce 3-D cavity by adapting a movement strategy similar to conventional milling. 

Accordingly, they are called as Sinking-ECSM, Drilling-ECSM, TW-ECSM and CM–ECSM. Success in the application of 

Sinking and Drilling ECSM has stimulated interest in studying the prospects of TW-ECSM. In 1985 Tsuchiya et al. proposed 

TW-ECSM first time for cutting non-conducting materials such as glasses and ceramics and studied further on by Jain et al. 

and Peng et al. (Wuthrich and Fascio, 2005). TW-ECSM is capable to do slicing of large volume of material without the need 

for costly full form tool electrodes. Also, complex shapes in the workpiece can be cut by the use of numerically controlled 

movement of workpiece. In TW-ECSM configuration, a wire of diameter less than 1mm moves with speed less than few 

centimeters per minute through guides.TW-ECSM is a largely unknown technology for which scars literatures are available. 

Yet it has not been commercialized but still under laboratory study stage. McGeough et al. (1988) carried out experimental 
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studies on the effects of mode of electrolyte flushing, wire erosion, machining speed on metal removal rate during TW-ECAM. 

Their recommendation was to use coaxial mode of flushing for maintaining the machining action and its accuracy.  

 

 Jain et al. (1991) carried out experiments on their self developed setup of TW-ECSM for cutting Glass epoxy and Kevlar 

epoxy composites using NaOH electrolyte. They found that the wire wear rate and the over-cut follow a similar behavior as the 

machining rate but the wire wear rate is about two magnitudes smaller than the MRR. It was also found that there was increase 

in MRR at higher voltage along with the presence of thermal cracks, large HAZ and irregular machined surfaces. They also 

tried to study the effect of artificially introducing some bubbles into the process during machining and found that the MRR as 

well as the over-cut decreases slightly. Peng et al. (2004) verified that TW-ECDM can be applied for slicing meso-size non-

conductive brittle materials of several millimeters thick. They have shown that pulsed dc power shows better spark stability 

and more spark energy than constant dc power. Nesarikar et al. (1994) carried out experimental study for the feasibility of TW-

ECSM process for precision slicing of thick Kevlar-epoxy composite. They did comparison between the experimental and 

calculated values of MRR and average diametral overcut with the variations in electrolyte conductivity, applied voltage and 

specimen thickness.  

 

 Singh et al. (1996) attempted to explore the feasibility of using TW-ECSM process for machining of electrically 

partially conductive materials like PZT (lead zirconate titanate) and carbon fiber epoxy composites. They found that MRR 

increases with increase in supply voltage. MRR also increases with increase in concentration of the electrolyte up to around 20 

wt %. Beyond this concentration it starts decreasing. They also observed that machined surface shows evidence of melting. 

Large cracks are sometimes observed when the machining is done at higher voltage. However, such cracking is not seen at 

lower voltage. 

 

 Basak and Ghosh (1997) developed a theoretical model for the electrochemical discharge machining process. The model 

has capability to predict the characteristics of the material removal rate for varying input parameters and gives similar trend of 

MRR with the experimental results. Jain et al. (1999) developed a 3-D unsteady heat transfer model for the determination of 

MRR, overcut and limited depth of cut during sinking-ECSM. In their model random number generation scheme to locate the 

spark over the workpiece has been used. They assumed the nature of the spark as prismatic column with square cross-section, 

which is far from real situation. Bhondwe et al. (2006) developed a FEM model for computation of MRR during sinking-

ECSM. They applied the model to two types of materials, soda lime glass and alumina. Parametric study was also performed to 

study the effect of electrolyte concentration, duty factor and energy partition on MRR. Panda and Yadava (2009) developed a 

FEM model for computation of MRR during TW-ECSM. They applied the model to two types of materials, mild steel and 

glass. Parametric study was conducted by them to study the effect of energy partition, duty factor, spark radius, and ejection 

efficiency on MRR. They also performed computational experiments for the determination of energy partition and spark radius  

Based on the above literature survey, studied in depth, it has been observed that very few theoretical/numerical studies have 

been reported to date for the optimization of process parameters during TW–ECSM. The focus of the present work is on 

developing an intelligent process model for TW–ECSM process for accurate prediction of MRR. It primarily comprises 

development of two models. First one is the development of FEM model considering the thermo-physical characteristics of the 

TW–ECSM process and the second one is the development of an ANN model trained and tested by the data sets generated by 

FEM simulations. This approach of model development has a peculiar merit that it is based on the FEM model and not on 

experimental data collection, which is costly, time consuming and error prone. Further, parameter optimization for MRR 

during TW–ECSM process has also been carried out using Taguchi Method (TM). These optimum process parameters will 

help to improve the process productivity and finishing capability during TW–ECSM applications. “Figure 1” shows the overall 

methodology for the development of an integrated intelligent process model and optimization of process parameters during 

TW–ECSM process.   

 

2.  Numerical modeling of the TW–ECSM process 

The configuration of a typical TW-ECSM setup is shown in “Fig. 2”. In TW-ECSM the hydrogen gas bubbles are formed all 

along the circumference of the wire electrode. The coalescence of bubbles form a gas film around the wire electrode when the 

supply voltage reaches a critical value. This gas film isolates the wire electrode from the electrolyte. Electrical discharges in the 

form of sparks take place across gas film between tool and electrolyte and machining of material is possible if the workpiece 

material is kept in the vicinity of the sparking zone. The material removal in TW-ECSM is mainly caused by the melting and 

vaporization due to heat generated by the spark. It is considered as a thermal phenomenon (Wuthrich and Fascio, 2005). The 

equations used for modeling and simulation of TW-ECSM process include governing equation, boundary conditions and initial 

condition.  

