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Abstract 

 Numerical solution of the modified equal width wave equation is obtained by using lumped Galerkin 

method based on cubic B-Spline finite element method. Solitary wave motion and interaction of two Solitary 

waves are studied using the proposed method. The (2+1) non-linear wave equation ut+u3ux+u3uy-uxxt-uyyt = 0 is 

considered. A symmetry classification of the equation using Lie group method is presented and reduction to the 

first or second order ordinary differential equation is provided. 
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1. Introduction 

In the last few decades, the traditional integral transform methods such as Fourier and Laplace transform have 

commonly been used to solve the engineering problems. These methods transform the differential equations 

into algebraic equations which are easier to deal with. 

The well – known Korteweg and de Vries (KdV) equation 

         ut + uux + uxxx = 0 

is a non-linear partial differential equations (PDE) that models the time independent motion of shallow water 

waves in one space dimension. Morrison et al [1] proposed the one dimensional PDE 

        ut + uux - μuxxt = 0 

as an equally valid and accurate model for the same wave phenomena simulated by the KdV equation. This 

PDE is called the equal width wave equation because the solutions for solitary waves with a permanent form 

and speed, for a given value of the parameter μ are waves with an equal width or wave length for all wave 

amplitudes. 

The equal width (EW) was suggested by Morrison et al [1], to use as a model partial differential equation for 

the stimulation of one-dimensional wave propagation in non-linear media with dispersion processes. Many 

methods, have been proposed to solve the EW equation [2-5]. Based on the EW equation, Zaki [6] considered 

the solitary wave interaction for the modified equal width (MEW) equation by Petrov – Galerkin method using 

quintic. B – Spline finite elements, Wazwaz [7] investigated the modified equal width wave equation and two 

of its variants by the tanh and the sine – cosine methods and saka [8] proposed algorithms for the numerical 

solutions of the modified equal width wave equation usind collocation method. Reviewing theses 

improvements, we can find that its inevitable to involve the quintic. B – Splines, the computations of time 

dependent parameters, linearization and discretization of the MEW equation, while the tanh and sine – cosine 

methods are based on the solutions that can be expressed in terms of the tahn, sechor each functions. Therefore, 
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these methods for solving the MEW equation narrow down their applications. A nature question kept in our 

mind is that whether we can solve the MEW equation without quintic B – Splines, linearization and 

discretization. Also Lu [9] applied variational iteration method for solving the modified equal width wave 

equation.  

2. Symmetries and classifications of lie algebra for ut + u3ux + u3uy - uxxt + uyyt = 0  

In order to derive the symmetry generators of Eqn. (1) and obtain the closed form solutions for all f(u), we 

consider one parameter Lie point transformation that leaves (1) invariant. This transformation is given by  

  2( , , , ) ( ), 1,2,....4i i ix x x y t u O i         (2) 

Where 0|
i

i x
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


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

 defines the symmetry generator associated with (2) given by   
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In order to determine four components 
i , we prolong V to third order. This prolongation is given by the 

formula  
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           (4) 

In above expression every coefficient of the prolonged generator is a functions of (x,y,t,u) and can be 

determined by the formulae 

      , , ,( )i

i x y t x i y i t iD u u u u u u                (5) 

   , , ,( )ij

i j x y t x ij y ij t ijD D u u u u u u                (6) 

Where Di represents total derivative and subscripts of u derivative with respect to the respective coordinates. To 

proceed with reductions of (1) we now use symmetry criterion for partial differential equations. For heat 

equation this criterion is expressed by the formula 

   
(3) 3 3[ ] 0t x y xxt yytV u u u u u u u      

Whenever, 

   
3 3

t x y xxt yytu u u u u u u     

Using the symmetry criterion with Eqn.(4) in mind immediately yields 

   
3 3 0t x y xxt yyt           .    (7) 

