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Abstract - In this work, a cascade-forward neural network model has been developed to represent a 
reactive distillation process used for the production of biodiesel from an esterification reaction between 
palmitic acid and methanol. In order to obtain data for the network, the parametric utility of an Aspen 
HYSYS prototype plant of the process developed using Distillation Column Sub- Flow sheet and Wilson 
model as the fluid package was utilized. The neural network model developed had six input parameters 
(palmitic acid feed temperature, palmitic acid feed pressure, methanol feed temperature, methanol feed 
pressure, reboiler heat duty and reflux ratio), and the output parameter was the 
molefractionofthebiodieselobtainedfromthebottomsectionofthereactive distillation column. For the 
training of the neural network model, six different random number generators (Messene twister, 
multiplicative congruential generator, multiplicative lagged Fibonacci generator, combined multiple 
recursive generator, shift-register generator summed with linear congruential generator, and modified 
subtract with borrow generator) were tried by varying their seed numbers from 0 to 70, and the one with 
best performance, together with the corresponding seed number, was selected for the development of the 
cascade-forward neural network. The results obtained from the training and simulation carried out for the 
developed model showed the good representation of the process by the developed model because the 
estimated sum of absolute error, mean of absolute error, sum of squared error and mean of squared error 
of the model, which were the performance criteria used, were found to be favourable and had values of 
1.16E-02, 1.93E-05, 5.46E-07, and 9.10E-10, respectively. Also, the performance of the developed model 
in predicting the mole fractions of the produced biodiesel was found to be very good as the sum of 
absolute error, the mean of absolute error, the sum of squared error and the mean of squared error, in this 
case, were estimated to be 8.39E-03, 1.40E-05, 2.17E-07, and 3.62E- 10, respectively. In conclusion, 
cascade-forward neural network has been demonstrated to be very good in modelling this complex 
reactive distillation process for the production of biodiesel. 

 
Keywords: Biodiesel, Reactive Distillation, Aspen HYSYS, Parametric Utility, Cascade-Forward Neural 

Network, Random Number Generator. 
 
  

1 INTRODUCTION  
Recently, integrated reactive separation processes have attracted attentions in both academic research and 

industrial fields (Völker et al., 2007). One of these processes is known as reactive distillation, and it is very 

attractive, especially whenever conversion is limited by reaction equilibrium (Giwa and Karacan, 2012a; Giwa 

and Karacan, 2012c).  
Reactive distillation is a process that permits the occurrence of both separation and chemical reaction in a 

single unit (Giwa and Karacan, 2012d; Giwa, 2013). It makes use of the benefits of equilibrium reaction with 

distillation to enhance conversion, with the condition that the product of interest has the highest or the lowest 

boiling point (Taylor and Krishna, 2000; Giwa, 2012). This process has a lot of advantages which include 

reduced investment and operating costs due to increased yield of a reversible reaction as a result of the 

separation of the product of interest from the reaction mixture (Pérez-Correa et al., 2008), high conversion, 

improved selectivity, low energy consumption, ability to carry out difficult separations and avoidance of 

azeotropes (Jana and Adari, 2009; Giwa, 2012; Giwa and Giwa, 2012). It has been applied in a few numbers of 

ways in industries for many years, but the last decade has shown an increase in both its research and 

applications (Agreda et al., 1990), particularly in the area of its modelling and design.  
The modelling and design of reactive distillation (RD) systems are considerably more complex than those 

involved for either conventional reactors or conventional distillation columns because the introduction of an in 

situ separation within the reaction section of the column leads to complex interactions between the vapour-

liquid equilibrium, the vapour-liquid mass transfer, the intra-catalyst diffusion (for heterogeneously catalysed 

processes) and the chemical kinetics of the reactive distillation process. Such interactions have been discovered 
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to lead to phenomena of multiple steady states and complex dynamics (Baur et al., 2000; Giwa and Karacan, 

2012b) of the process. 

  
In the design of a reactive distillation process, a model is required (Giwa and Karacan, 2012b). However, 

obtaining a robust model for a reactive distillation process is still a challenge to Chemical Engineers owing to 

the integration of reaction and separation that has made the process to exhibit complex behaviours (Khaledi and 

Young, 2005), as mentioned before, such as steady state multiplicity, process gain sign changes 

(bidirectionality) and strong interactions between process variables (Jana and Adari, 2009; Giwa and Giwa, 

2012). As such, a robust tool that can handle complex functions very well is needed to represent this complex 

process. One of these tools has been discovered to be “neural network”, otherwise known as “artificial neural 

network” model because, according to Beale et al. (2010), artificial neural network can be trained to handle 

complex functions (Giwa and Karacan, 2012c; Giwa and Giwa, 2013; Giwa et al., 2015). 

