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ABSTRACT

In this paper the notion of § —y open sets in a
topological space together with its corresponding interior
and closure operations are introduced. Further some of
their basic properties are studied.
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1. INTRODUCTION

O. Najastad [10] introduced S open sets in a topological
space and studied some of their properties. The concept of
semiopen sets, preopen sets and semi-preopen sets were
introduced respectively by Levine [8],Mashhour [9] and
Andrijevic [1].Andrijevic [2] introduced a new class of
topology generated by preopen sets and the corresponding
closure and interior operators.Kasahara defined the
concept of an operation on topological spaces and
introduced B —closed graphs of an operation.Ogata [11]
called the operation 8 as y operation and introduced the
notion of T,, which is the collection of all y-open sets in a
topological space (X, T).

In this paper in section 3 we introduce the notion
of T5_, which is the collection of all § — y open sets in a
topological space (X, T).Further we introduce the concept
of Ts_, interior and Ts_, closure operator and study some
of their properties.

2. PRELIMINARIES

In this section we recall some of the basic Definitions and
Theorems
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DEFINITION 2.1 Let(X, T) be a topological space and A
be a subset of X. Then A is said to be

()[10] B-open set if A C ci (int(cl(4)))
(i)[7] semi-open set if A & cl(int(A))
(iii))[9] pre-open set if A C int(cl(A))
(iv)[9]semi-preopen set if (cl(int(cl(A)))

DEFINITION 2.2

Let(X,T) be a topological space, an operation y
on the topology T is a mapping from T on the power set
P(X) of X such that V & VY for each V € T, where VY
denotes the value of y at V.

DEFINITION 2.3

Let (X,T)be a topological space and A be a
subset of Xand y be an operation on T.Then A is said to
be:

(i)[11] a y-open set if for each x € A there exists an open
set U such that x € U and UY & A.T, denotes the set of
all y-open setsiin (X, T).

(ii)[14] y-semi open if and only if

ACT, —cl (Ty - int(A))
(iii)[12] y —preopen if and only if

AC (T, = int(T, - ci(4))

(iv)[12] y-semi preopen if and only if



ACT, —cl(T, — int (T, - cl(4))
DEFINITION 2.4

(i)[14] Let (X,T) be a topological space and y
be an operation on T.Then T, -interior of A is defined as

the union of all y-open sets contained in A and it is
denoted

T, — int(A). That is T, — int(A) =U {U:Uis a
y —open setand U © A}

(ii)[11] Let (X,T) be a topological space and y
be an operation on T.Then T,-closure of A is defined as
the intersection of all y-closed sets containing in Aand it
is denoted T, — cl(A). That is T, — cl(A) =N {F:Fis a

y —closed setand A © F}
THEOREM 2.5
Let (X, T) be a topological space. Then

()[12] A subset A is y —preclosed if and only if
T, —cl (T, - int(4)) S 4
(ii)[12] A subset A is y —semi preclosed if and only if
T, — int(T, — cl(T, — int(4))) S A
3.8 —y OPEN SET

DEFINITION 3.1

Let (X,T) be a topological space and y be an
operation on T.Then a subsetd of X issaidtobea f —y

open set if and only if ACT, —cl(T, —int (Ty —
cl(4)).
EXAMPLE 3.2
LetX ={a,b,c,d},
T ={0,X,{a}, {b},{c}.{a, b}, {a,c},{b,c},{a D, c},
{a,b,d}}.

We define an operation y:T — P(X) as follows: for
everyAeT,

Ay_{int(cl(A)) if A+ {a}}
1 a@ if A={a}

Then T, ={@, X, {a}, {b}, {c},{a, c},{a, b,d}} and

TB—V
= {0,X,{a}, {c},{a,b},{a,d},{a,b,c},{a,b,d},{a,c,d}}

THEOREM 3.3

Let(X,T) be a topological space and y be an
operation on T.Then every y —open set in (X, T)isa S —
y open set. However, the converse need not be true.

PROOF:
Proof is straight forward from the definition 3.1

In example 3.2 {a,b},{a,d}{a,b,c}{a,c,d} are B —y open
sets but not y-open sets.

