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ABSTRACT 

In this paper the notion of 𝛽 − 𝛾 open sets in a 

topological space together with its corresponding interior 

and closure operations are introduced. Further some of 

their basic properties are studied. 
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1. INTRODUCTION 

O. Najastad [10] introduced 𝛽 open sets in a topological 

space and studied some of their properties. The concept of 

semiopen sets, preopen sets and semi-preopen sets were  

introduced respectively by Levine [8],Mashhour [9] and 

Andrijevic [1].Andrijevic [2] introduced a new class of 

topology generated by preopen sets and the corresponding 

closure and interior operators.Kasahara defined the 

concept of an operation on topological spaces and 

introduced 𝛽 −closed graphs of an operation.Ogata [11] 

called the operation 𝛽 as 𝛾 operation and introduced the 

notion of 𝑇𝛾 which is the collection of all 𝛾-open sets in a 

topological space (𝑋, 𝑇). 

In this paper in section 3 we introduce the notion 

of 𝑇𝛽−𝛾 which is the collection of all 𝛽 − 𝛾 open sets in a 

topological space (𝑋, 𝑇).Further we introduce the concept 

of 𝑇𝛽−𝛾 interior and 𝑇𝛽−𝛾closure operator and study some 

of their properties. 

2. PRELIMINARIES 

In this section we recall some of the basic Definitions and 

Theorems 
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DEFINITION 2.1 Let(𝑋, 𝑇) be a topological space and 𝐴 

be a subset of 𝑋. Then 𝐴 is said to be 

(i)[10] 𝛽-open set if 𝐴 𝑐𝑙 (𝑖𝑛𝑡(𝑐𝑙(𝐴)))                  

(ii)[7] semi-open set if 𝐴 𝑐𝑙(𝑖𝑛𝑡(𝐴)) 

(iii)[9] pre-open set if 𝐴 𝑖𝑛𝑡(𝑐𝑙(𝐴)) 

(iv)[9]semi-preopen set if (𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐴))) 

DEFINITION 2.2 

Let(𝑋, 𝑇) be a topological space, an operation 𝛾 

on the topology 𝑇 is a mapping from 𝑇 on the power set 

𝑃(𝑋) of 𝑋 such that 𝑉 𝑉𝛾 for each 𝑉 ∈ 𝑇, where 𝑉𝛾 

denotes the value of 𝛾 at 𝑉. 

DEFINITION 2.3 

Let (𝑋, 𝑇)be a topological space and 𝐴 be a 

subset of 𝑋and 𝛾 be an operation on 𝑇.Then 𝐴 is said to 

be: 

(i)[11] a 𝛾-open set if for each 𝑥 ∈ 𝐴 there exists an open 

set 𝑈 such that 𝑥 ∈ 𝑈 and 𝑈𝛾 𝐴.𝑇𝛾  denotes the set of 

all 𝛾-open sets in (𝑋, 𝑇). 

(ii)[14] 𝛾-semi open if and only if  

𝐴 𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐴)) 

(iii)[12] 𝛾 −preopen if and only if  

𝐴 (𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝐴)) 

(iv)[12] 𝛾-semi preopen if and only if  
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𝐴 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴)) 