  
Artificial neural network model can be viewed as a nonlinear empirical model that is especially useful in 

representing input-output data, in making predictions in time, and in classifying data (Himmelblau, 2000). It 

can be highly nonlinear, learn easily, requires little or no a priori knowledge of model structure, is fault-tolerant 

and can handle complex problems that cannot be satisfactorily handled by the traditional methods (MacMurray 

and Himmelblau, 2000; Giwa and Karacan, 2012a; Giwa et al., 2015). 

  
Even though artificial neural network can be used, to a high level of accuracy, to represent this process 

due to its complex and economical (associated with its various advantages and benefits) natures, it should be 
noted that it (reactive distillation) cannot be applied to all Chemical Engineering processes, but a process that 
accommodates the application of reactive distillation is production of biodiesel. 

  
Biodiesel can be produced mostly from oils, which are edible ones, such as palm oil, sunflower oil, and 

soybean oil via transesetrification process using a catalyst like sodium hydroxide. However, the 

commercialization of biodiesel production from those oil types still have drawbacks due to high cost of 

vegetable oil and the purification of the formed biodiesel product. Therefore, an alternative approach discovered 

for the production of biodiesel was the use of jatropha oil. Jatropha oil contains 20% saturated fatty acids and 

80% unsaturated ones. In the unsaturated fatty acid, oleic acid is the most abundant (44.8%) followed by 

linoleic acid (34%), palmitic acid (12.8%) and stearic acid (7.3%) (Shah et al., 2004; Kusmiyati and Sugiharto, 

2010; Giwa et al., 2014). According to Kusmiyati and Sugiharto (2010), one kind of fatty acid derived from 

Jatropha oil, oleic acid, could be used as a raw material to produce biodiesel using esterification reaction 

involving alcohol such as methanol, ethanol, etc. Furthermore, Giwa et al. (2014) have confirmed that in their 

work, and they also discovered that biodiesel with high purity could be produced using palmitic acid via 

esterification reaction (Giwa et al., 2015). 

  
Esterification of fatty acid and alcohol to produce biodiesel can, actually, be carried out in a batch reactor 

(Omota et al., 2003). However, that method has been found to possess many problems because of its low 

conversion, heavy capital investments and high energy costs (Gao et al., 2007; Giwa et al., 2015). The attempt 

to resolve this problem was what necessitated the use of the reactive distillation process that is modelled using 

artificial neural network because of its complexities. 

  
Actually, different types of neural network models have been employed to represent different Chemical 

Engineering processes. For instance, Giwa and Karacan (2012a) used three different types of delayed neural 

networks (Nonlinear AutoRegressive (NAR), Nonlinear Autoregressive with exogenous inputs (NARX) and 

Nonlinear Input-Output (NIO)) models to predict the temperatures of the top and the bottom sections of a 

reactive distillation column used for the production of ethyl acetate, and they were able to obtain very good 

results from both NAR and NARX models while the results given by NIO models were found not to be 

satisfactory. Also, Giwa and Karacan (2012e) developed two nonlinear black box (tree partition and sigmoid 

network NARX) models for the reactive distillation process used for the production of ethyl acetate from the 

esterification reaction between acetic acid and ethanol and found that sigmoid network NARX model was better 
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than tree partition NARX model for the reactive distillation process studied in their work. Also, Giwa and Giwa 

(2013) carried out the modelling of a reactive distillation process using Layer-Recurrent Neural Network, and 

the simulated results they obtained were found to compare well with the measured ones. Recently, Giwa et al. 

(2015) used a feed-forward artificial neural network to represent a reactive distillation process used for the 

production of biodiesel from the esterification reaction between palmitic acid and methanol, and their results 

showed good agreements between the experimental and the measured mole fractions of biodiesel obtained. As 

can be observed from the survey of the literature carried out so far, it has been revealed that work on the use of 

cascade-forward neural network to represent a reactive distillation process has not been reported.  
So, in this work, the representation of a reactive distillation process using cascade-forward neural network 

modelling method has been carried out. The case study process used in the modelling of the reactive distillation 

is biodiesel production from the esterification reaction between palmitic acid and methanol, as it was used in the 

work of Giwa et al. (2015). 
 
