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Abstract: In this article, the author investigates an impact of variable fluid properties on the flow 

and heat transfer characteristics of a dusty fluid over a elestic sheet. Temperature dependent fluid 

properties are assumed to vary as a function of the temperature. The governing coupled nonlinear 

partial differential equations along with the appropriate boundary conditions are transformed into 

coupled, nonlinear ordinary differential equations by a similarity transformation. The resultant 

coupled highly non-linear ordinary differential equations are solved numerically. The numerical 

solutions are compared with the approximate analytical solutions, obtained by a perturbation 

technique. The analysis reveals that even in the presence of variable fluid properties the 

transverse velocity of the fluid is to decrease with an increase in the fluid-particle interaction 

parameter. This observation holds even in the presence of magnetic field 
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1. INTRODUCTION 

 

The investigation of two-dimensional limit layer stream and warmth exchange instigated by 

constant extending surfaces pulled in enthusiasm because of its different applications to 

designing and mechanical controls. These applications incorporate expulsion procedure, wire and 

fiber covering, polymer preparing, nourishment stuff handling, plan of warmth exchangers, and 

substance preparing gear. The idea of ceaseless extending will acquire a unidirectional 

introduction to expel; thusly the nature of the last item depends extensively on the stream and 

warmth exchange system. Keeping that in mind, the investigation of energy and warm transports 

inside the liquid on a ceaselessly extending surface is imperative for increasing some central 

comprehension of such procedures. Keeping these viable applications in view, Crane [1] started 

the investigation of enduring two-dimensional limit layer stream because of the extending of a 

versatile sheet. In this manner, a few expansions identified with Crane's [1] stream issue were 

made for various physical circumstances (see Gupta and Gupta [2], Grubka and Bobba [3], 

Siddappa and Abel [4] , Vleggaar [5], Chen [6], Dutta et al. [7], Ali [8], Cortell [9], and Liu 

[10]). In these examinations the limit layer estimation is considered and the limit conditions are 

recommended at the sheet and on the liquid at boundlessness. Burden of likeness change 

decreased the framework to a lot of conventional differential conditions (ODEs), which are then 

tackled diagnostically or numerically.  

 

All the above authorities bind their examinations to the stream provoked by a direct broadening 

sheet without fluid atom suspension. The examination of two-organize streams in which solid 

round particles are scattered in a fluid are of excitement for a wide extent of particular issues, for 

instance, travel through stuffed beds, sedimentation, normal defilement, outspread segment of 

particles and blood rheology. The examination of the cutoff layer of fluid atom suspension 

stream is indispensable in choosing the particle accumulation and impingement of the particle 

externally. In context on these applications, Chakrabarti [11] separated the breaking point layer 
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in a dusty gas. Datta and Mishra [12] investigated point of confinement layer stream of a dusty 

fluid over a semi-unlimited dimension plate. Further, investigate in this field has been finished 

by Agranat [13], Kumar and Sharma [14], Vajravelu and Nayfeh [15], Asmolov and 

Manuilovich [16], Palani et al. [17], and Gireesha et al. [18]. Kumar and Sharma [14] thought 

about the fluid atom suspension stream over a broadening sheet by using the least square 

constrained segment procedure. Starting late, Gireesha [18] dismembered the stream and warmth 

trade of a dusty fluid over a non-isothermal expanding sheet inside seeing non-uniform warmth 

source/sink.In every one of the papers over, the thermo-physical properties of the encompassing 

liquid molecule suspension were thought to be consistent. Be that as it may, it is notable that 

(Herwig and Wickern [19], Lai and Kulacki [20], Takhar et al. [21], Pop et al. [22], Hassanien 

[23], Subhas Abel et al. [24], Seedbeek [25], Ali [26], Prasad et al. [27]) these physical 

properties may change with temperature, particularly the consistency and the warm conductivity. 

For greasing up liquids, heat produced by inside grating and the relating ascend in the 

temperature influences the physical properties of the liquid, and the properties of the liquid are 

never again thought to be steady. The expansion in temperature prompts increment in the vehicle 

marvels by modifying the physical properties over the warm limit layer, thus the warmth 

exchange at the divider is additionally influenced. Thusly to anticipate the stream and warmth 

exchange rates, it is important to consider the variable liquid properties.  