 

2.1 Assumptions 

            To make the analysis of TW-ECSM mathematically tractable numbers of simplifying assumptions are required to be 

made, which are written below: 

i) Workpiece material is homogeneous and isotropic. Although the materials used in real practice are not homogeneous 

in structure, to simplify the problem it is considered to be homogeneous throughout. Hence, the average values of 

thermal properties are used. 

ii)      The thermal properties, viz. specific heat and thermal conductivity, of the workpiece material are treated as 

temperature independent. 
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iii)         Only a fraction of total spark energy is dissipated as heat into the workpiece. The rest of the heat is assumed to be 

distributed between the tool and the electrolyte. However, this study is restricted for the prediction of MRR from the 

workpiece material. 

iv) At a time only one spark is produced at the workpiece top surface (single Spark   phenomenon) Kulkarni et al. (2002) 

and the duration of spark is same for all discharge. 

v) Shape of heat flux is assumed to be Gaussian distributed. From the experimental studies of Kulkarni et al. (2002) for 

single spark, the heat affected zone is circular and the crater is dome shaped. So reflecting the shape of crater, the 

nature of the heat flux can be approximated as Gaussian. 

vi) Since the study for the material removal is carried out for single spark, to calculate the material removal rate, the 

sparks occurring per unit time are assumed to be identical.  

vii) The energy density of a spark column during the discharge time ton is assumed to be constant. 

viii) Ejection efficiency is assumed to be 100%. Also, there is no deposition of recast layer on the machined surface. 

 

2.2 Governing Equation 

The first step in estimation of MRR is to find the temperature distribution in the workpiece domain. The general 3-D heat 

diffusion equation within a homogenous and isotropic solid without heat generation in workpiece can be used. This can be written 

as Cengel, Y. A. (2004):  

2 2 2

2 2 2

TT T T
k C

p tX Y Z


 
 
  

  
  

  
in domain ABCDEFGH (Fig.3)                  (1)       

Where, T  is temperature,   is density, C
p

is specific heat, k  is thermal conductivity of the workpiece material, t  is time and

,X Y , Z  are coordinate axes. 

2.3 Initial and Boundary conditions 

i) At the start of the TW-ECSM process, the workpiece is immersed in the electrolyte and the temperature of the whole 

domain is assumed to be at room temperature (
0

T ) i.e., 
0

T T  in the workpiece domain ABCDEFGH at 0t  (Fig.3). 

(ii)  The boundaries ,
3 5

B B and 
6

B of the domain are considered as insulated boundaries (Fig.3). It is due to the fact that the 

temperature gradient across these boundaries ( ,
3 5

B B and
6

B ) compared to incoming heat flux boundary ( B
q

) is almost 

negligible  

i.e., 0
T

n





   on  ,

3 5
B B and 

6
B for 0t  .                               (2) 

Where, n  is the outward normal to the boundary.        

           (iii)       On the top surface of the domain the area of B
q

receives a total heat Q (from the spark) for a time period t
on

. After that 

period, this area receives no heat as the spark moves to another location. Thus,  

             
Q

q
w Bq
     on area  B

q
 for t t

on
                                                        (3) 

                     0        for    
on

t t  

            Where, q
w

 is the heat flux to the workpiece. The expression for  q
w

 is given as: 

             

24.45
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w RR

   
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   

                                    (4) 

where, R  is spark radius, r  is the radial distance from the axis of the spark, U  is supply voltage, I  is current and Fw  

is energy partition. 

 

No comprehensive method has so far been proposed to calculate the value of Fw  during TW-ECSM process. Jain et al. (1999) 

assumed this value as 5%. Therefore, in the present work Fw  is taken as 5%. Basak and Ghosh (1997) took spark diameter

6
2 10a I

b


 , where 2a is spark diameter in meters and I
b  is the current in amperes at the instant of the circuit opening. But 

they assumed that spark channel is cylindrical in shape. Also Jain et al.(1999) assumed prismatic nature of spark with square cross 

section, which is far from real situation. Kulkarni et al. (2002) gave the crater diameter for different workpiece materials as 300 

μm based on their experiments. Therefore, in the present work, the spark radius is taken as 150 μm. 

 

During on-time the remaining area (
1

B B
q

 ) on the top surface of the domain (Fig. 3) losses heat due to convection to the 

surrounding electrolyte. The area (
1

B B
q

 ) will however depend on the location of the discharge. Also, during off time the 
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whole top surface 
1

B will be the convective boundary. The boundaries 
2

B  and 
4

B are also considered as convective boundaries 

as it will dissipate heat throughout the computational time, irrespective of on or off time. Hence, we can write, 

    ( )
0

q h T T
c
           on , ,

1 2
B B B

q
  and 

4
B  for  0t                                    (5)                                                                           

 Where, h  is convective heat transfer coefficient of the electrolyte (
2

/W m K ) in which workpiece is completely dipped. 

2.4  Finite Element Formulation 

In the present analysis, the Galerkin‟s weighted residual method Reddy (2005) has been applied to obtain the 

temperature distribution within the computational domain (Fig. 3b) due to heat flux of single spark. The following elemental 

equations are obtained when Galerkin‟s approach is applied to TW-ECSM process [Eqs. 1-5]. 

