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Abstract:  This paper mainly presents Euler method and Higher order of Taylor’s Method (TR4) for solving initial value problems 

(IVP) for ordinary differential equations (ODE). The two proposed methods are quite efficient and practically well suited for solving 

these problems. In order to verify the ac‐ curacy, we compare numerical solutions with the exact solutions. The numerical solutions 

are in good agreement with the exact solutions. Numerical comparisons between Euler method and Higher order of Taylor’s Method 

have been presented. Also we compare the performance and the computational effort of such methods. In order to achieve higher 

accuracy in the solution, the step size needs to be very small. Finally we investigate and compute the errors of the two proposed 

methods for different step sizes to examine superiority. Several numerical examples are given to demonstrate the reliability and 

efficiency. 
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I. INTRODUCTION 

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic 

manipulations) for the problems of mathematical analysis. One of the earliest mathematical writings is a Babylonian tablet from the 

Yale Babylonian Collection (YBC 7289), which gives a sexagesimal numerical approximation of 𝑝2, the length of the diagonal in a 

unit square. Being able to compute the sides of a triangle (and hence, being able to compute square roots) is extremely important, for 

instance, in astronomy, carpentry and construction. Numerical analysis continues this long tradition of practical mathematical 

calculations. Much like the Babylonian 𝑃 approximation of 2, modern numerical analysis does not seek exact answers, because exact 

answers are often impossible to obtain in practice. Instead, Much of numerical analysis is concerned with obtaining approximate 

solutions while maintaining reasonable bounds on errors. 

Numerical analysis naturally finds applications in all fields of engineering and the physical science, but in 21st century also 

the life sciences and even the arts have adopted elements of scientific computations. 

Many great mathematicians of were preoccupied by numerical analysis, as it is obvious form the names of important 

algorithms Euler’s method, Taylor’s method. We are familiar to the differential equations is the one of the area of the numerical 

analysis. 

A more robust and intricate numerical technique is the Runge Kutta method. This method is the most widely used one since 

it gives reliable starting values and is particularly suitable when the computation of higher de-rivatives is complicated. The numerical 

results are very encouraging. Finally, two examples of different kinds of ordinary differential equations are given to verify the 

proposed formulae. The results of each numerical example indicate that the convergence and error analysis which are discussed 

illustrate the efficiency of the methods. The use of Euler method to solve the differential equation numerically is less efficient since it 

requires h to be small for obtaining reasonable accuracy. It is one of the oldest numerical methods used for solving an ordinary initial  

value differential equation, where the solution will be obtained as a set of tabulated values of variables x and y. It is a simple and 

single step but a crude numerical method of solving first-order ODE, particularly suitable for quick programming because of their 

great simplicity, although their accuracy is not high. But in Runge Kutta method, the derivatives of higher order are not required and 

they are designed to give greater accuracy with the advantage of requiring only the functional values at some selected points on the 

sub-interval. Runge Kutta me-thod is a more general and improvised method as compared to that of the Euler method. We observe 

that in the Euler method excessively small step size converges to analytical solution. So, large number of computation is needed. In 

contrast, Runge Kutta method gives better results and it converges faster to analytical solution and has less iteration to get accuracy 

solution.  
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This paper is organized as follows: Section 2: problem formulations; Section 3:Euler Method section 4:Higher order of 

Taylor Method section 5: Error analysis; Section 6:Matlab Software section7: numerical examples; Section 7: discussion of results; 

and the last section: The conclusion of the paper. 

2. Problem Formulation 

In this section we consider two numerical methods for finding the approximate solutions of the initial value problem (IVP) of the 

first-order ordinary differential equation has the form  

𝑦′ = 𝑓(𝑥, 𝑦(𝑥)), 𝑥 ∈ (𝑥0, 𝑥𝑛)(1) 

𝑦(𝑥0) = 𝑦0 

Where 𝑥0 and 𝑦0 are initial values for x and y respectively.  