2.  METHODOLOGY  

The approach used in carrying out the cascade-forward neural network modelling of the reactive 

distillation process used for the production of biodiesel (see Equation (1)) in this work involved the use the 

Neural Network Toolbox of MATLAB (Mathworks, 2013). However, owing to the fact that the toolbox 

required data to be able to do the modelling, the results obtained by Giwa et al. (2015) were utilized. For clarity 

purposes, the method used for the data generation are still, and a little bit further, outlined in this work.  
The data were generated through the use of the parametric utility of Aspen HYSYS (Aspen, 2012) model 

of the reactive distillation process developed and shown in Figures 1 and 2. Figure 1 shows the developed 

Aspen HYSYS model 
of the process before the incorporation of the unit operation having the parametric utility of Aspen HYSYS. 
Meanwhile, before the addition of the parametric unit operation, the data given in Table 1 were used to simulate 
the developed Aspen HYSYS model to convergence. The addition of the parametric unit operation made the 
developed Aspen HYSYS model of the process to look as that shown in Figure 2. 
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Figure 1. Aspen HYSYS model of biodiesel reactive distillation process 
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Table 1. Reactive distillation process modelling and simulation parameters   
Parameter  Value 

Palmitic Acid Feed   

Temperature (oC)  350 

Pressure (atm)  5 

Molar flow (kmol/hr) 100000 

Mole fraction  1 

Methanol Feed   

Temperature (oC)  150 

Pressure (atm)  1 

Molar flow (kmol/hr) 100000 

Mole fraction  1 

Property Package  Wilson 

Ethanol feed tray  

Reaction   

Type  Equilibrium 

Keq source  Gibbs Free Energy 

Column   

Type  Distillation Column Sub-Flowsheet 

No of tray  30 

Palmitic acid feed tray 8 

Reflux ratio  3 

Reboiler duty 

(kJ/s)  250000 

Condenser type  Total 

Reboiler type  Kettle 

Condenser pressure (atm) 1 

Condenser pressure drop (atm) 0 

Reboiler pressure (atm) 1 

Reboiler pressure drop (atm) 0 
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Figure 2. Aspen HYSYS model for the biodiesel reactive distillation processwithparametric unit operation 

 

The ranges of the input variables used for the generation of the different data sets for training and 

prediction are given in Tables 2 and 3, respectively, and the structure of the cascade-forward neural network 

employed is shown in Figure 3. 

 
Table 2. Training data input ranges   
Parameter Initial value Low limit High limit 

Palmitic acid feed temperature, oC 350 315 385 

Palmitic acid feed pressure, atm 5 4.5 5.5 

Methanol feed temperature, oC 150 135 165 

Methanol feed pressure, atm 1 0.9 1.1 

Reboiler heat duty, kJ/s 2.50E+05 2.25E+05 2.75E+05 

Reflux ratio 3 2.7 3.3 

Table 3. Prediction data input ranges    

Parameter Initial value Low limit High limit 

Palmitic acid feed temperature, oC 350 325 380 

Palmitic acid feed pressure, atm 5 4.7 5 

Methanol feed temperature, oC 150 140 163 

Methanol feed pressure, atm 1 0.91 1 

Reboiler heat duty, kJ/s 2.50E+05 2.28E+05 2.70E+05 

Reflux ratio 3 2.75 3.2 
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Figure 3. Structure of the cascade-forward network of biodiesel reactive distillation process 

 
After the data required had been generated, and the structure was defined, the network was trained using 

the parameters given in Table4,and different random number generators were used to generate the values for the 
initialization of the training. The random number generators considered, together with their codes in MATLAB, 
are those given in Table 5. 

Before using the random number generator algorithms for the training of the network, their seed 

numbers were optimized by varying it from 0 to 70, simulating and recording their performances in the 

simulations. The performance criterion used in this case was “mean of squared error”. Based on the 

performances recorded, one of the random number generators was selected and used to carry out the training of 

the developed model for the process. 