           [ ]

e
be e e b bbC T K T K T f fc q

  
    

  

                                                                                  (6) 
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Here,  
e

C  is the elemental capacitance matrix,  
e

K  is the elemental conductivity matrix,  
b

K  is the boundary elemental 

conductivity matrix,  
b

cf  is the boundary element convection vector,  
b

qf  is the boundary element heat flux vector,  
e

N  is 

the interpolation functions vector for a typical area element,  
b

N  is the interpolation functions vector for a boundary element, 

 eB is the matrix of derivatives of nodal interpolation functions for typical area element, Bh  is the convective boundary and Bq

is boundary of input heat flux. The Gauss quadrature technique is used to evaluate elemental matrices and vectors. When 

elemental quantities of Equation (7) are assembled, the following differential equations are obtained.  

   [ ] [ ]GC GKT T GF
  

  
  

                                                                 (8) 

Where,  GC  is the global capacitance matrix,  GK  is the global stiffness matrix,  GF  is the global heat flux vector,  T  is 

global temperature vector and T
  

 
  

is time derivative of  T . Equation (8) is converted into algebraic equations after application of 

implicit Finite Difference Method (FDM). Here, the solution marches in time, in steps of Δt until the desired final time is reached. 

In the present model, Δt is divided into two-time steps Δt1 and Δt2. Δt1 and Δt2 are pulse on time and off time of the spark, 

respectively. 

  (7) 
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2.5 Modelling for material removal rate (MRR) 

 For calculation of MRR from the workpiece during TW-ECSM it is assumed that the discharge occurs only along the axis of the 

wire and only one discharge occurs at any instant. Also, it is considered that no consecutive sparks occur at the same location. The 

cathode wire is considered to move along the X-axis at Z=0.6mm on top surface (X-Z plane) of the workpiece (Fig. 3). The 

velocity of the wire (
 Vw  is taken as 2m/min [11]. Total distance traveled by the wire across the workpiece is 0.6mm (from X=0 

to X=0.6mm). On-time and off-time of the spark is taken as 500s and 100s respectively. So, total pulse duration is 600s. 

Hence, time required to travel across the workpiece width (0.6mm) is calculated as 18000s. During this duration 30 numbers of 

sparks are possible. This requires a discritized domain of atleast 30 locations on which sparking can occur. It is assumed that the 

sparks occurring at a place do not overlap and the sparks should fall completely on the top surface of the domain as shown in 

“Fig. 4”. Hence, for 30 spark locations a domain having nodes more than 4500 is required. Present computing machine available 

is not capable to perform calculations with array size more than 4500×4500. Due to this limitation, wire travel distance across the 

workpiece is not considered for 0.6mm.Instead MRR is calculated based on only computational time of 1200s when wire travels 

a distance of 0.04mm over the workpiece. During this computational time two sparks are possible. This way wire velocity has 

been incorporated in the calculation of MRR.  

    The location of the first spark is assumed at X=0.15mm, Z=0.6mm on top surface (X-Z plane, Y=0.6mm) as shown in “Fig. 4”. 

The nodal values of input heat flux for the boundary elements on the top surface of workpiece is the function of radius from the 

center of axis of the spark as given by Equation (4). Using the global coordinates of each node of the boundary element, the 

distance from the axis of the spark is calculated. The distance of each node of a boundary element is compared with the radius of 

spark. If distance of atleast one node of a boundary element is less than the radius of the spark or if the distance of atleast two 

nodes of a boundary element are equal to distance of radius of spark, the element is taken as incoming heat flux boundary, else the 

element is taken as convective boundary element. This logic is incorporated in the developed software. So, when the location and 

radius of the spark is specified, the software can locate the incoming heat flux boundary elements and convective boundary 

elements on the top surface of the workpiece.   

After the on-time of the first spark, an off-time of 100s is considered. During this period the whole top surface DHGC (Fig. 3) 

will be considered as convective boundary. The second spark is assumed at X=0.45mm, Z=0.6mm on X-Z plane at Y=0.6mm as 

shown in “Fig. 4”. The temperature distribution in the workpiece domain at the end of the first pulse duration is used as the initial 

temperature for the calculation of nodal temperature for the second pulse duration.  

Contour plots of temperature at the top surface of the workpiece after the first and second spark at X=0.15mm and X=0.45mm are 

shown in “Fig. 5”. “Figure 5” (a) and “Figure 5 (b)” show the contour plots after first and second spark respectively. Isotherms 

are also plotted at different X-Y sections (depth direction) of the domain for different voltage and machining current. The 

isotherms in X-Y plane at Z=0.6mm for 20V and 25A input power are shown in Fig. 6. Isotherms in X-Y plane after the first and 

second spark are shown in “Fig. 6 (a)” and “Fig. 6 (b)” respectively. The volume of the material melted is computed by 

generating the isotherms for the temperature equal to and above the melting temperature 
 Tm of the workpiece material. This is 

done by interpolating the nodal temperatures on the top surface as well as in the depth direction of the workpiece. The isotherms 

in “Fig. 5” and “Fig. 6” show the crater formed in the workpiece material. The volume of the crater formed is calculated by 

assuming its shape to be of hemi-ellipsoid. The volume V of a hemi-ellipsoid is given by,

2
3

V a b c    
 where, 

,a b

and c are the half axes of the ellipsoid Jain et al (1999). 