DEFINITION 2.4 

(i)[14] Let (𝑋, 𝑇) be a topological space and 𝛾  

be an operation on 𝑇.Then 𝑇𝛾-interior of 𝐴 is defined as 

the union of all 𝛾-open sets contained in 𝐴 and it is 

denoted  

𝑇𝛾 − 𝑖𝑛𝑡(𝐴). That is 𝑇𝛾 − 𝑖𝑛𝑡(𝐴) =∪ {𝑈: 𝑈 is a 

𝛾 −open set and 𝑈 𝐴} 

(ii)[11] Let (𝑋, 𝑇) be a topological space and 𝛾  

be an operation on 𝑇.Then 𝑇𝛾-closure of 𝐴 is defined as 

the intersection of all 𝛾-closed sets containing in 𝐴and it 

is denoted 𝑇𝛾 − 𝑐𝑙(𝐴). That is 𝑇𝛾 − 𝑐𝑙(𝐴) =∩ {𝐹: 𝐹 is a 

𝛾 −closed set and 𝐴 𝐹} 

THEOREM 2.5 

Let (𝑋, 𝑇) be a topological space. Then  

(i)[12] 𝐴 subset 𝐴 is 𝛾 −preclosed if and only if  

𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐴))  𝐴 

(ii)[12] 𝐴 subset 𝐴 is 𝛾 −semi preclosed if and only if  

𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴))) 𝐴 

3.𝜷 − 𝜸 OPEN SET 

DEFINITION 3.1 

 Let (𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇.Then a subset𝐴 of 𝑋 is said to be a 𝛽 − 𝛾 

open set if and only if 𝐴 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 −

𝑐𝑙(𝐴)). 

EXAMPLE 3.2 

Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}, 

𝑇 = {∅, 𝑋, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}, 

{𝑎, 𝑏, 𝑑}}. 

We define an operation 𝛾: 𝑇 → 𝑃(𝑋) as follows: for 

every 𝐴 ∈ 𝑇, 

                                  𝐴𝛾={
𝑖𝑛𝑡(𝑐𝑙(𝐴))          𝑖𝑓 𝐴 ≠ {𝑎}

𝑐𝑙(𝐴)           𝑖𝑓 𝐴 = {𝑎}
} 

Then 𝑇𝛾 ={∅, 𝑋, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑐}, {𝑎, 𝑏, 𝑑}}  and  

𝑇𝛽−𝛾

= {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑐, 𝑑}} 

THEOREM 3.3 

Let(𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇.Then every 𝛾 −open set in (𝑋, 𝑇)is a  𝛽 −

𝛾 open set. However, the converse need not be true. 

PROOF: 

Proof is straight forward from the definition 3.1 

In example 3.2 {a,b},{a,d},{a,b,c},{a,c,d} are 𝛽 − 𝛾 open 

sets but not 𝛾-open sets. 

THEOREM 3.4 

Let (𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇 and {𝐴𝛽: 𝛽 ∈ 𝐽} be a family of 𝛽 − 𝛾 open 

sets in (𝑋, 𝑇).Then 𝑈𝛽𝜖𝐽𝐴𝛽 is also a 𝛽 − 𝛾 open set. 

PROOF: 

Given {𝐴𝛽: 𝛽 ∈ 𝐽} be the family of 𝛽 − 𝛾 open 

sets in (𝑋, 𝑇).Then for each 𝐴𝛽, 𝐴𝛽 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 −

𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴𝛽))).This implies that ∪ 𝐴𝛽 ∪

[𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴𝛽)))]. and hence ∪ 𝐴𝛽

[𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(∪ 𝐴𝛽)))].Therefore we have 

𝑈𝛽𝜖𝐽𝐴𝛽 is also a 𝛽 − 𝛾 open set. 

REMARK: 3.5 

(i)Let (𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇.If 𝐴, 𝐵 are any two 𝛽 − 𝛾 open sets in 

(𝑋, 𝑇),then the following example shows that 𝐴 ∩ 𝐵 need 

not be a 𝛽 − 𝛾 open set. 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 

𝑇 = {∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}, define an 

operation 𝛾 on 𝑇 such that 

𝐴𝛾 = {𝑐𝑙(𝐴)     𝑖𝑓 𝑏𝐴

𝐴       𝑖𝑓 𝑏 ∈ 𝐴
} 

Then𝑇𝛽−𝛾 = {∅, 𝑋, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}. 𝐴 = {𝑎, 𝑏}and 𝐵 =

{𝑎, 𝑐} are 𝛽 − 𝛾 open sets but 𝐴 ∩ 𝐵 = {𝑎} is not a𝛽 − 𝛾 

open set. 

(ii) the following example shows that the concepts of 

𝛽 −open set are independent. 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝑇 =

{∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}, the 𝛽 −open sets are 

{∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}.we define an operation 𝛾 on 𝑇 

such that 𝛾(𝐵) = 𝑐𝑙(𝐵).Then  

𝑇𝛾 = {∅, 𝑋, {𝑏}, {𝑎, 𝑐}} and  

𝑇𝛽−𝛾 = {∅, 𝑋, {𝑎}, {𝑎, 𝑐}}.Here {a},{a,b} are 

𝛽 −open sets but not 𝛽 − 𝛾 open sets. 