THEOREM 3.4

Let (X,T) be a topological space and y be an
operation on T and {Az: 8 € J} be a family of 5 — y open
sets in (X, T).Then Ug,;Ag is also a § — y open set.

PROOF:

Given {Ag: B € J} be the family of g —y open
sets in (X,T).Then for each Ag, Ag & T, —cl(T, —
int (Ty - cl(AB))).This implies  that UAg S U
[Ty —cl <Ty —int (Ty - cl(AB))>]. and hence U Az &
[T, — cl(T, — int (Ty —cl(u Aﬁ)))].Therefore we have
UgejAp is also a f —y open set.

REMARK: 3.5

(i)Let (X, T) be a topological space and y be an
operation on T.If A,B are any two 8 —y open sets in
(X, T),then the following example shows that A N B need
not be a B — y open set.

Let X ={a,b,c},

T ={0,X,{a},{b},{a,b},{a,c}}, define an
operation y on T such that

v = {cl(A) if biA}
A ifbeA

ThenTy_, = {®,X, {b},{a,b},{a,c}}.A = {a,b}and B =
{a,c} are § —y open sets but An B = {a} isnotaf —y
open set.

(ii) the following example shows that the concepts of
B —open set are independent.

Let X={a,b,c},T =
{0,X,{a},{b},{a,b},{a,c}}, the B —open sets are
{9, Xx,{a},{b},{a, b}, {a, c}}.we define an operation y on T
such that y(B) = cl(B).Then

T, = {®,X,{b},{a, c}} and

Tp_, = {0,X,{a},{a,c}}.Here {a}{ab} are
B —open sets but not § — y open sets.

Similarly in example 3.2 {a,d},{a,c,d} are B —y open
sets but not § —open sets.



THEOREM 3.6

If (X,T) is a y —regular space,then the concept
of B —y open setand S —open set coincide.

PROOF:

Proof follows from the proposition 2.4[9] and the
theorem 3.6[9].

DEFINITION 3.7

Let (X,T) be a topological space and y be an
operation on Tand A be a subset of X. A is said to be g —
y closed if and only if X —A is B —y open,which is

equivalently A is g —y closed if and only if AT, —
int(T, — cl(Ty — int(A))).

THEOREM: 3.8

Let(X,T) be a topological space and y be an
operationon T.

(i) Every B —y open set is y —semi-open.

(i) Every B — y open set is y —preopen.

(iii) Every B — y open set is y —semi preopen
PROOF
(i) LetA be ap —y open setin (X, T).Then it follows that

ACT, — cl(T, — int(T, — cl(A))).and hence ACST, —
int (Ty — cl(A)).Therefore A is y —semi-open
(ii)Let A be aB —y open set in (X,T).since T, — cl(A)
C Ajimplies that T, — int (Ty - cl(A)) C T, — int(A)
and  hence T, —cl(T, — int(T, — cl(A)) =T, —
cl(T, — int(A)).this implies that ACT, —cl (Ty -
int(A)).therefore A isy —preopen.
(iii)Proof is obvious using the (i),(ii) results, Definition
3.11[10] and Remark 3.2[10]
REMARK: 3.9[10]

LetX ={a,b,c},

T ={0,X {a},{c}{a, b} {a,c}}, define an
operation y on T such that

AV:{ A ifA={a) }

Au{c} if A+ {a)
Then T, = {8, X, {a}, {c}, {a,c}},

Ty - 50 (X) = {@1 Xl {a}l {C}' {al b}l {al C}, {bl C}}
and Tg_, = {(Z),X, {a},{c},{qa, c}}. Here {a, b} and {b, c}
are y —semi-open sets but they are not § — y open sets.

REMARK: 3.10

Let X ={ab,c}, T=
{0, X,{a},{b},{a,b},{a,c}} define an operation y on
T such that

A ifbeA
AY =
{cl(A) ibeA}

Then T, = {8, X, {b},{a, b}, {a,c}},
T, —PO(X) = {9, Xx,{a},{b},{a,b},{a,c},{b,c}},

T, — SPO(X) = {0, X,{a},{b},{a, b}, {a,c},{b,c}}, and
Tp_y = {Q),X, {a},{c},{a, b},{b,c},{qa, c}}. Here{b} are
y —preopen sets, y —semi-preopen sets but they are not
B — v open sets.