Our aim is to determine (approximately) the unknown function 𝑦(𝑥) for 𝑥 ≥ 𝑥0. We are told explicity the value of 

𝑦(𝑥0),namely 𝑦0,using the given differential equation (1),we can also determine exactly the instantaneous rate of change of y at point 

𝑥0 

𝑦′(𝑥0) = 𝑓(𝑥0, 𝑦(𝑥0)) = 𝑓(𝑥0, 𝑦0)              

If the rate of change of 𝑦(𝑥) were to remain 𝑓(𝑥0, 𝑦0) for all point x, then  𝑦(𝑥) would exactly 𝑦0 + 𝑓(𝑥0, 𝑦0)(𝑥 − 𝑥0). The 

rate of change of y(x) does not remain  𝑓(𝑥0, 𝑦0) for all x, but it is reasonable to expect that it remains close to 𝑓(𝑥0, 𝑦0) for x  close 

to 𝑥0 , for small  number h ,and is called the step size.The numerical solutions of (1) is given by a set of points {(𝑥𝑛 , 𝑦𝑛): 𝑛 =
0,1,2, … , 𝑛} and each point (𝑥𝑛 , 𝑦𝑛) is an approximation to the corresponding point (𝑥𝑛 , 𝑦(𝑥𝑛)) on the solution curve. 

3. Euler Method 

Euler’s method is the most elementary approximation technique for solving initial-value problems. Although it is seldom used 

in practice, the simplicity of its derivation can be used to illustrate the techniques involved in the construction of some of the more 

advanced techniques, without the cumbersome algebra that accompanies these constructions. 

The object of Euler’s method is to obtain approximations to the well-posed initial-value problem 

( , ),
dy

f x y
dx

 ,a x b  ( ) .y a  …………….(3.1) 

A continuous approximation to the solution ( )y x  will not be obtained; instead, approximations to y will be generated at 

various values, called mesh points, in the interval [ , ]a b . Once the approximate solution is obtained at the points, the approximate 

solution at other points in the interval can be found by interpolation. 

We first make the stipulation that the mesh points are equally distributed throughout the interval [ , ]a b . This condition is 

ensured by choosing a positive integer N  and selecting the mesh points 

,ix a ih        for each  0,1, 2,......,i N                      …………….(3.2) 

the common distance between the points 1( ) i ih b a N x x     is called the step size. 

We will use Taylor’s Theorem to derive Euler’s method. Suppose that ( )y x , the unique solution to (3.2), has two continuous 

derivatives on [ , ]a b , so that for each 0,1,2,......, 1i N  , 

2

1
1 1

( )
( ) ( ) ( ) ( ) ( ),

2

i i
i i i i i i

x x
y x y x x x y x y 

 


      

for some number i  in 1( , )i ix x  . Because 1i ih x x  , we have  

2

1( ) ( ) ( ) ( ),
2

i i i i

h
y x y x hy x y 

     

and, because ( )y x  satisfies the differential equation (3.1), 

2

1( ) ( ) ( , ( )) ( ),
2

i i i i i

h
y x y x hf x y x y 

      …………..(3.3) 

Euler’s method constructs ( )i iw y x , for each 0,1, 2,......,i N , by deleting the remainder term.  

 

Thus Euler’s method is 
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0w  , 

1 ( , ),i i i iw w hf x w     for each 0,1,2,......, 1i N  .          …………..(3.4) 

We handle the numerical problems through the MATLAB Programs with same step size. 
2

1( ) ( ) ( , ( )) ( ),
2

i i i i i

h
y x y x hf x y x y 

    

4. Higher Order of Taylor Method 

The object of a numerical techniques is to determine accurate approximations with minimal effort, we need a means for 

comparing the efficiency of various approximation methods. 

Consider the initial value problem 

( , )y f x y  ,      a x b  ,         ( )y a  . 

has ( 1)n  continuous derivatives. If we expand the solution, ( )y x , in terms of its nth Taylor polynomial about ix and 

evaluate 1ix  , we obtain 

2 3

1( ) ( ) ( ) ( ) ( ) ...
2! 3!

i i i i i

h h
y x y x hy x y x y x

      
1

( ) ( 1)( ) ( )
! ( 1)!

n n
n n

i i

h h
y x y

n n



 


…………..(4.1) 

for some  i  in 1( , )i ix x  , where 
b a

h
N


 , 0,1,2,..... 1i N  . 