Similarly in example 3.2 {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑} are 𝛽 − 𝛾 open 

sets but not 𝛽 −open sets. 
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THEOREM 3.6 

If (𝑋, 𝑇) is a 𝛾 −regular space,then the concept 

of 𝛽 − 𝛾 open set and  𝛽 −open set coincide. 

PROOF: 

Proof follows from the proposition 2.4[9] and the 

theorem 3.6[9]. 

DEFINITION 3.7 

Let (𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇and 𝐴 be a subset of 𝑋. 𝐴 is said to be 𝛽 −

𝛾 closed if and only if 𝑋 − 𝐴 is 𝛽 − 𝛾 open,which is 

equivalently 𝐴 is 𝛽 − 𝛾 closed if and only if 𝐴 𝑇𝛾 −

𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴))). 

THEOREM: 3.8 

Let(𝑋, 𝑇) be a topological space and 𝛾  be an 

operation on 𝑇. 

(i)   Every 𝛽 − 𝛾 open set is 𝛾 −semi-open. 

              (ii)   Every 𝛽 − 𝛾 open set is 𝛾 −preopen. 

              (iii) Every 𝛽 − 𝛾 open set is 𝛾 −semi preopen 

PROOF 

(i) Let𝐴 be a 𝛽 − 𝛾 open set in (𝑋, 𝑇).Then it follows that 

𝐴 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝐴))).and hence 𝐴 𝑇𝛾 −

𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴)).Therefore 𝐴 is 𝛾 −semi-open 

(ii)Let 𝐴 be a𝛽 − 𝛾 open set in (𝑋, 𝑇).since 𝑇𝛾 − 𝑐𝑙(𝐴)

 𝐴,implies that 𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴))  𝑇𝛾 − 𝑖𝑛𝑡(𝐴) 

and hence 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝐴))) 𝑇𝛾 −

𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴)).this implies that 𝐴 𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 −

𝑖𝑛𝑡(𝐴)).therefore 𝐴 is 𝛾 −preopen. 

(iii)Proof is obvious using the (i),(ii) results, Definition 

3.11[10] and Remark 3.2[10] 

REMARK: 3.9[10] 

Let 𝑋 = {𝑎, 𝑏, 𝑐},   

𝑇 = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}}, define an 

operation 𝛾 on 𝑇 such that 

  𝐴𝛾 = {
𝐴       𝑖𝑓 𝐴 = {𝑎}

𝐴 ∪ {𝑐}   𝑖𝑓 𝐴 ≠ {𝑎}
} 

Then 𝑇𝛾 = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑐}}, 

𝑇𝛾 − 𝑆𝑂(𝑋) = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}} 

and 𝑇𝛽−𝛾 = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑐}}. Here {𝑎, 𝑏} and {𝑏, 𝑐} 

are 𝛾 −semi-open sets but they are not 𝛽 − 𝛾 open sets. 

REMARK: 3.10 

Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝑇 =

{∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}} define an operation 𝛾 on 

𝑇 such that 

𝐴𝛾 = {
𝐴       𝑖𝑓 𝑏 ∈ 𝐴

𝑐𝑙(𝐴)   𝑖𝑓 𝑏𝐴
} 

Then 𝑇𝛾 = {∅, 𝑋, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}}, 

𝑇𝛾 − 𝑃𝑂(𝑋) = {∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}, 

𝑇𝛾 − 𝑆𝑃𝑂(𝑋) = {∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}, and 

𝑇𝛽−𝛾 = {∅, 𝑋, {𝑎}, {𝑐}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑎, 𝑐}}. Here{𝑏} are 

𝛾 −preopen sets, 𝛾 −semi-preopen sets but they are not 

𝛽 − 𝛾 open sets. 

 

 

 

THEOREM: 3.11 

Let 𝐴 be a subset of a topological space (𝑋, 𝑇).If 

𝐵 is a 𝛾 −semi-open set of 𝑋 such that 𝐵 𝐴 𝑇𝛾 −

𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐵)), then𝐴 is a 𝛽 − 𝛾 open set of 𝑋. 