 

Propelled by these investigations, we broaden crafted by Vajravelu and Nayfeh [15] by 

considering the temperature-subordinate variable liquid properties. In this way in the present 

paper, we contemplate the impacts of variable consistency and variable warm conductivity on the 

hydromagnetic, liquid molecule suspension stream and warmth exchange over an extending 

sheet. The coupled non-direct halfway differential conditions administering the issue are 

decreased to an arrangement of coupled non-straight common differential conditions by applying 

an appropriate closeness change. These non-straight coupled differential conditions are explained 

numerically by the Keller-Box strategy for various estimations of the relevant parameters. The 

numerical outcomes are displayed through tables and charts. Further, the striking highlights of 

the stream and warmth exchange qualities are talked about. 

 

2. MATHEMATICAL FORMULATION   
Consider the steady flow of a viscous, incompressible and electrically conducting dusty fluid 

over a horizontal stretching sheet with a stretching linear velocity. The thermo-physical fluid 

properties are assumed to be isotropic and constant, except for the fluid viscosity and the fluid 

thermal conductivity which are assumed to vary as a function of temperature in the following 

forms: 

 
1 1

1 ,T T
 





                                                                                                                   (1) 

  1 ,
T T

K T K
T

 



 
  

 
                                                                                                                      (2)

 

where and K  are the ambient fluid viscosity and thermal conductivity respectively.  is a 

small parameter known as the variable thermal conductivity parameter, T  is the temperature of 

the fluid and  .wT T T    Equation (1) can be written as, 

 
1

,ra T T

 

                                                                                                                             (3)
 

where 
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1
and .ra T T



 




                                                                                                                             (4) 

Both a and Tr are constants and their values depend on the reference state and the thermal 

property of the fluid, i.e.   (a constant). In general, 0a  for liquids and 0a  for gases, when 

.wT T  The correlations between the viscosity and the temperature for air and water are given as 

follows: 

For air:   
1

123.2 T 742.6 ,  


 based on 0T 293 K (20 C),   

and for water :    
1

29.83 T 258.6 ,  


based on 0T 288 K (15 C).   Also, let r be the 

constant which is defined by                                                                                

1
.r

r

T T

T T





  
                                                                                                                    

(5)  

It is worth mentioning here that for 0 i.e. =    (constant), .r    It is also important to 

note that r is negative for liquids and positive for gases. This is due to the fact that viscosity of a 

liquid usually decreases with increasing temperature while it increases for gases. The reference 

temperatures selected here for the correlations are very useful for most applications (see for 

details Refs. [28-29]). The flow region is exposed under uniform transverse magnetic field 

)0,,0( 0BB and the imposition of such a magnetic field, stabilizes the boundary layer flow. It is 

assumed that the flow is generated by stretching of an elastic sheet from a slit by imposing two 

equal and opposite forces in such a way that sheet is intact. It is also assumed that the magnetic 

Reynolds number is very small and the electric field due to polarization of charges is negligible. 

Under these conditions, the basic boundary-layer equations for continuity, conservation of mass 

(with no pressure gradient) and energy can be written as, 

v
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u

x y

 
 
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                                                                                                                     (6) 
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where    , v and , vp pu u  are the velocities components of the fluid and particle phases  along 

the x and y axes respectively. Furthermore and  are the coefficients of viscosity of the fluid 

and the density of the fluid. Here 1  k  is the relaxation time of particles, 6k D  is the 
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Stokes’ constant, and D is the average radius of the dust particles. Further, σ is the electrical 

conductivity, 0B  is the uniform magnetic field, and p  is the mass of the dust particles per unit 

volume of the fluid: and pT T  are respectively the temperatures of the fluid and the dust 

particles. Further, andp sc c  are respectively the specific heat capacity of the fluid and specific 

heat capacity of the dust particles, T  
is the temperature relaxation time ( 3Pr 2 ),p s pc c  p  is 

the velocity relaxation time ( 1 ),k  and  Pr is the usual Prandtl number.  

The last term in equation (7) represents the force due to the relative motion between the fluid and 

the dust particles. In such a case the force between dust and fluid is proportional to the relative 

velocity. ( ) ( ) pT K T c   is the thermal diffusivity of the fluid: It varies as a linear function 

of temperature. In deriving these equations the Stokesian drag force is considered for the 

interaction between the fluid and the particle phases. The appropriate boundary condition on 

velocity and temperature are  

 1( ) , v 0, at 0,

0, 0, v v, , , as .

w w

p p p p

u U x b x T T A x l y

u u k T T T T y   

     

      
                        (13)  

Here b is a constant known as stretching rate, A1 is a constant and l is the characteristic length. 