At this stage we calculate expression for , , , ,t x y xxt yyt        using (5)-(6), substitute them in (6) and then 

compare coefficients of various monomials in derivative of u. this yields the following system of over-

determined partial differential equations: 
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3. Reduction of one dimensional Abelian Sub-algebra for ut + u3ux + u3uy - uxxt + uyyt = 0 

After some more manipulations one finds that and  becomes 

   
4k
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The remaining equations can then be used to determine τ and φ as 
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At this stage we construct the symmetry generators corresponding to each of the constants involved. These are a 

total of eight generators given by 
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It is easy to check that the symmetry generators found in (10) form a closed Lie algebra whose communication 

relations are given in Table 1 
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  Commutation relations satisfied by generators 

 

4. Reduction of two dimensional Abelian Sub-algebra for ut + u3ux + u3uy - uxxt + uyyt = 0 

We now briefly show steps involved in the reduction of the nonlinear heat equation to a second-order 

differential equation. Since reduction under all the sub-algebras cannot be given in the paper, we restrict 

ourselves to giving reductions in two cases only, i.e., [V1,V3] and [V2,V4]. Reduction in the remaining cases is 

listed in the form of Appendices A  at the end of the paper. 

4.1 Reduction under V1 and V3 

From Table 1 we find that the given generators commute [V1,V3]=0. Thus either of V1 or V3 can be used to start 

the reduction with. For our purpose we begin reduction with V1. The characteristic equation associated with this 

generator is 

    
0 0 1 0

dx dy dt du
   . 

Following standard  procedure we integrate the characteristics equation to get three similarity variables. 

                    s = y,     x = r,     u = w(r,s)     (11) 

Using these similarity variables Eqn. (A) can be recast in the form  

                   0r sw w                   (12) 

At this stage we express V3 in terms of the similarity variables defined in Eqn.(11). It is straight forward to note 

that V3 in the new variables takes the form  

                   3V
s





                  (13) 

The characteristics equation for 
3V is, 

         
0 1 0

dr ds dw
   

Integrating this equation as before leads to new variables r   and ( )R w  , which reduces (12) to a second-

order differential equation 

          R = 0                    (14) 

4.2 Reduction under V2 and V4 

In this case the two symmetry generators V2 and V4 satisfy the communication relation      [V2,V4] = 0. This 

suggests that reduction in this case should start with V3. The similarity variables are  

           s = y,   x = r,    u = 
𝑤(𝑟,𝑠)

𝑡
 

and K is a constant. The corresponding reduced partial differential equation is 

                          -w+ t (w3wr + w3ws) + wrr + wss = 0       (15) 

The transformed V1 is 
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      4V
r





          (16) 

The invariants of 
4V  are  

           s   and ( )R w    

Which reduce Eqn. (15) to the ordinary differential equation 

            3 0R R R t R              (17) 

 

 

 

Reductions in remaining cases using generators forming sub-algebra are given in the form of Table 2 in 

Appendix A. 

Appendix A 

 

Algebra 

 

Reduction 

 

[V1,V2] 

 

R = 0 

 

[V1,V3] 

 

R = 0 

 

[V1,V4] 

 

R = 0 

 

[V2,V3] 

 
3 0R R R t R     

 

[V2,V4] 

 
3 0R R R t R     

 

[V3,V4] 

 

R = 0 

  

5. CONCLUSION 

  In this chapter, 

i) A (2+1) dimensional KDV equation ut + u3ux + u3uy - uxxt - uyyt = 0, is subjected to 

Lie’s classical method. 

ii) Equation ut + u3ux + u3uy - uxxt - uyyt = 0 admits a four dimensional symmetry 

group. 

iii) It is established that the symmetry generators form a closed Lie algebra. 

iv) Classification of symmetry algebra of ut + u3ux + u3uy - uxxt - uyyt = 0 into one and 

two dimensional sub-algebras is carried out. 

v) Systematic reduction to (1+1) – dimensional PDE and then to first or second 

order ODEs are performed using one-dimensional and two-dimensional solvable abelian 

sub-algebras. 
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