PROOF: 

Given 𝐵 𝐴 and 𝐵 is a 𝛾 −semi-open 

set,implies that 𝑇𝛾 − 𝑖𝑛𝑡(𝐵) 𝑇𝛾 − 𝑖𝑛𝑡(𝐴) and  

𝐵 𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐵)).This implies that 

𝐵 𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐴)) and hence(𝑇𝛾 − 𝑐𝑙(𝐵)) 

𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐴))).Therefore 𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐵))

 𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴)))).Hence by 

assumption 𝐴 is a 𝛽 − 𝛾 open set of 𝑋. 

THEROREM: 3.12 

A subset 𝐴 is 𝛽 − 𝛾 open if and only if it is 

𝛾 −semi-open and 𝛾 −preopen. 

PROOF: 

By theorem 3.8(i) and (ii) it follows that if 𝐴 is 

𝛽 − 𝛾 open then 𝐴 is 𝛾 −semi-open 

and 𝛾 −preopen.conversely if 𝐴 is 𝛾 −semi-open 

and 𝛾 −preopen,then 𝐴 𝑇𝛾 − 𝑐𝑙 (𝑇𝛾 − 𝑖𝑛𝑡(𝐴)) and 

𝐴 𝑇𝛾 − 𝑖𝑛𝑡 (𝑇𝛾 − 𝑐𝑙(𝐴)) .This implies that  

𝐴 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝐴))) .Therefore 

𝐴 is 𝛽 − 𝛾 open. 

REMARK: 3.13 

The following statements are equivalent for 

subsets of a topological space (𝑋, 𝑇): 
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(i) Every 𝛾 −preopen is 𝛾 −semi-open.A subset 𝐴 of 𝑋 is is 

𝛽 − 𝛾 −open if and only if it is is 𝛾 −preopen. 

PROOF: 

)()( iii   If 𝐴 is 𝛽 − 𝛾 − open then by the theorem 

3.8(ii) 𝐴 is 𝛾 −preopen. 

Conversely if 𝐴 is 𝛾 −preopen.,then by (i) and theorem 

3.12,𝐴 is 𝛽 − 𝛾 − open. 

(ii) (𝑖)proof follows from the theorem 3.12. 

Similarly we can prove the following remark. 

REMARK: 3.14 

The following statements are equivalent for subsets of a 

topological space (𝑋, 𝑇): 

(i) Every 𝛽 − 𝛾 − open  set is 𝛾 −preopen. 

A subset 𝐴 of 𝑋 is 𝛽 − 𝛾 − open if and only if it is 𝛽 −

𝛾 − open. 

THEOREM 3.15 

Let 𝐴 be a subset of a topological space 

(𝑋, 𝑇).Then 𝐴 is 𝛾 − 𝑐𝑙𝑜𝑝𝑒𝑛 if and only if it is 𝛽 − 𝛾 −

𝑜𝑝𝑒𝑛 and 𝛾 −preclosed. 

PROOF: 

If 𝐴 is 𝛾 −clopen, then by theorem 3.3 and 

theorem 2.12 [12] 𝐴 is 𝛽 − 𝛾 − 𝑜𝑝𝑒𝑛 and 𝛾 −preclosed. 

Conversely if 𝐴 is 𝛽 − 𝛾 − 𝑜𝑝𝑒𝑛 and 𝛾 −preclosed then 

𝐴 𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝑇𝛾 − 𝑐𝑙(𝐴))) and (𝑇𝛾 −

𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴)) 𝐴 implies that 𝐴 𝑇𝛾 − 𝑖𝑛𝑡(𝐴).This 

implies that 𝐴 is 𝛾 − 𝑜𝑝𝑒𝑛.since 𝐴 𝑇𝛾 − 𝑖𝑛𝑡(𝐴), 𝑇𝛾 −

𝑐𝑙 (𝐴) (𝑇𝛾 − 𝑐𝑙(𝑇𝛾 − 𝑖𝑛𝑡(𝐴)) 𝐴.Hence 𝑇𝛾 − 𝑐𝑙(𝐴)

 𝐴.Therefore 𝐴 is 𝛾 − 𝑐𝑙𝑜𝑝𝑒𝑛. 