Initially the MS workpiece is at the room temperature (20C). When the workpiece is subjected to the first spark the temperature 

of the workpiece increases. At the end of the first spark the volume of material having temperature more than the melting 

temperature (1150C) of MS are removed from the workpiece. The remaining workpiece material will be at a higher temperature 

than the room temperature. These temperatures are stored to use as initial temperature of the workpiece for calculation of nodal 

temperature in the workpiece due to second spark. The volume after the first spark and the volume removed by the second spark 

are added to get the total volume of material removed due to two sparks, i.e., total duration of two sparks are 2×600 s. MRR  is 

then calculated using Equation (9).  

( ) 60 31 2 / min
6( ) 101 2

V V
MRR mm

t tp p

 


 
 

1
V

= Volume of material removed after first spark (
3

mm ) 

2
V

= Volume of material removed after second spark (
3

mm ) 

 
1

t
p

= First pulse duration (s) 
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2

t
p

= Second pulse duration (s) 

since 
1

t
p

is taken same as 
2

t
p

 ( 
1 2

t t
p p


), hence 

( ) 60 31 2 / min
62 101

V V
MRR mm

tp

 

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                                                                          (9) 

2.6 Comparison of MRR 

McGeough et al. (1988) experimentally measured MRR from MS workpiece during TW-ECSM. In their experiment a copper 

wire of 0.25 mm diameter was used as cathode electrode moving with a velocity of 2 m/min. The thickness of MS workpiece was 

12 mm. The NaNO3 electrolyte, with a 200 g/l solution at 20˚C was used. Each experiment was lasted for about 6 to 12 min, 

during which current and voltage were recorded on a coulomb counter and oscilloscope respectively.  

The above-mentioned problem is solved using present model for determination of MRR from MS workpiece during TW-

ECSM. The wokpiece material and cutting conditions used are taken same as used in the literature McGeough et al. (1988). The 

material properties of mild steel are taken from Nayar (2002). The cutting conditions and the material properties of mild steel are 

given in Table 1 and Table 2 respectively. The domain size has been changed from 12mm×6mm×6mm to 1.2mm×0.6mm×0.6mm 

because of computational limitations of our computing system. The workpiece domain is discretized into eight noded hexahedral 

elements. Convergence conditions were carried out by increasing the number of elements in the mesh. The simulation showed 

that the nodal temperature of workpiece domain obtained were essentially unchanged, when the mesh size is in excess of 1024 

elements. The mesh of 1024 elements is thus found to be adequate for convergence. Hence the mesh consisting of 1024 number of 

square elements each of length 0.075 mm and total 1377 nodes are used for further analysis. The nodal temperature distribution of 

the workpiece domain is found using computer with Pentium 4 processor.    

MRR is calculated for different supply voltage and machining current. MRR calculated using present FEM based model 

is compared with experimental values obtained by McGeough et al. (1988). The results obtained using present model shows (Fig. 

7) similar pattern as given in literature McGeough et al. (1988). MRR calculated using present FEM based model increases with 

increase in voltage. MRR also increases with the increase in feed rate. Calculated MRR at feed rate of 10 mm
2
/min and supply 

voltage of 15V using present FEM based model is found as 38.58mm
3
/min whereas the experimental value of MRR for the same 

input conditions is 30mm
3
/min. Further, when the feed rate is taken 10mm

2
/min and supply voltage 20V the MRR calculated 

using present FEM based model is found 65.33mm
3
/min whereas experimental value is 40mm

3
/min. 

Hence, it is observed that MRR calculated using present model is greater than experimental values. This may be due to 

the value considered for ejection efficiency during TW-ECSM process. In the present model the ejection efficiency is assumed to 

be 100% (it is assumed that all the material, which is melted, is removed). In real situation, some part of the molten material is not 

completely removed but it adheres back (resolidify) to the parent material because of the quenching effect caused by liquid 

electrolyte. This plays a dominant role, as the ejection efficiency in TW-ECSM is very low. It may be as low as 10% or even 

lower than that Jain et al. (1991).  Further there is no exact data available regarding energy partition and spark radius for the 

combination of MS workpiece, NaNO3 electrolyte and Cu traveling wire. Also, shape of the crater formed is assumed as hemi-

ellipsoid and approximations are done in the calculation of volume during interpolation of co-ordinates of isotherms. Above 

described reasons are responsible for getting different values of computational and experimental results. 

Parametric study was conducted considering Glass as workpiece material and using the model developed for MRR. The 

material properties of Glass are given in Table 3.  From the parametric study conducted, it has been found that MRR during TW–

ECSM process is influenced by different input process parameters. It is observed that a complex, non linear relationship exist 

between these process parameters with MRR. In the absence of a good process model, it is quite difficult to select the optimum 

process parameters. Hence the results obtained from the present FEM model have further been used for developing an intelligent 

model for simulation and optimization of TW–ECSM process for specific application. Neural networks are known to have 

excellent function mapping capabilities even from incomplete and noisy data Hassoun (2007). It is therefore thought that an 

appropriate ANN-based comprehensive TW–ECSM process model can be developed using the simulation results of FEM-based 

model.     