Now, let the dimensionless similarity variable be 

b
y



                                                                                                                                  (14) 

and the dimensionless similarity functions are 

       

             
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, , , .

p p

r w p w p w

u bx f b f u bx F b G

H T T T T T T T T T T A x l

     

     

 

    

    

        
           (15) 

Substituting the expressions for variable fluid viscosity and the variable fluid thermal 

conductivity from the equations (1) and (2) into equations (6) to (13) and making use of 

similarity equations from (14)-(15), we obtain 

 
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                                                                   (16) 

and    

1, 0, 1 0,

0, 0, , , 0, 0 as .p

f f y

f F G f H k y



 

    

      
                                (17) 

where a prime denotes differentiation with respect to  . Here r p    is the relative 

density, 2

0Mn B b  is the magnetic parameter, 1  b is the fluid particle interaction 
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parameter,  1r T   is the fluid viscosity parameter, which is negative for liquids and 

positive for gases,
 

Pr     is the Prandtl number, and   is a small parameter known as the 

variable thermal conductivity parameter and 0 TL   is the temperature relaxation parameter. 

The value of r  is determined by the viscosity of the fluid under consideration and the operating 

temperature difference. If r  is large, in other words, if  wTT   is small, the effects of variable 

viscosity on the flow can be neglected. On other hand, for smaller values of r , either the fluid 

viscosity changes markedly with temperature or the operating temperature difference is high. In 

either case, the effect of the variable fluid viscosity is expected to be very important. Also let us 

keep in mind that the liquid viscosity varies differently with temperature compared to the gas 

viscosity.  Therefore it is important to note that r  is negative for liquids and positive for gases.   

3. SOLUTIONS FOR SOME SPECIAL CASES 

In the limiting case of r   and 0,   the system of equations (16) reduces to those of 

Gireesha et al. [18] and with those of Vajravelu and Nayefh [15], when no heat transfer is 

considered; also, for  = 0 to those of Chakrabarthi and Gupta [30]. In the presence of variable 

fluid properties, when there is no fluid interaction and no magnetic field, the system of equations 

(16) reduces to those of Pop et al. [22]. Further, when the variable thermo-physical properties, 

fluid particle interaction and the magnetic field are absent, equations are similar to the ones 

studied by Crane [1], and Grubka and Bobba [4].  

In the absence of variable fluid properties, the hydromagnetic boundary layer flow and heat 

transfer problem degenerates. In this case, the approximate analytical solutions for the velocity 

field and temperature fields are obtained via perturbation analysis. These solutions are useful and 

serve as a baseline for comparison with the solutions obtained via numerical schemes.  

 

4. NUMERICAL PROCEDURE   

The system of equations (16) is coupled and highly non-linear. Exact analytical solutions are not 

possible for the complete set of equations and therefore we use the efficient numerical method 

with second order finite difference scheme known as the Keller-Box method [27, 1-32]. The 

coupled boundary value problem (16,17); third order in )(f , first order in 

( ), ( ), ( ), ( )pF G H      and second order in )( , respectively; is reduced to a system of nine 

simultaneous ordinary differential equations of first order with nine unknowns, by assuming  

1 2 3 1 2, , , ,f f f f f f           . To solve this system of equations we require nine initial 

conditions whilst we have only two initial conditions )0('),0( ff  on )(f  and one initial 

condition )0(  on )( . The other six initial conditions          0 , 0 , 0 , 0 , 0 f F G H   

and  0p  are not prescribed: However, the values of          , , , ,f F G H       

 and p  are known as    . Now, we employ the Keller-Box scheme where these six 

boundary conditions are utilized to produce six unknown initial conditions at 0  . To select  

,  we begin with some initial guess values and solve the boundary value problem with some 

particular set of parameters to obtain            0 , 0 , 0 , 0 , 0 and 0 .pf F G H     Thus, we 

start with the initial approximations as   10 , f   20 ,F   30 ,G   40 ,H  

and   60 p .  
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Let  * 1,2,3,4,5,6i i    be the correct values of        0 , 0 , 0 , 0 ,f F G H   0 and   0 .p  

We integrate the resulting system of nine ordinary differential equations using fourth order 

Runge-Kutta method and obtain the values of          0 , 0 , 0 , 0 , 0f F G H     and 0p . 