DEFINITION: 3.16 

(i)Let (𝑋, 𝑇) be a topological space and 𝛾 be an operation 

on 𝑇 and 𝐴 be a subset of 𝑋.Then 𝑇𝛽−𝛾 −interior of 𝐴 is 

the union of all 𝛽 − 𝛾-open sets contained in 𝐴 and it is 

denoted by 𝑇𝛽−𝛾 −int(A).That is 𝑇𝛽−𝛾 −int(A)=∪

{𝑈: 𝑈 𝑖𝑠  𝑎 𝛽 − 𝛾 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑎𝑛𝑑 𝑈 A } 

(ii)Let (𝑋, 𝑇) be a topological space,𝑆 be a subset of 𝑋 

and 𝑥 be a point of 𝑋.Then 𝑥 is called an 𝛽 − 𝛾 −interior 

point of 𝑆 if there exists 𝑉 ∈ 𝑇𝛽−𝛾 such that 𝑥 ∈ 𝑉. 

The set of all 𝛽 − 𝛾 −interior points of 𝑆 is called 𝛽 −

𝛾 −interior of 𝑆 and is also denoted by 𝛽 − 𝛾 − 𝑖𝑛𝑡(𝑆). 

REMARK: 3.17 

Let (𝑋, 𝑇) be a topological space and 𝛾 be an 

operation on 𝑇.Let 𝐴, 𝐵 be subsets of 𝑋.Then the 

following holds good: 

(i)𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐴)is the largest 𝛽 − 𝛾-open subset of 𝑋 

contained in 𝐴. 

(ii) 𝐴 is 𝛽 − 𝛾-open if and only if 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐴) = 𝐴 

(iii) 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝑇𝛽−𝛾  − 𝑖𝑛𝑡(𝐴))=𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐴) 

(iv)If 𝐴 B  then 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐴) 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐵) 

(𝑣)𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐴) ∪ 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝐵) 𝑇𝛽−𝛾 −int(A∪ 𝐵) 

PROOF: 

(i)Follows from the definition 3.16 

(ii)Follows from the definition 3.16 and theorem 3.4 

(iii)Follows from (ii) 

(iv)Follows from the definition 3.16 

(v)Follows from the theorem 3.4 and (i) 

DEFINITION: 3.18 

Let (𝑋, 𝑇) be a topological space and 𝛾 be an 

operation on 𝑇.Let 𝐴 be 𝐴 subset of 𝑋.Then 

𝑇𝛽−𝛾 −closure of 𝐴 is the intersection of 𝛽 − 𝛾 closed sets 

containing 𝐴 and it is denoted by 𝑇𝛽−𝛾 − 𝑐𝑙(A).That is  

𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) =∩ {𝐹: 𝐹 𝑖𝑠 𝑎 𝛽 − 𝛾

− 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴 F } 

REMARK: 3.19 

(i)If 𝐴 is a subset of (𝑋, 𝑇).Then 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) is a 𝛽 − 𝛾-

closed set containing  𝐴. 

(ii)A is 𝛽 − 𝛾-closed if and only if 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) = 𝐴. 

PROOF: 

(i)Follows from the definition 3.18.(ii) follows from the 

definition 3.18 and definition 3.7 

THEOREM: 3.20 

Let 𝐴 and 𝐵 be subsets of (𝑋, 𝑇).Then the 

following statements hold: 

(i)𝑇𝛽−𝛾 − 𝑐𝑙 (𝑇𝛽−𝛾 − 𝑐𝑙(𝐴)) = 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) 

(i) If BA ,then 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵) 

𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) ∪ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∪ 𝐵) 

𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∩ 𝐵) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) ∩ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵) 

PROOF: 

(i)proof follows from the definition 3.18 

(ii) given BA ,implies that 𝐴 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵) and by 

(i) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵). 