 
Table 4. Neural Network model formulation parameters 

Parameter  Value 

Number of inputs  6 

Number of outputs  1 

Number of hidden layers  1 

Number of neurons in hidden layer  5 

Hidden layer transfer function  tansig 

Output layer transfer function  purelin 

Training algorithm  

Levenberg-

Marquardt 
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Table 5. Random number generators and their codes in MATLAB 

(Mathworks, 2013) 

Generator Code 

Mersenne twister mt19937ar 

Multiplicative congruential generator mcg16807 

Multiplicative lagged Fibonacci generator mlfg6331_64 

Combined multiple recursive generator mrg32k3a 

Shift-register generator summed with linear congruential generator shr3cong 

Modified subtract with borrow generator swb2712 
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Finally, after the training of the model, it was used to predict the mole fraction of the biodiesel obtained 

from the bottom section of the column in which the reactive distillation process was carried out using the 

prediction purpose generated input data. 
 
3 RESULTS AND DISCUSSION  

Using the limits of the input variables given Tables 2 and 3, input random data were generated, and the 
graphical representation of the input data generated are already given in the work of Giwa et al. (2015).  

When the generated input data were used to run the developed Aspen HYSYS model of the process, the 

mole fraction profile of biodiesel obtained as the bottom product are given in Figures 4 and 5 for training and 

prediction of the network, respectively.  

  

      

 

     

      

       

 

       

       

Run  
Figure 4 Biodiesel mole fraction data measured for cascade neural network training 

 
Looking at Figures 4 and 5, it was discovered that the mole fraction profiles of biodiesel obtained from the 

system network were random in nature. This revealed that the outputs (mole fraction of biodiesel) of the process 

were similar in nature to the applied inputs because the inputs generated were also random in  
nature (cf. Giwa et al., 2015).  
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Figure 5. Biodiesel mole fraction data measured for cascade neural network prediction 
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Shown in Figure 6 is the variation of the performance of Messene twister random number generator as its seed 

number was varied. According to the figure, the best performance of the algorithm was observed when its seed 

number was 47. Furthermore, the seed number that gave the best performance when multiplicative congruential 

generator was used to obtain the random number of the training of the network was 56 (See Figure 7). From 

Figure 8 showing the network performance (mean of squared error) against seed number for multiplicative 

congruential generator, it was found that the best seed number was just 2, and combined multiple recursive 

generator, the plot of which is given in Figure 9 gave the best seed number to be 31. According to Figures 10 

and 11, the best seed numbers for shift-register generator summed with linear congruential generator and 

modified subtract with borrow generator were obtained to be 45 and 6, respectively. 
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Figure 6. Network performance (mean of squared error) versus seed number of Mersenne twister random 

number generator 

 3 x 10
-6 

               

er
ro

r)
 

2.5 

                  

                  

of
sq

ua
r

ed
 

                  

2 

                  

                   

(m
ea

n
 

1.5 

                  

                  

1 

                  

Pe
rf

or
m

an
ce

 

                  

                  

0.5 

                  

                   

 

0 

                  

                   

 0  10 20 30 40 50 60 70 

          

Seed 

number         
 

Figure 7. Network performance (mean of squared error) versus seed number of multiplicative congruential 
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Figure 10. Network performance (mean of squared error) versus seed number of shift-register generator 

summed with linear congruential generator 
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Figure 11. Network performance (mean of squared error) versus seed number of modified subtract with borrow 

generator 

 
Based on the results obtained from the performances of the random number generators as their seed 

numbers were varied, the best performances of the algorithms were compared as given in Table 6, and it was 

discovered that the random number generator algorithm with the best performance, among all, was modified 

subtract with borrow generator because it was able to give the least mean of squared error (9.10E-10) when its 

seed number was 6. As such, this random number generator was selected as the one used to train the developed 

cascade-forward neural network, and the results obtained from the training were as given in Figure 12. 
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Table 6. Comparison of the performances of the random number generator algorithms   
Algorithm  MSE Seed number 

Mersenne twister (default) 2.16E-09 47 
Multiplicative congruential generator 1.03E-09 56 Multiplicative lagged Fibonacci generator 1.73E-09 2 

   