Successive differentiation of the solution ( )y x  gives 

( ) ( , ( ))y x f x y x  ,   ( ) ( , ( ))y x f x y x  ,and generally,
( ) ( 1)( ) ( , ( ))k ky x f x y x . 

Substituting these results into(4.1) gives 
2 3

1( ) ( ) ( , ( )) ( , ( )) ( , ( )) ...
2! 3!

i i i i i i i i

h h
y x y x hf x y x f x y x f x y x

     
                    

                                                                              

1
( 1) ( )( , ( )) ( , ( ))

! ( 1)!

n n
n n

i i i i

h h
f x y x f y

n n
 


 


…………..(4.2) 

The difference equation method corresponding to (4.2) is obtained by deleting the remainder term involving i . 

Taylor method of order ‘n’ 

0w   

( )

1 ( , )n

i i i iw w hT x w    for each  0,1,2,..... 1i N  ,          …………..(4.3) 

where 

1
( ) ( 1)( , ) ( , ) ( , ) ... ( , )

2 !

n
n n

i i i i i i i i

h h
T x w f x w f x w f x w

n


    .Euler’s method is Taylor’s method of order one. 

5.Error Analysis 

There are two types of errors in numerical solution of ordinary differential equations. Round-off errors and Truncation errors 

occur when ordinary differential equations are solved numerically. Rounding errors originate from the fact that computers can only 

represent numbers using a fixed and limited number of significant figures. Thus, such numbers or cannot be represented exactly in 

computer memory. The discrepancy introduced by this limitation is call Round-off error. Truncation errors in numerical analysis arise 

when approximations are used to estimate some quantity. The accuracy of the solution will depend on how small we make the step 

size, h.  

A numerical method is said to be convergent if 

lim
ℎ→0

 1≤𝑛≤𝑁

|𝑦(𝑥𝑛) − 𝑦𝑛| = 0. 
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where y(x) denotes the approximate solution and yn denote the exact solution. In this thesis we consider two initial value problems to 

verify accuracy of the proposed methods. The approximated solution is evaluated by using MATLAB software for two proposed 

numerical method at different step. 

The maximum error by 

𝑒𝑟 = max
1≤𝑛≤𝑠𝑡𝑒𝑝𝑠

(|𝑦(𝑥𝑛) − 𝑦𝑛|). 

 

6.Matlab Software 

MATLAB is widely used in all areas of applied mathematics, in education and research at universities, and in the industry. 

MATLAB stands for MATrixLABoratory and the software is built up around vectors and matrices.  

This makes the software particularly useful for linear algebra but MATLAB is also a great tool for solving algebraic and differential 

equations and for numerical integration.  

MATLAB has powerful graphic tools and can produce nice pictures in both 2D and 3D. It is also a programming language, and 

is one of the easiest programming languages for writing mathematical programs. MATLAB also has some tool boxes useful for signal 

processing, image processing, optimization, etc. 

The tutorials are independent of the rest of the document. The primarily objective is to help you learn quickly the first steps. 

The emphasis here is “learning by doing”. Therefore, the best way to learn is by trying it yourself. Working through the examples will 

give you a feel for the way that MATLAB operates. In this introduction we will describe how MATLAB handles simple numerical 

expressions and mathematical formulas.  

MATLAB was written originally to provide easy access to matrix software developed by the LINPACK (linear system 

package) and EISPACK (Eigen system package) projects. MATLAB is a high-performance language for technical computing. It 

integrates computation, visualization, and programming environment. Furthermore, MATLAB is a modern programming language 

environment. It has sophisticated data structures, contains built-in editing and debugging tools, and supports object-oriented 

programming. These factors make MATLAB an excellent tool for teaching and research.  