 

3. Intelligent modeling of the TW–ECSM process 

 Artificial Neural Networks are developed to model the way in which the human brain performs a particular task, or 

processes information. ANNs are parallel computational models comprised of densely interconnected adaptive processing units 

and have gained prominence recently among researchers of non-linear systems. As the name implies, these networks are computer 

models of the processes and mechanisms that constitute biological nerve systems. ANNs can be used to model complex 

relationships between inputs and outputs or to find patterns in data. In essence, a neural network can be viewed as function 

approximater for approximating outputs for given set of input conditions with proper training. ANNs have the ability to learn 

from their environment and adapt to it in an interactive manner similar to the biological neurons Zurada (2006). A very important 

feature of these networks is their adaptive nature, where „learning by example‟ replaces „programming‟ in solving the problems 

Karunakar and Datta (2008) This feature makes such computational models very useful in application domain where one has little 

or an incomplete understanding of the problem to be solved. 
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3.1 Back propagation artificial neural network modeling of TW–ECSM process   

  The present work was aimed at establishment of correlation between input process parameters such as supply voltage, 

current and spark on-time with process response MRR using suitable ANN algorithm. There are several algorithms in ANN and 

the one that has been used in the present study is the back-propagation (BP) training algorithm. In the back-propagation network, 

initially the weights are initialized randomly. Consequently, the outputs are calculated based on these weights. Outputs so 

calculated are compared with the actual or desired outputs by the network and the error is transmitted to the previous layer, which 

results in correction of the weights. The training iteration process may be terminated either by a convergence limit or simply by 

limiting the total number of iterations. The steps of the ANN calculation during training using back propagation algorithm are as 

follows. 

1
st
 step: Specify a set of desired input/output patterns for the NN. 

2
nd

 step: Synaptic weights of the network are initialized to small random values. 

3
rd

 step: An input pattern from the set of desired input/output patterns is presented and the network responses are 

calculated. 

4
th

 step: The desired network responses are compared with the actual output of the network and the mean square error 

(MSE) is computed.   

5
th

 step: The weights preceding each output node are updated according to the following update formula Jain and Jain 

(2000). 

               ( ) ( 1) ( )i j i j j iw n w n y n                                                              (10) 

where,  is a constant called learning rate,  is the local error gradient of the network,   is usually a positive number called 

momentum factor, 
iy the output of the ith unit, n is the number of training pattern presented to the network, and i jw represents 

the weight connecting the ith neuron of the input vector and the jth neuron of the output vector. 

6
th

 step:  The cycle (step 3 to step5) is repeated until the calculated outputs have         converged sufficiently close to the 

desired outputs or an iteration limit has been reached.  

 

3.1.1 Network training and testing data 

 In this work as discussed in section 2, thermophysical analysis of single-spark TW–ECSM process using FEM has been 

carried out and same is used for the determination of MRR. Considering three input process parameters (supply voltage, current 

and spark on-time) at five different levels (Table 4) a total of 125 (5
3
) numerical experiments have been carried out to calculate 

the values of MRR. These data sets were divided into a training set and a testing set for ANN simulation. Out of the total 

available 125 data sets, for selecting the testing data sets Taguchi‟s L25 orthogonal array (Table 5) was used and remaining 100 

data sets were used for training the network. In order to increase accuracy and speed of the network the input and output data 

were normalized. After normalization input and output data set lies in between 0.1 and 0.9. The training and testing datasets were 

normalized using the following equation. 

 

 
0.8( )

min 0.1
max min

x x
xn

x x


 


                                                                                 (11) 

where xn is the normalized value of variable x , maxx and 
min

x are maximum and minimum value of x in total data sets.    

3.1.2 Training and testing of neural network 

 By training the neural network, the architecture of the network has been decided; i.e. the number of hidden layers and 

number of neurons in each layer. As there are three inputs and one output in the present problem, the number of neurons in the 

input and output layer has to set to three and one, respectively. As the number of hidden layers in the network increases, the 

complexity increases. Further, according to Fausett (1994) the back-propagation architecture with one hidden layer is enough for 

the majority of applications. Hence, in the present case only one hidden layer has been considered. No standard guidelines are 

available for selecting the number of neurons in the hidden layer. A trial and error method was employed to select the number of 

neurons in the hidden layer in which the mean prediction error (MPE) obtained is minimum. Error value is the numerical 

difference between the FEM result of the output performance parameter and the value predicted by the trained network. The 

absolute prediction error (APE) is defined as: 

           
FEM result - ANN predicted result

APE(%) 100
FEM result

                                      (12)  

Then, the MPE of the testing datasets for output performance parameter (MRR) was calculated.  

                

t

i = 1

APE

MPE(%)=
t


 

Where t = 25 is the number of datasets used for testing.  

This MPE was further used for selecting the optimal network configuration.               Extensive numerical experimentations were 

carried out using self developed ANN based MATLAB code to select the optimal network architecture. The following parameters 

were used to successfully train the network. 

Learning rate (η) = 0.5, momentum factor (α) = 0.1, maximum number of epochs = 10,000, tolerance for MSE = 0.01. 
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 Figure 8 shows the ANN architecture proposed for the present problem. It considers supply voltage, current and spark 

on-time as input parameters to predict MRR. In this architecture, a single hidden layer was taken and the number of hidden 

neurons (N) was varied from three to eighteen. BP neural network simulations were carried out. “Figure 9” shows the variation of 

MPE with the number of neurons in the hidden layer. The BP neural network with seven neurons gave minimum MPE. Fig. 10 

depicts the variation of MSE with number of epochs during the training of the BP neural network with seven hidden neurons. 

 

 Table 6 shows the absolute prediction error of the 3 – N – 1 BP neural network architecture with 7 hidden neurons for 

the single output performance parameter. Actual and predicted values from the network for MRR have been shown in “Fig. 11”. 