THEOREM: 3.11

Let A be a subset of a topological space (X, T).If
B is a y —semi-open set of X such that B AC T, —

cl (Ty — int(B)), thend isa 8 — y open set of X.
PROOF:

Given BC A and B is a y —semi-open
set,implies that T, — int(B) & T, — int(A) and

BCT, —cl (T, — int(B)).This implies that
BCT, —cl(T, — int(4)) and hence(T, — cl(B))
T, —cl (Ty - int(A))).Therefore T, —int (Ty - cl(B))
C T, — int (T, — cI(T, — int(A))) ) Hence by
assumption A is a f — y open set of X.

THEROREM: 3.12

A subset A is B —y open if and only if it is
y —semi-open and y —preopen.

PROOF:

By theorem 3.8(i) and (ii) it follows that if A4 is
B—v open then A is y —semi-open
and y —preopen.conversely if A is y —semi-open

and y —preopen,then ACT, —cl (T,, - int(A)) and
ACT, - int (T, - cl(A)) .This implies that

ACT, — cl(T, — int(T, — cl(A))) .Therefore
Ais f —y open.
REMARK: 3.13

The following statements are equivalent for
subsets of a topological space (X, T):



(i)

(i)

Every y —preopen is y —semi-open.A subset A of X is is
B — v —open if and only if it is is y —preopen.

PROOF:

(i) = (ii) If A is B —y —open then by the theorem
3.8(ii) A is y —preopen.

Conversely if A is y —preopen.,then by (i) and theorem
3.12,Ais f —y — open.

(i) = (i)proof follows from the theorem 3.12.

Similarly we can prove the following remark.

REMARK: 3.14

The following statements are equivalent for subsets of a
topological space (X, T):

Every B —y — open set is y —preopen.

A subset A of X is § —y —open if and only if itis g —
y — open.

THEOREM 3.15

Let A be a subset of a topological space
(X,T).Then A is y — clopen if and only if itis g —y —
open and y —preclosed.

PROOF:

If A is y —clopen, then by theorem 3.3 and
theorem 2.12 [12] A is  — y — open and y —preclosed.
Conversely if A is B —y — open and y —preclosed then
ACT, — cl(T, — int(T, — cl(4))) and (T, —
cl(T, — int(A)) S A4 implies that A & T, — int(A).This
implies that A is y — open.since AC T, — int(4),T, —
cl (A) S (T, — cl(T, — int(4)) S A.Hence T, — cl(A)
C A.Therefore A is y — clopen.

DEFINITION: 3.16

(i)Let (X,T) be a topological space and y be an operation
on T and A be a subset of X.Then T;_, —interior of A is
the union of all B — y-open sets contained in A and it is
denoted by Tsz_, —int(A).That is Tp_, —int(A)=U

{U:Uis aB—y —opensetand Uc A}

(ifjLet (X, T) be a topological space,S be a subset of X
and x be a point of X.Then x is called an g — y —interior
point of S if there exists V € Tg_, such that x € V.

The set of all 8 —y —interior points of S is called g —
y —interior of S and is also denoted by § — y — int(S).

REMARK: 3.17

Let (X,T) be a topological space and y be an
operation on T.Let A,B be subsets of X.Then the
following holds good:

() Tg—, — int(A)is the largest § — y-open subset of X
contained in A.