MATLAB has many advantages compared to conventional computer languages (e.g., C, FORTRAN) for solving technical 

problems. MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. The software 

package has been commercially available since 1984 and is now considered as a standard tool at most universities and industries 

worldwide. It has powerful built-in routines that enable a very wide variety of computations. It also has easy to use graphics 

commands that make the visualization of results immediately available. Specific applications are collected in packages referred to as 

toolbox.  

There are toolboxes for signal processing, symbolic computation, control theory, simulation, optimization, and several other 

fields of applied science and engineering. In addition to the MATLAB documentation which is mostly available online. 

MATLAB was first adopted by researchers and practitioners in control engineering, Little's specialty, but quickly spread to 

many other domains. It is now also used in education, in particular the teaching of linear algebra, numerical analysis, and is popular 

amongst scientists involved in image processing. 

The techniques for solving differential equations based on numerical approximations were developed before programmable 

computers existed. During World War II, it was common to find rooms of people (usually women) working on mechanical calculators 

to numerically solve systems of differential equations for military calculations. Before programmable computers, it was also common 

to exploit analogies to electrical systems to design analog computers to study mechanical, thermal, or chemical systems. 

As programmable computers have increased in speed and decreased in cost increasingly complex systems of differential 

equations can be solved with simple programs written to run on a common PC. Currently, the computer on your desk can tackle 

problems that were inaccessible to the fastest supercomputers just 5 or 10 years ago. 

First, we will review some basic concepts of numerical approximations and then introduce Euler's method, the simplest 

method. We will provide details on algorithm development using the Euler method as an example. Next we will discuss error 

approximation and discuss some better techniques. Finally we will use the algorithms that are built into the MATLAB programming 

environment. 

Numerical methods for solving ordinary differential equations are discussed in many textbooks. Here we will discuss how to 

use some of them in MATLAB. In particular, we will examine how a reduction in the “step size” used by a particular algorithm 

reduces the error of the numerical solution, but only at a cost of increased computation time. In line with the philosophy that we are 

not emphasizing programming in this manual, MATLAB routines for these numerical methods are made available. 

7. Numerical Examples 

             In this section we consider two numerical examples to prove which numerical methods converge faster to analytical 

solution. Numerical results and errors are computed and the outcomes are represented by graphically.  
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Example-1 : We consider the initial value problem
2 1y y x    , 0 3.2x  , (0) 0.5y  .The exact solution of the 

given problem is given by
2( 1) 0.5 xy x e   The approximate results and maximum errors are obtained and 

shown in Tables 1(a,b) and the graphs of the numerical solutions are displayedin Figures 1(a,b). 

 

Table: 1(a) Lists the numerical and analytical values of
2(1 ) 0.5 xy x e   for 0 3.2x  and here the values for each 

x as like as  Euler< (Exact ≈ Taylor4) < Taylor3 <  Taylor2. 
 

                                  x-value          Exact          Euler         Taylor2      Taylor3       Taylor4 

           0            0.5000000    0.5000000   0.5000000   0.5000000   0.5000000 

   0.2000000   0.8292986   0.8000000   0.8300000   0.8293333   0.8293000 

   0.4000000   1.2140876   1.1520000   1.2158000   1.2141725   1.2140911 

   0.6000000   1.6489406   1.5504000   1.6520760   1.6490959   1.6489468 

   0.8000000   2.1272295   1.9884800   2.1323328   2.1274824   2.1272397 

   1.0000000   2.6408591   2.4581759   2.6486459   2.6412454   2.6408744 

   1.2000000   3.1799417   2.9498112   3.1913481   3.1805077   3.1799641 

   1.4000000   3.7323999   3.4517734   3.7486446   3.7332065   3.7324321 

   1.6000000   4.2834840   3.9501281   4.3061466   4.2846098   4.2835283 

   1.8000000   4.8151765   4.4281540   4.8462987   4.8167233   4.8152375 

   2.0000000   5.3054719   4.8657846   5.3476844   5.3075714   5.3055553 

   2.2000000   5.7274933   5.2389412   5.7841749   5.7303138   5.7276053 

   2.4000001   6.0484118   5.5187297   6.1238933   6.0521698   6.0485611 

   2.5999999   6.2281308   5.6704755   6.3279500   6.2331038   6.2283287 

   2.8000000   6.2176766   5.6525707   6.3488989   6.2242174   6.2179365 

   3.0000000   5.9572315   5.4150848   6.1288567   5.9657907   5.9575715 

   3.2000000   5.3737350   4.8981018   5.5972052   5.3848858   5.3741779 

 