The results show acceptable prediction accuracy of the BP neural network based process model developed for the prediction of 

MRR with prediction error within the range of 0.769 – 19.079 % with the average accuracy of  3.1%. It is also observed that a 

total of 88% of the total testing datasets lie within 4% of error bound. Hence, the developed ANN based process model can be 

used to select optimum process conditions to improve TW–ECSM process productivity and finishing capability.          

 

4. Parameter optimization using Taguchi method 

Taguchi method is a widely accepted method of design of experiments (DOE). The objective of Taguchi approach is to 

determine the optimum setting of process parameters or control factors, thereby making the process insensitive to the sources of 

variations due to uncontrollable or noise factors. In Taguchi Methodology, signal-to-noise (S/N) ratio is used to represent quality 

characteristic for the observed trial data. Here, the „signal‟ represents the desirable value and the „noise‟ represents the 

undesirable value and signal to noise ratio expresses the scatter around the desired value. The larger the ratio, the smaller will be 

the scatter Phadke (1989). Depending upon the objective function of the quality characteristic there can be various types of S/N 

ratios. The S/N ratio is mathematically represented as: 
  

10S/N 10log (MSD)                                                            (13) 

where, MSD represents the Mean Square Deviation of observed trial data from the desired value and commonly termed as quality 

loss function. The MSD is calculated by using different expressions depending upon whether the problem is of the lower is better 

(LB), the higher is better (HB), or the nominal is best (NB) type. The quality loss function or MSD for these three types of 

characteristics can be computed as:         

For LB-type,   
2

1

1
MSD

n

i

i

y
n 

 
  
 
                                                    (14)                                         

For HB-type,   
2

1

1 1
MSD

n

i in y

 
  
 
                                              (15) 

For NB-type,   
21

MSD ( )
n

i

i n

y M
n 

 
  
 
                                                               (16) 

here, 
iy is the observed data (or quality characteristics) at the i

th
 trial, M is the Target value and n is the number of trials. 

The aim is always kept to maximise the S/N ratio whatever may be the nature of quality characteristics. The average 

value of all S/N ratios when a parameter is at same distinct level is used to describe the effect of a parameter or factor on quality 

characteristics at that level. A parameter level corresponding to the maximum average S/N ratio is called the optimum level for 

that parameter. A better feel for the relative effect of the different parameters can be obtained by the decomposition of the 

variance, which is commonly called analysis of variance (ANOVA). It is a computational technique to estimate quantitatively the 

relative contribution that each control factor or parameter makes on the overall measured response. A confirmation test is 

performed by conducting a test using a specific combination of the factors and levels previously evaluated. The purpose of the 

confirmation test is to validate the conclusions drawn during the analysis. The predicted value of mean at optimum parameter 

level (mopt) is calculated by using following equation, Rose (2005):  

                    ( )opt
1

cf
m m m mmi

i
  


                                                               (17) 

where m is the mean of all trials, cf is the significant number of control factors, and mmi is the average mean for i
th

 control factor 

corresponding to optimum parameter level. The experimenter would prefer to have a range of values within which the true 

average would be expected to fall with some confidence. The confidence interval is a maximum and minimum value between 

which the true average should fall at some stated percentage of confidence. The confidence interval of confirmation test was 

calculated by using following equation [28]:  

 

 

       
1 1

(1, )CI F f Ve eCT n u
eff

a

é ù
ê ú
ê ú
ê ú
ê úë û

= +                                                                   (18)                                                                  

where Fa
(1, fe) is the F ratio at a confidence level of 1   against dof 1 and error dof fe, Ve is the error variance and n

eff
is the effective number of replications. The effective number of replications can be calculated as Rose (2005): 



www.ijcrt.org                                          © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1807143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 201 
 

                             

1 (m )optTotal dof associated in the estimate of mean

N
n
eff é ù

ê ú
ê úë û

=
+

 

where N is the total number of trials, u is the sample size of the confirmation test. The predicted optimum range can be taken as 

Rose (2005): 

                                          mopt - CICT < mopt < mopt + CICT 

4.1 Analysis and discussion of results 
 For the present problem, higher value of MRR as the target value is desirable. The S/N ratio for MRR is calculated using 

the ANN predicted output parameter values given in Table 5. The S/N ratio value corresponding to each trial is given in Table 7. 

The mean response refers to the average value of the performance characteristic for each parameter at five levels. The average 

values of the performance characteristic (raw data) for each parameter (supply voltage, current and spark on-time) at five levels 

are calculated and given in Table 8. The maximum average factor effect of parameters for maximum MRR is obtained at level 5 

(60V) of supply voltage, level 5 (50A) of current and level 5 (0.0009s) of spark on-time. The effect of an input parameter at 

particular level is also computed by taking the average of all S/N ratio values at the same level. The effect of various factors when 

they are changed from the lower level to higher levels for response MRR is shown in Table 9. Also, the graphical representations 

of factors effect on MRR based on average S/N ratio values is shown in “Fig. 12”. It is always required to maximise the S/N ratio 

whatever may be the nature of quality characteristics. Hence, it is observed from the response graph “Fig. 12” that the optimum 

parameter level combinations for maximum value of MRR are A5 B5 C5. 

 

 In order to study the significance of the process parameters towards MRR the analysis of variance (ANOVA) is 

performed. The results of ANOVA based on raw data are given in Table 10. The ANOVA is also performed on S/N ratio values. 