(i) Ais B —y-open ifand only if T5_, —int(4) = A
(|||) Tﬁ—)/ - int(Tﬁ_y - lnt(A)):TB_y - mt(A)

(iv)If AC B then Ty_, — int(4) S Ty_, — int(B)

()T, — int(A) U Ty_, — int(B) S Ty_, —int(AU B)
PROOF:

(i)Follows from the definition 3.16
(ii)Follows from the definition 3.16 and theorem 3.4
(iif)Follows from (ii)
(iv)Follows from the definition 3.16
(v)Follows from the theorem 3.4 and (i)
DEFINITION: 3.18
Let (X,T) be a topological space and y be an
operation on T.let A be A subset of X.Then
Ty_,, —closure of A is the intersection of f — y closed sets
containing A and it is denoted by Tp_,, — cl(A).That is
Ts_y —cl(A) =n{F:Fisaf —y
— closed set and AC F }
REMARK: 3.19
()If A is a subset of (X, T).Then Tz_, — cl(A) isap —y-
closed set containing A.
(i)Ais g — y-closed if and only if T5_, — cl(A4) = A.
PROOF:
(i)Follows from the definition 3.18.(ii) follows from the
definition 3.18 and definition 3.7
THEOREM: 3.20
Let A and B be subsets of (X,T).Then the

following statements hold:
()Tp—y = el (Tp—y = cl(A)) = Ty_, — cl(4)
(l) If Ag B then TB_V - Cl(A) c TB—]/ - Cl(B)

TB_V - Cl(A) U TB_V - Cl(B) g Tﬁ_'}’ - Cl(A U B)

TB_V - Cl(A n B) g TB_Y - Cl(A) n TB_V - Cl(B)

PROOF:

(i)proof follows from the definition 3.18

(ii) given A< B ,implies that A & Tz_,, — cl(B) and by
(i) Tg_, — cl(A) S Ty, — cl(B).

(i) Ac AuB.and B AU B implies that T;_, —
cl(A)STs_, —cl(AUB) and Tg_, —cl(B) STs_, —
cl(A U B).This implies that Tz_,, — cl(A) U Tp_, — cl(B)
CTs, —cl(AUB)

(V) AS Tp_, — cl(A),BS Ts_, — cl(B)and (AN B)
C Tp_, —cl(A) N Tg_, —cl(B)).This  implies  that
Tg_y —cl(ANB) & Ty, — cl(Tg_, — cl(A)) N

Tg_y — cl(Tg—, — cl(B)).Hence  Tg_, —cl(ANB) &
Tg—y — cl(A) N Tg_,, — cl(B).

THEOREM: 3.21

Let (X,T) be a topological space and y be an
operation on T.Then for a point Xx€ X, x € Tg_, — cl(A) if
andonly if V¥ n A # @ forany V € Ts_, such that xe V

PROOF:



Let F, be the set of all ye XV n A # @ for every
V € Tg_,, such that ye V.to prove this theorem it is
enough to prove that Fy = Tz_, — cl(A).Let X € Tp_, —

cl(A).Let us assume that X ¢ F, then there exists a § —
y-open set U of Xsuch that U n A # @.This implies that

Ac X —-U and hence (Tpg—y —cl(A)c= X -U
.Therefore,x#(Ts_, — cl(A) which is a contradiction
(Tp—y — cl(A) &
Fy.conversely, let F be a set such that ACF and
(X —F) € Ty_,.Let x¢F then we have x € (X — F) and
(X — F) n @.this implies x&F, Therefore F, C F.Hence
Fo.& (Tg—y — cl(4)

and hence

Hence the proof

THEOREM: 3.22

Let (X, T) is a topological space and A € X. Then the
following statements hold:

(l) Tﬁ—}/ - lnt(X - A) =X - T[g_y -
cl(4)
(ll) Tﬁ—y - Cl(X - A) =X - TB_V -
int(A)
PROOF:

Proof of (i) and (ii) is obvious.
DEFINITION: 3.23

A subset B, of a topological space (X, T) is said
to be the B — y neighbourhood of a point x € X if there

exists an § — y open set U such that x € U € B,.

THEOREM: 3.24

A subset of a topological space (X,T) is 8 —y if
and only if itis

B — y neighbourhood of each of its points.
PROOF:

The proof follows from the definition 3.16 and
definition 3.23

REMARK: 3.25

Let (X,T) be a topological space and y be an
operation on T and A be a subset of X.then from the
theorem 3.3 and the definition 3.18 we have

AC T, —cl(A) ST, — cl(A).
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