The solution process is repeated with another larger value of   until two successive values of 

           0 , 0 , 0 , 0 , 0 and 0pf F G H    differ only after desired digit signifying the limit 

of the boundary along . The last value of  is chosen as appropriate value for that particular set 

of parameters. Finally, the problem can be solved numerically using a second order finite 

difference scheme known as the Keller-Box method (for details see Prasad et al. [27]). The 

numerical solutions are obtained in four steps as follows: 

 reduce the systems of equations (16) and (17) to a system of first-order equations; 

 write the difference equations using central differences; 

 linearize the algebraic equations by Newton’s method, and write them in matrix-vector 

form; and 

 solve the linear system by the block tri-diagonal elimination technique. 

For the sake of brevity, the details of the numerical procedure are not presented here. It is also 

important to note that the computational time for each set of input parameters should be sort. 

Because physical domain in this problem is unbounded, whereas the computational domain has 

to be finite, we apply the far field boundary conditions for the similarity variable   at finite 

value denoted by max .
 
We ran our bulk of computations with the value max 7  , which is 

sufficient to achieve the far field boundary conditions asymptotically for all values of the 

parameters considered. For numerical calculations, a uniform step size of 0.01   is found to 

be satisfactory and the solutions are obtained with an error tolerance of 
610

 in all the cases. To 

assess the accuracy of the present method, comparison of the skin friction )0(''f  and the wall-

temperature gradient )0('  between the present results and previously published results are 

made, for several special cases in which the fluid-particle interaction parameter and thermo-

physical fluid properties are neglected (see Table 1). It was found from Tables 1 and 2 that the 

present results agree very well with those of analytical solutions given by Andersson et al. [31], 

Grubka and Bobba [4], Chen [9] and Ali [8].  

 

5. RESULTS AND DISCUSSION 

 

In this section, we analyze the effects of the pertinent parameters, namely, the fluid-particle 

interaction parameter  , the magnetic parameter Mn , the variable fluid viscosity parameter r , 

the variable thermal conductivity parameter  ,  and the Prandtl number Pr  on the flow and heat 

transfer of fluid-particle suspension over a horizontal stretching sheet. Also, in order to get a 

clear insight into the physical problem, we present the numerical results graphically in Figs. 1-6. 

These figures depict respectively the velocity profiles  ,f f  ; the particle-suspension velocity 

profiles  ,F G ; and the temperature of the fluid and the dust phase profiles  , p  . The 

computed numerical results are recorded in table 3 to show the behavior of the skin friction; the 

particle velocity and the density components; the temperature gradient and the dust-phase 

temperature at the sheet for different values of the governing parameters. 

The transverse velocity f , the horizontal velocity f  , and the particle transverse velocity and 

horizontal velocity     ,F G 
 
profiles are shown graphically in Figs. 1(a)-1(d) for different 
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values of the magnetic parameter Mn  and the fluid-particle interaction parameter   . The general 

trend is that , andf F G decrease monotonically, whereas f increases as the distance increases 

from stretching sheet. It is observed from these figures that the horizontal velocity and transverse 

velocity profiles decrease with an increase in the magnetic parameter. This observation holds 

true even with particle velocity component  ,F  but quite opposite is true with  G  . 

Physically it means that, the induction of transverse magnetic field (normal to the flow direction) 

has a tendency to induce a drag, known as the Lorentz force which tends to resist the flow. It is 

noticed that the effect of increasing values of fluid-particle interaction parameter   is to reduce 

the fluid velocity in the boundary layer and increase the dust phase transverse velocity, as well as 

the horizontal velocity  .F 
  

Figs. 2(a) and 2(b) exhibit the velocity profiles for several sets of values of the fluid viscosity 

parameter ,r  and the fluid-particle interaction parameter  . From the graphical representation 

we infer that the effect of increasing values of the fluid viscosity parameter ,r  
is to decrease the 

momentum boundary layer thickness. Also, as ,r  approaches zero the boundary layer thickness 

decreases and the horizontal velocity distribution tends to zero [see Fig. 2(b)] asymptotically. 

This is due to the fact that for a given fluid (air or water), when  is fixed, smaller ,r implies 

higher temperature difference between the wall and the ambient fluid. The results presented here 

demonstrate clearly that ,r the indicator of the variation of fluid viscosity with temperature, has 

a substantial effect on the horizontal velocity components f  , as well as the transverse velocity 

f and hence on the skin friction. This phenomenon is true with zero and non-zero values of the 

fluid-particle interaction parameter  .  