The results of ANOVA based on S/N ratio values are given in Table 11. The contribution of factors in increasing order for MRR 

is supply voltage (14.45%), current (22.15%) and spark on-time (56.35%).  

 

 The optimum values of MRR can be predicted at the selected levels of significant parameters. The significant process 

parameters and their optimum levels have already been selected. The estimated mean (mopt) of the response characteristic (MRR) 

can be computed by using equation 17. The value of mopt has been calculated as 763.7198. The confidence interval of 

confirmation trial (CICT) for 95% confidence level has been calculated by using equation 18. For finding CICT for 95% confidence 

level of predicted mean for MRR the values of F0.05 (1, 12), N, R, Ve and the total dof associated in the estimation of mean are 

taken as 4.75, 25, 1, 413.33 and 12 respectively. The calculated value of CICT has been found as 53.9046. So, for 95% confidence 

level the predicted mean will lie in the interval:  709.8152< MRR < 817.6244.  

 

 Confirmation test is performed by conducting computational experiment with optimal settings of the factors and levels 

previously evaluated (Table 9). The results of confirmation test is shown in Table 12 which shows that the value of MRR at this 

optimum level of parameters setting is 812.751mm
3
/min against the initial parameter setting of  74.0095mm

3
/min. It has been 

found from the confirmation test that the computed MRR at the optimum level of parameter setting are within the confidence 

interval of the predicted optimal values of MRR at 95% confidence level.  

5. Conclusions 
The present work, parameter optimization for MRR during TW–ECSM using Taguchi Method (TM), based on ANN predicted 

process responses in which FEM simulation results were used for training and testing represents a new approach of optimization. 

Following conclusions have been derived from the present analysis. 

1. The trend of variation of computed MRR with feed rate has been found similar to that observed experimentally. The 

computed MRR values are found higher than those obtained experimentally because of 100% ejection efficiency 

consideration.  

2. Extensive numerical simulations were carried out to select the optimal BP neural network architecture by varying 

the number of neurons in the hidden layer. The 3 – 7 – 1 optimal network architecture was found to give good 

average prediction accuracy for MRR as 3.1%. 

3. The optimum value of control factors for maximum MRR is: supply voltage – 60V, current – 50A and spark on-time 

– 0.0009s. 

4. The contribution of factors in increasing order for MRR is supply voltage    (14.45%), current (22.15%) and spark 

on-time (56.35%).  

5. Improvement in MRR by 998% has been found while machining at their optimum parameter setting against their 

initial parameter setting. 
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Fig.1 Integrated process model development for TW–ECSM process and its optimization 
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Fig. 2 Configuration of TW-ECSM set-up [14] 

 

 

 

 

 

 

 
                                                                    (a) 
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                                                                        (b) 

FIG. 3 (A) GEOMETRICAL MODEL   FOR TW-ECSM (B) COMPUTATIONAL DOMAIN WITH BOUNDARY CONDITIONS 

 

 

 

 
 

                            Fig. 4 Location of two sparks on X-Z plane at Y=0.6mm 
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                            (a)                                                                                             

(b)                                                                                    

Fig. 5  Contour plots on X-Z plane at Y=0.6mm for 20V and 25A input power supply (a) after first spark at 

location X=0.15mm, Z=0.6mm (b) after second spark at location X=0.45mm, Z=0.6mm 
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                          (a)                                                                                                                 (b) 

Fig. 6  Contour plots on X-Y plane at Z=0.6mm for 20V and 25A input power supply (a) after first spark at 

location X=0.15mm, Y=0.6mm (b) after second spark at location X=0.45mm, Y=0.6mm 
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                             Fig. 7 Variation of MRR with feed rate for different voltage 

 

 

 

 

 

 

 

 
 

 

 

                                     Fig.8 Schematic of BP neural network architecture 
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   Fig. 9 Selection of number of neurons for 3 – N – 1 BP neural network architecture 

 

 

 
 

Fig. 10 Training of 3–7–1 BP neural network  
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                            Fig. 11 Comparison between actual and predicted MRR    
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  Fig.12 S/N based response graph for MRR  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               



www.ijcrt.org                                          © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 

IJCRT1807143 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 210 
 

 

Table 1 Cutting Conditions 

Electrolyte   NaNO3 

h (W/m
2
-K)   20870 

Supply voltage (V)  20 

Current (A)   25                

Vw (m/min)   2        

R (μm)    150 

Fw                                                                  5 % 

ton (s)    0.0005 

T0 (K)    293 

 

 

 

TABLE 2.   MATERIAL PROPERTIES OF MILD STEEL  

 

Cp (J/Kg K)                         461 

 

k (W/m
2
 K)                         50.2   

 

Tm (
0
C)                               1150 

 

ρ (kg/m
3
)                            7870 

 

 

 

                     

 

 

 

TABLE 3.   MATERIAL PROPERTIES OF GLASS 

 

Cp (J/Kg K)                       750 

 

k (W/m
2
 K)                        1.14 

 

Tm (
0
C)                               820 

 

ρ (kg/m
3
)                            2230 

 

Table 4 Control factors and their levels used in the experiment 

 

Symbol          Factors                         Level 1      Level 2      Level 3      Level 4        Level 5 

 

     A      Supply Voltage (V)     20              30               40              50                60 

     B       Current (A)      10              20               30              40                50 

     C      Spark on-time (s)             0.0001        0.0003        0.0005       0.0007     0.0009 

 