 

Table-1(b) shows the errors of Euler’s ,Taylor high order methods  with exact method. These error 

values for each x are in the order Taylor4 < Taylor3 < Taylor2 < Euler. 

                                  x-value         Euler           Taylor2         Taylor3        Taylor4 

           0                  0                   0                    0                   0 

   0.2000000   0.0292986   0.0007014   0.0000347   0.0000014 

   0.4000000   0.0620877   0.0017123   0.0000848   0.0000034 

   0.6000000   0.0985406   0.0031354   0.0001553   0.0000062 

   0.8000000   0.1387495   0.0051032   0.0002530   0.0000101 

   1.0000000   0.1826831   0.0077868   0.0003862   0.0000153 

   1.2000000   0.2301303   0.0114065   0.0005661   0.0000225 

   1.4000000   0.2806266   0.0162446   0.0008066   0.0000321 

   1.6000000   0.3333557   0.0226626   0.0011259   0.0000447 

   1.8000000   0.3870225   0.0311223   0.0015470   0.0000615 

   2.0000000   0.4396875   0.0422123   0.0020994   0.0000834 

   2.2000000   0.4885519   0.0566816   0.0028206   0.0001121 

   2.4000001   0.5296821   0.0754815   0.0037582   0.0001494 

   2.5999999   0.5576553   0.0998188   0.0049726   0.0001976 

   2.8000000   0.5651059   0.1312222   0.0065406   0.0002599 

   3.0000000   0.5421466   0.1716250   0.0085591   0.0003402 

   3.2000000   0.4756330   0.2234701   0.0111507   0.0004432                   
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Figure-1(a,b) shows the function 
2(1 ) 0.5 xy x e    on the interval [0,3.2] usingMATLAB where red, green, magenta, 

blue, cyan colour curves denote Exact and Taylor’s of order2,3,4 curves respectively. The green curve Eulercurve is below to the 

other curves and the magenta colour Talyor2 curve is above to all curves but the blue colour Taylor3 is in-between Taylor2 

andTaylor4. Here, The Taylor4th curve is more nearest to other curves. 

(i).2Dand  3D View 

 

 

 

Example-2: 

We consider the initial value problem ,y y x   0 3.2,x  (0) 2.y  The exact solution of the given problem is given 

by 1 xy x e   . The approximate results and maximum errors are obtained and shown in Tables 2(a,b)and the 
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graphs of the numerical solutions are displayed in Figures :2 (a,b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table-2(a,b) lists the numerical and analytical values of 1 xy x e   for 0 3.2x  and here the  

values for each x as like as  Euler< (Exact ≈ Taylor4) < Taylor3 <  Taylor2. 

 

 

The table-2(a,b) shows the errors of Euler’s ,Taylor high order methods  with exact method.  

These errors values for each x are in the orderTaylor4 < Taylor3 < Taylor2 < Euler. 

 

                x-value        Exact            Euler         Taylor2        Taylor3        Taylor4 

              0                  2.0000000   2.0000000     2.0000000    2.0000000     2.0000000 

