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Abstract: If there are two or more independent variables are explaining the pragmatic behavior of either one or more dependent 

variables then Regression analysis is the best option for fitting a model as well as for forecasting. There are so many types of 

regression techniques in literature, some of the popular Regression techniques are Linear Regression, Logistic Regression, Polynomial 

Regression, Stepwise Regression, Ridge regression, Lasso Regression, Elastic Net Regression etc. 

In the present study we are comparing Ridge regression, lasso Regression and Elastic Net Regression using Durbin Watson 

test and empirically tested by using real data. 
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1. INTRODUCTION: 

If we continue to draw from OLS (Ordinary Least Square) as our only approach to linear regression technique 

methodologically speaking, we are still within the late 1800’s and 1900’s time frame. With advancements in computing 

technology, regression techniques can be used in a wide variety of different statistical techniques which has led to development of 

new tools and techniques. In current data analysis, we usually find data with enormous number of independent variables and are 

need better regression techniques to handle this high-dimensional modelling. 

2. REVIEW OF LINEAR REGRESSION ANALYSIS:  

Simple linear regression: a model with single independent variable is called simple linear regression, the model of the form 

as𝑌 = 𝛽0 + 𝛽1𝑋 + 𝜖. The term 𝛽0 represents the Y’s intercept value, the coefficient 𝛽1 denotes the slope of the line or termed as 

regression coefficient, the term X is independent variable and 𝜖 is an error term. The error term is the value, which needs to 

correct for a prediction error between the observed and predicted value. 

Multiple linear regression: A multiple linear regression model is essentially same as a simple linear regression except that there 

can be multiple coefficients and independent variables. The model of the form  

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 … + 𝜖. 

The interpretation of the coefficient terms are slightly differs from simple linear regression model. 

OLE (Ordinary Least Squares Estimation): the method is used for estimating the unknown parameters involved in a linear 

regression model. The goal of OLS is to minimize the difference between observed responses in some arbitrary dataset and the 

responses predicted by the linear approximation of the data. 𝑌𝑛 = ∑ 𝛽𝑖𝑋𝑛𝑖 + 𝜖𝑛
𝑘
𝑖=0  
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By visualization, one can say that the sum of the vertical distances between each data point in the dataset and the corresponding 

point on the regression line. The smaller the difference, the model fits better for the given dataset. 

Understanding the error: 

The sum of squares are a representation of the error for our OLS regression model. Usually prediction errors in linear regression 

models can be decomposed into two main subcomponents, are error due to “bias” and error due to “variance”. In general one can 

take care about overall error but not specific decomposition of error. Understanding how the difference sources of error leads to 

bias and variance in prediction error helps us in better model fitting with more accuracy in predictive modelling. For this one can 

use techniques like ridge, Lasso and Elastic net regression etc.  

Bias & Variance Trade off: 

 

Error due to bias: The error due to bias is taken as the difference between the expected prediction of our model and the corrected 

value which we are trying to predict. 

Error due to variance: the error due to variance is taken as the variability of model prediction for a given data point. 

Y 

X 
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From the above figure, with minimum error the model complexity get increased along with bias square. On the other hand error 

and variance both are in same direction with respect to model complexity. Hence by understanding these two types of errors can 

help us in diagnose model results and avoid the problem of under or over fitting of the model.  

Ridge Regression: Gauss Markov theorem states that OLS estimates are unbiased with the smallest mean square error. From 

this it arise question is there a biased estimator with smaller mean square error for the good model fit? To answer this question 

shrinkage come into the picture.  

Let us replace OLS estimates βk with some slight change as 𝛽𝑘
1 =

1

1+𝜆
𝛽𝑘; if 𝜆 = 0, we will get the OLS estimates back. If 𝜆 gets 

really large, the parameter estimate approaches a minimum value (zero). Here 𝜆 is referred to as the shrinkage estimator (ridge 

constant).  

Ridge Regression minimizes that in constrained form as  

    ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑁

𝑖=1 subject to ∑ ‖𝛽𝑗 ‖
2

≤ 𝑡𝑗  

The above equation takes in matrix form 𝑅𝑆𝑆(𝜆) = (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆𝛽𝑇𝛽; the ridge estimate of 𝛽 is given by 𝛽𝑟𝑖𝑑𝑔𝑒̂ =
 (𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌. 

LASSO Regression (Least Absolute selection and shrinkage operator): The LASSO combines some of the shrinking 

advantages of ridge regression with variable selection. The difference between the LASSO and the Ridge regression is that ridge 

uses ‖𝛽‖2 penalty whereas the LASSO uses ‖𝛽‖ penalty, even though these l1 and l2 looks similar, the solution behaves quite 

different. 

The lasso estimate is defined by 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑁

𝑖=1  subject to∑ ‖𝛽𝑗‖𝑗 ≤ 𝑡. 