Table 5 ANN predicted response layout  

               Factor level                     MRR                                                

   Trials           A           B          C                  (mm
3
/min)                          

                                                                           

1               1        1           1                                74.0095                      
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2               1            2           2                              227.0516                      

3               1            3           3                              273.4264                      

4               1            4           4                              427.8568                      

5               1            5           5                              651.7632                      

6               2            1           2                              183.5374                      

7               2            2           3                              302.3529                      

8               2            3           4                              438.3993                      

9               2            4           5                              700.0421                      

10             2            5           1                              316.6170                      

11             3            1           3                              282.5894                      

12             3            2           4                              409.7924                      

13             3            3           5                              710.8922                      

14             3            4           1                              304.6215                      

15             3            5           2                              388.5076                      

16             4            1           4                              380.6247                      

17             4            2           5                              647.3416                      

18             4            3           1                              316.6171                      

19             4            4           2                              371.1457                      

20             4            5           3                              459.2849                      

21             5            1         5                              588.0237                      

22             5            2           1                              293.7270                      

23             5            3           2                              372.1608                     

24             5            4           3                              454.1342                      

25             5            5           4                              516.3277                      

 

 

Table 6 Testing of 3 – 7 – 1 BP neural network architecture  

           Factor level            Absolute prediction error (%)                           

   Trials           A           B          C                                        MRR                     

                                                                           

1               1        1           1                                19.0789    

2               1            2           2                                  4.7578   

    3               1            3           3                                     3.4085                       

4               1            4           4                                  1.9743   

5               1            5           5                                  0.9326   

6               2            1           2                                  6.2225   

   7               2            2           3                                     3.2621  

8               2            3           4                                  1.9007   

9               2            4           5                                  0.7690   

10             2            5           1                                  3.0622   

11             3            1           3                                  3.5739   

12             3            2           4                                  1.9848   

13             3            3           5                                  0.7690   

14             3            4           1                                  2.9748   
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15             3            5           2                                  2.2855   

16             4            1           4                                  2.3559   

17             4            2           5                                  0.9102   

18             4            3           1                                  3.0622   

19             4            4           2                                  2.2855   

20             4            5           3                                  1.7651   

21             5            1         5                                  1.1466   

22             5            2           1                                  3.3928   

23             5            3           2                                  2.4349   

24             5            4           3                                  1.7973   

25             5            5           4                                  1.4520   

 

 

 

 

Table 7  S/N ratios for MRR  

                                            S/N ratios (dB) 

 Trials                                         MRR                                        

 

1    37.3857    

2    47.1225    

3    48.7368     

4    52.6259    

5    56.2818    

6    45.2745    

7    49.6103    

8    52.8374    

9    56.9025    

10    50.0105    

11    49.0231    

12    52.2513    

13    57.0361    

14    49.6752    

15    51.7880    

16    51.6099    

17    56.2226    

18    50.0107    

19    51.3909    

20    53.2416    

21    55.3879    

22    49.3588    

23    51.4146    

24    53.1437    

25    54.2585            
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Table 8  Response table showing mean values of output at different level  

 

                       Mean of raw data 

 

Symbol  Factor             Level 1         Level 2      Level 3      Level 4        Level 5  

 

   A     Supply Voltage (V)           330.8215      388.1897      419.2806    435.0028    444.8747* 

   B           Current (A)            301.7569      376.0531      422.2992    451.5601    466.5001* 

   C      Spark on-time (s)           261.1184      308.4806      354.3576    434.6002    659.6126* 

     
*
Optimum level 

 

 

 

Table 9  S/N response table showing mean values of MRR at different level  

 

                                                                                             Mean S/N ratios (dB) 

 

Symbol  Factor             Level 1         Level 2      Level 3        Level 4        Level 5  

 

   A     Supply Voltage            48.4305        50.9270        51.9547       52.4951       52.7127* 

   B           Current                               47.7362        50.9131        52.0071       52.7476       53.1161* 

   C      Spark on-time            47.2882        49.3981        50.7511       52.7166       56.3662* 

     
*
Optimum level 

 
 

 

Table 10   Results of raw data based ANOVA for MRR  

 

Symbol     Factor                                dof     Sum of squares     Mean squares       F     Contribution (%) 

 

  A           Supply Voltage                     4      42348.998        10587.25        25.61         6.75 

  B            Current                           4          88685.484        22171.37        53.64       14.13 

  C            Spark on-time                       4     491384.893     122846.22      297.21       78.32 

  Error                                        12        4959.929            413.33                               

  Total                                                 24        627379.304                                                     100 

 

Tabulated F-ratio at 95% confidence level: F0.05, 4, 12 = 3.26  

 

 

Table 11  Results of S/N based ANOVA for MRR  

 

Symbol     Factor                                dof    Sum of squares    Mean squares       F     Contribution (%) 

 

 

  A           Supply Voltage                     4    61.1285      15.2821           6.14          14.45 

  B            Current                           4        93.7202      23.4300           9.41          22.15 

  C            Spark on-time                       4      238.4305     59.6076         23.95          56.35 
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  Error                                        12    29.8671        2.4889 

  Total                                                 24      423.1463                                                         100 

 

Tabulated F-ratio at 95% confidence level: F0.05, 4, 12 = 3.26  

 

 

 

 

 

Table 12 Results of confirmation experiment  

 

                                                   Initial                                           Optimal      

 

     Factor level               A1 B1 C1           A5 B5 C5  

    MRR (mm
3
/min)               74.0095                               812.6244 
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