Combined multiple recursive generator 9.37E-10 31 

Shift-register generator summed with linear congruential generator 1.77E-09 45 

Modified subtract with borrow generator 9.10E-10 6  
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Figure 12. Simulated and measured mole fraction profiles of biodiesel 
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Figure 12 shows the simulated and the measured biodiesel mole fraction profiles. The simulated values 

of the profile were obtained using the modified subtract with borrow generator with the optimized seed number 

of 6 to generate the random number for the initialization of the training of the cascade-forward neural network 

developed. As can be observed from the figure, a very good correlation was found to exist between the 

simulated and the measured profiles of the biodiesel mole fraction obtained from the bottom section of the 

reactive distillation column used. This good correlation revealed that the developed cascade-forward neural 

network model was able to represent the process very well as this was also shown by the low value of the mean 

of squared error (performance value) of the model simulation that was estimated to be 9.10E-10 (a value that is 

approximately zero).  
Moreover, the developed cascade-forward neural network model was used to predict the biodiesel mole 

fraction using the data generated for that purpose and given in the work of Giwa et al. (2015), and the results 

obtained as the predicted biodiesel mole fraction profile, together with the measured ones, are as shown in 

Figure 13. From the figure, it was seen that the model was able to perform well also in predicting the mole 

fraction of the biodiesel produced because good agreements were found to exist between the predicted values 

and the measured ones. This good performance was also revealed from the performance value (mean of squared 

error) of the prediction that was calculated to be 3.62E-10.  
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In addition to using the mean of squared error as the criterion for the determination of the 

performance of the developed cascade-forward neural network model in simulating and predicting the 

biodiesel mole fraction, some other criteria were used. The additional criteria used were sum of absolute 

error, mean of absolute error and sum of squared error of the model, and their values obtained from the 

simulation and the prediction carried out are given in Table 7. 

 
Table 7. Comparison of the performance criteria of the developed model in training/simulation and prediction   
Description SAE MAE SSE MSE 

Training/simulation 1.16E-02 1.93E-05 5.46E-07 9.10E-10 

Prediction 8.39E-03 1.40E-05 2.17E-07 3.62E-10 

 
Comparisons of the values obtained for all the performance criteria (sum of absolute error, mean of 

absolute error, sum of squared error and mean of squared error of the model) indicated that the developed 

cascade -forward neural network model was able to perform very well both in simulation and in prediction. 

Also noticed from the performance of the model was that the performances of the model was better in 

prediction than in simulation, as can be seen from the performance values given in Table 7 in which all the 

error values of the prediction were found to be less than those of the training/simulation. This observation 

was found to be in good agreement with one of the findings of Giwa et al. (2015) that developed a feed-

forward artificial neural network model for a reactive distillation process used for biodiesel production and, 

also, obtained the performance of their developed model to be better in prediction than in simulation. 
 
4 CONCLUSION  

The results obtained from the training and simulation of the cascade-forward neural network model 

developed for the reactive distillation process used for the production of biodiesel revealed good representation 

of the process by the developed model because the estimated sum of absolute error, mean of absolute error, sum 

of squared error and mean of squared error of the model, which were the performance criteria used, were found 

to be favourable and have values of 1.16E-02, 1.93E-05, 5.46E-07, and 9.10E-10, respectively. Not only that, 

the developed model was also found to perform very well in predicting the mole fraction of the biodiesel 

obtained because the sum of absolute error, mean of absolute error, sum of squared error and mean of squared 

error of the model were estimated to be 8.39E -03, 1.40E-05, 2.17E-07, and 3.62E -10, respectively in 

prediction. Therefore, it has been demonstrated that cascade-forward neural network model is a good tool in 

representing this complex reactive distillation process for the production of biodiesel. 
 
NOMENCLATURE  
b Neural network bias 

Bottom Bottom products 
MAE Mean of absolute error 
MSE Mean of squared error 

NAR Nonlinear AutoRegressive, 

NAR
X Nonlinear AutoRegressive with eXogenous inputs 
NIO Nonlinear Input-Output 
PM ParaMetric 

Pme Pressure of methanol
 
feed,atm 

PMU ParaMetric Utility 
Ppa Pressure of palmitic acid feed, atm 
Qcond Condenser heat duty, kJ/s 
Qreb Reboiler heat duty, kJ/s  
R Reflux ratio of the column  
SAE Sum of absolute error 

SSE Sum of squared error  
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Tme Temperature of methanol feed, oC  
Top Top products 

Tpa Temperature of palmitic acid feed, oC 

w Neural network weight 

x biodMole fraction of biodiesel obtained from the bottom section of the column 
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