           0.2000000   2.4214027    2.4000001     2.4200001    2.4213333     2.4214001 

           0.4000000   2.8918247    2.8399999     2.8884001    2.8916552     2.8918180 

           0.6000000   3.4221189    3.3280001     3.4158480    3.4218080     3.4221065 

           0.8000000   4.0255408    3.8736000     4.0153346    4.0250349     4.0255208 

           1.0000000   4.7182817    4.4883199     4.7027082    4.7175093     4.7182512 

           1.2000000   5.5201168    5.1859841     5.4973040    5.5189848     5.5200720 

           1.4000000   6.4552002    5.9831810     6.4227109    6.4535866     6.4551358 

           1.6000000   7.5530324    6.8998170      7.5077071   7.5507808     7.5529428 

           1.8000000   8.8496475    7.9597802      8.7874031    8.8465538     8.8495245 

           2.0000000  10.3890562   9.1917362    10.3046312  10.3848572  10.3888893 

           2.2000000  12.2250137   10.6300840  12.1116505  12.2193727  12.2247896 

           2.4000001  14.4231768   12.3161001  14.2722130  14.4156599  14.4228773 

           2.5999999  17.0637379   14.2993202  16.8640995  17.0537930  17.0633430 

           2.8000000  20.2446461   16.6391850  19.9822025  20.2315655  20.2441273 

           3.0000000  24.0855370   19.4070225  23.7422867  24.0684185  24.0848560 

           3.2000000  28.7325306   22.6884251  28.2855892  28.7102280  28.7316437 

 

    x-value           Euler           Taylor2        Taylor3        Taylor4 

          0                   0                  0                     0                   0 

   0.2000000   0.0214028   0.0014028   0.0000694   0.0000028 

   0.4000000   0.0518247   0.0034247   0.0001696   0.0000067 

   0.6000000   0.0941188   0.0062708   0.0003107   0.0000123 

   0.8000000   0.1519409   0.0102064   0.0005060   0.0000201 

   1.0000000   0.2299618   0.0155737   0.0007725   0.0000307 

   1.2000000   0.3341329   0.0228130   0.0011321   0.0000450 

   1.4000000   0.4720192   0.0324891   0.0016132   0.0000641 

   1.6000000   0.6532155   0.0453252   0.0022518   0.0000895 

   1.8000000   0.8898671   0.0622447   0.0030941   0.0001230 

   2.0000000   1.1973196   0.0844247   0.0041989   0.0001669 

   2.2000000   1.5949298   0.1133632   0.0056412   0.0002242 

   2.4000001   2.1070759   0.1509630   0.0075164   0.0002987 

   2.5999999   2.7644174   0.1996377   0.0099453   0.0003952 

   2.8000000   3.6054621   0.2624443   0.0130812   0.0005199 

   3.0000000   4.6785154   0.3432500   0.0171182   0.0006803 
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Figure-2 (i),(ii) shows the function 1 xy x e    on the interval [0,3.2]  using MATLAB.where red, green, magenta, blue, cyan 

colour curves denote  Exact and Taylor’s of order 2,3,4 curves respectively. The green curve Euler curve is below to the other curves 

and the magenta colour Taylor2 curve is above to all curves but the blue colour Taylor3 is in-between Taylor2 and 

Taylor4. Here, The Taylor4th curve is more nearest to other curves. 

 

2D & 3D View 

 
 

8. Discussion of Results 
The Taylor series method is of general applicability and it is the standard to which we compare the accuracy of the various 

other numerical methods for solving a Linear Ordinary Differential Equation with Initial Values. We already compared Euler 

method, Taylor order2, Taylor order3 , Taylor order4 with Exact method in this paper.We compared among them through MATLAB 

program 
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   3.2000000   6.0441041   0.4469401   0.0223015   0.0008864 
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9. Conclusion 

The graphs that are plotted in previous chapters (iv),(v) the results obtained from different methods using MATLAB 

consequently, we can see Taylor’s Method is more accurate than Euler’s Method. In particular, the accuracy of solution of Taylor’s 

higher order method isnearer to that of the exact solution and error is also very less for higher order when compared to lower orders.  

Thus, if we want better accuracy for the solution of IVP, we should use higher order approximations. Thus , one can easily 

adapt the MATLAB coded as needed for a different type of problems.Thus, if we want better accuracy for the solution of IVP, we 

should use higher order approximations. Thus one can easily adapt the MATLAB coded as needed for a different type of problems. 
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