Elastic net regression:  

 The elastic net estimator 𝛽̂is minimized of the form 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = arg 𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑁

𝑖=1 + 𝜆2‖𝛽𝑗‖
2

+ 𝜆1‖𝛽𝑗‖
1
  …………… (2.1) 

The procedure is viewed as a penalized least square method. Let 𝛼 =
𝜆2

(𝜆1 + 𝜆2)⁄  

The optimization problem equivalent to equation (2.1) can be written as 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = arg 𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 )
2𝑁

𝑖=1 , subject to(1 − 𝛼)‖𝛽‖1 + 𝛼‖𝛽‖2 ≤ 𝑡. 
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3. EMPIRICAL INVESTIGATION:  
In present study we are fitted Ridge Regression, Lasso Regression and Elastic net Regression models for intraday data of stock 

opening from 1st January 2016 to 1st December 2017. When the data having multicollinearity, one can use ridge regression to 

overcome this problem by shrinkage parameter λ. the model for ridge regression is given by   

𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦 − 𝑥𝛽)2 + 𝜆 ∑ 𝛽2
2   Where y is dependent term, x is an independent term, β is regression coefficient and λ is 

Shrinkage parameter.  

The fitted form of the above equation is𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦 − 𝑥𝛽𝑖̂)
2

+ 𝜆 ∑ 𝛽̂2477
𝑖=1 ; where 𝛽𝑖̂ is estimated value by using the following 

formula.  

𝛽𝑖̂ =
𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑓𝑜𝑢𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥𝑖

𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 𝑓𝑜𝑢𝑟 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦𝑖
,       i= 1, 2, 3 ….. 

Lasso regression: Least Absolute Shrinkage and Selection Operator (LASSO) Regression, which is similar to ride regression, 

the equation for LASSO is as given below 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝑋𝛽𝑖̂)
2

+ 𝜆 ∑ 𝛽𝑖̂ 

where yi is dependent variable, X is independent variable, 𝜆 is parameter 

The fitted equation for opening sensex intraday data for 𝜆 = 0.1 is as follows 

𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝑋𝛽𝑖̂)
2

+ 0.1 ∑ 𝛽𝑖̂

477

𝑖=1

 

Elastic net regression: It is hybrid form Lasso and ridge regression techniques. The equation for elastic net regression is of the form 

as 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗)
2

+ 𝜆2‖𝛽𝑗‖
2

+ 𝜆1‖𝛽𝑗‖
1
 

 

where y is dependent term, x is independent term, 𝜆1, 𝜆2 are parameters. 

The fitted equation of elastic net regression is   

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽̂𝑗𝑥𝑖𝑗)
2

𝑖=1

+ 𝜆2‖𝛽𝑗‖
2

+ 0.1‖𝛽𝑗‖
1
 

Here 𝜆2 taking three values 0.1, 0.5 and 0.9. 

 

Durbin-Watson Statistic: the formula for Durbin-Watson test is   

𝑑𝑝𝑑 =
∑ ∑ (𝑒𝑖,𝑡 − 𝑒𝑖,𝑡−1)

2𝑇
𝑡=2

𝑁
𝑖=1

∑ ∑ 𝑒𝑖,𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

 

where ei,t and ei, t-1  are error terms of tth and (t-1)th terms. 

 
The Durbin-Watson test static values for five models are as follows: 

 

Model Durbin-Watson test static value 

Ridge regression model 0.99425 

LASSO regression model 0.86944 

Elastic net regression with 𝜆1 = 0.1, 𝜆2 = 0.1 1.5369 

Elastic net regression with 𝜆1 = 0.1, 𝜆2 = 0.5 1.5340 

Elastic net regression with 𝜆1 = 0.1, 𝜆2 = 0.9 1.5337 
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From the above table we can say that for elastic regression case Durbin-Watson test value is almost same up to two decimal places for 

different values of𝜆2. 

4. SUMMARY AND CONCLUSIONS:  

For stock exchange opening intraday data, we fitted five regression models are as below 

𝛽𝑅𝑖𝑑𝑔𝑒 𝑟𝑒𝑔 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦 − 𝑥𝛽̂)
2

477

𝑖=1

+ 0.1 ∑ 𝛽̂2
2 

The above equation is of the form for ridge regression. LASSO regression is given by  

𝛽̂𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝑦𝑖 − 𝑋𝛽𝑖̂)
2

+ 0.1 ∑ 𝛽𝑖̂

477

𝑖=1

 

The elastic net regression for various values for 𝜆2  like 0.1, 0.5 and 0.9 respectively are given as below. 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗̂𝑥𝑖𝑗)
2

+ 0.1‖𝛽𝑗̂‖
2

+ 0.1‖𝛽𝑗̂‖
1
 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗̂𝑥𝑖𝑗)
2

+ 0.5‖𝛽𝑗̂‖
2

+ 0.1‖𝛽𝑗̂‖
1
 

𝛽̂𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (𝑦𝑖 − ∑ 𝛽𝑗̂𝑥𝑖𝑗)
2

+ 0.9‖𝛽𝑗̂‖
2

+ 0.1‖𝛽𝑗̂‖
1
 

For the above models Durbin-Watson test static is calculated, based on this statistic we can choose ridge regression model is 

best model for the intraday data. 
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