(iii) BAA  ,and BAB  ,implies that 𝑇𝛽−𝛾 −

𝑐𝑙(𝐴) 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∪ 𝐵) and  𝑇𝛽−𝛾 − 𝑐𝑙(𝐵) 𝑇𝛽−𝛾 −

𝑐𝑙(𝐴 ∪ 𝐵).This implies that 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) ∪ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵)

 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∪ 𝐵) 

(𝑖𝑣)𝐴 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴), 𝐵 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵)𝑎𝑛𝑑 (𝐴 ∩ 𝐵)

 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) ∩ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵)).This implies that 

𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∩ 𝐵) 𝑇𝛽−𝛾 − 𝑐𝑙(𝑇𝛽−𝛾 − 𝑐𝑙(𝐴)) ∩

𝑇𝛽−𝛾 − 𝑐𝑙(𝑇𝛽−𝛾 − 𝑐𝑙(𝐵)).Hence 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴 ∩ 𝐵)
𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) ∩ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐵). 

THEOREM: 3.21 

 Let (𝑋, 𝑇) be a topological space and 𝛾 be an 

operation on 𝑇.Then for a point x∈ 𝑋, 𝑥 ∈ 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) if 

and only if 𝑉 ∩ 𝐴 ≠ ∅ for any 𝑉 ∈ 𝑇𝛽−𝛾 such that x∈ 𝑉 

PROOF: 
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Let 𝐹0 be the set of all y∈ 𝑋𝑉 ∩ 𝐴 ≠ ∅ for every 

𝑉 ∈ 𝑇𝛽−𝛾 such that y∈ 𝑉.to prove this theorem it is 

enough to prove that 𝐹0 = 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴).Let 𝑋 ∈ 𝑇𝛽−𝛾 −

𝑐𝑙(𝐴).Let us assume that x 𝐹0
 then there exists a 𝛽 −

𝛾-open set 𝑈 of 𝑋such that 𝑈 ∩ 𝐴 ≠ ∅.This implies that 

𝐴 UX  and hence (𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) UX 

. 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑥(𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) which is a contradiction 

and hence (𝑇𝛽−𝛾 − 𝑐𝑙(𝐴)

𝐹0.𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, 𝑙𝑒𝑡 𝐹 𝑏𝑒 𝑎 𝑠𝑒𝑡 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴 F and 

(𝑋 − 𝐹) ∈ 𝑇𝛽−𝛾.Let 𝑥𝐹 then we have 𝑥 ∈ (𝑋 − 𝐹) and 

(𝑋 − 𝐹) ∩ ∅.this implies 𝑥𝐹0.Therefore 𝐹0. F.Hence 

𝐹0.  (𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) 

                     Hence the proof 

THEOREM: 3.22 

Let (𝑋, 𝑇) is a topological space and 𝐴 𝑋. Then the 

following statements hold: 

(i) 𝑇𝛽−𝛾 − 𝑖𝑛𝑡(𝑋 − 𝐴) = 𝑋 − 𝑇𝛽−𝛾 −

𝑐𝑙(𝐴) 

(ii) 𝑇𝛽−𝛾 − 𝑐𝑙(𝑋 − 𝐴) = 𝑋 − 𝑇𝛽−𝛾 −

𝑖𝑛𝑡(𝐴) 

PROOF: 

Proof of (i) and (ii) is obvious. 

DEFINITION: 3.23 

A subset 𝐵𝑥 of a topological space (𝑋, 𝑇) is said 

to be the 𝛽 − 𝛾 neighbourhood of a point 𝑥 ∈ 𝑋 if there 

exists an 𝛽 − 𝛾 open set 𝑈 such that 𝑥 ∈ 𝑈 𝐵𝑥. 

THEOREM: 3.24 

A subset of a topological space (𝑋, 𝑇) is 𝛽 − 𝛾 if 

and only if it is  

𝛽 − 𝛾 neighbourhood of each of its points. 

PROOF: 

The proof follows from the definition 3.16 and 

definition 3.23 

REMARK: 3.25 

Let (𝑋, 𝑇) be a topological space and 𝛾 be an 

operation on 𝑇 and 𝐴  be a subset of 𝑋.then from the 

theorem 3.3 and the definition 3.18 we have  

𝐴 𝑇𝛽−𝛾 − 𝑐𝑙(𝐴) 𝑇𝛾 − 𝑐𝑙(𝐴). 
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