 

In Figs. 3–6, the numerical results for the fluid temperature and the dust-phase temperature 

    , p     are presented for several sets of values of the governing parameters. The general 

trend is that the fluid-temperature distribution is unity at the wall; whereas the dust-phase 

temperature is not. However, with the changes in the governing parameters both asymptotically 

tend to zero as the distance increases from the boundary. Fig. 3 illustrates the effect of the 

magnetic parameter and the fluid-interaction parameter on    . The effect of increasing values 

of the magnetic parameter Mn is to increase the fluid temperature     and also the dust-phase 

temperature  p  . As explained above, the induction of a transverse magnetic field to an 

electrically conducting fluid gives rise to a resistive force known as the Lorentz force. This force 

makes the fluid experience a resistance by increasing the friction between its layers. Hence, there 

is an increase in the temperature profile     as well as the dust-phase profile. The effect of 

fluid interaction parameter is to decrease the temperature profile which in turn reduces the 

thermal boundary layer thickness; whereas it enhances the dust phase temperature at the wall and 

hence increases the thickness of the dust phase temperature.  

Figs. 4(a) and 4(b) exhibit the fluid-temperature distribution and dust-phase temperature 

distribution for several sets of values of the variable viscosity parameter r , and the fluid-

particle interaction parameter. From the graphical representation, we observe that the effect of 

increasing values of the variabe viscosity parameter r  is to enhance both the fluid-temperature 

as well as the dust-phase temperature. This is due to the fact that an increase in the variable 

viscosity parameter r  
results in an increase in the thermal boundary layer thickness. This is very 
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much noticeable for zero values of fluid-particle interaction parameter as compared to the larger 

values. The graphs for the fluid-temperature profile     and dust-phase temperature  p 
 
for 

different values of the variable thermal conductivity parameter 
 
are respectively shown in Figs. 

5(a) and 5(b). These figures demonstrate that an increase in the value of thermal conductivity 

parameter   results in increasing the temperature profile    . This is due to the fact that the 

assumption of temperature-dependent thermal conductivity (linear form) implies a reduction in 

the magnitude of the transverse velocity by a quantity  K T y 
 
as can be seen from heat 

transfer equation.  

Figs. 6(a) and 6(b) are drawn to display the fluid-temperature profile     and dust-phase 

temperature  p 
 
for different values of the Prandtl number in the absence of the fluid-

interaction parameter, respectively. We observe that the effect of increasing values of the Prandtl 

number Pr is to decrease both    as well as  p  . Physically it means that an increase in the 

Prandtl number means a decrease in the thermal conductivity :K  Hence, there is a decrease in 

the thermal boundary layer thickness. This behavior can be seen even in the presence of fluid 

interaction parameter. 

 

 

 

6. CONCLUSIONS 

In this paper, the impacts of temperature subordinate thermo-physical properties on the MHD 

limit layer stream and warmth exchange of a liquid molecule suspension over an extending sheet 

are examined. The overseeing fractional differential conditions are changed over into common 

differential conditions by closeness changes.  

 

• In the nearness of temperature-subordinate thermo-physical properties, the impact of 

expanding estimations of the liquid collaboration parameter and the attractive parameter is to 

diminish the speed all through the limit layer. In any case, a remarkable inverse is valid with 

residue stage speed profiles.  

 

• The impact of expanding estimations of liquid consistency parameter is to diminish the 

speed limit layer thickness. Be that as it may, it improves the warm limit layer thickness. This 

marvel is genuine even with the liquid molecule suspension parameter.  

 

• The impact of variable warm conductivity parameter is to upgrade the liquid temperature 

just as the molecule stage temperature in the stream area.  

 

• The warm limit layers of the liquid and the residue stage are exceptionally affected by the 

Prandtl number. The impact of Pr is to diminish the warm limit layer thickness.  

 

. 
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Table 1. 
 

 

Mn Present 

results 

Andersson et al. 

[31] 

Exact 

Solution 

0.0 -1.0001 -1.0000 -1.0000 

0.5 -1.2249 -1.2247 -1.2247 

1.0 -1.414 -1.414 -1.414 

1.5 -1.581 -1.581 -1.582 

2.0 -1.73205 -1.73350 -1.73205 
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Table 2.  
 

Pr Present 

results 

Grubka and Bobba [4] Chen [6] Ali [8] 

0.01 -0.01017936 -0.0099 -0.0091  

0.72 -0.4631462 -0.4631 -0.46315 -0.4617 

1.0 -0.5826707 -0.5820 -0.58199 -0.5801 

3.0 -1.16517091 -1.1652 -1.16523 -1.1599 

5.0 -1.56800866 ------------------------- ------------ --------- 

10.0 -2.308029 -2.3080 -2.30796 -2.2960 

100.0 -7.769667 ---------------------------- --------- ---------- 
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