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Abstract— Inertial navigation uses gyroscopes and accelerometers to maintain an estimate of the position, velocity, attitude 

and attitude rates of the aircraft. Gyroscopes are used in various applications to sense either the angle turned through by a  vehicle or 

structure (displacement gyroscopes) or its angular rate of turn about some defined axis (rate gyroscopes). Micro Electro Mechanical 

System (MEMS) devices are one of the most exciting developments in inertial sensors   

 

Micro inertial sensors, such as MEMS gyroscopes, can provide small, inexpensive, low power devices; however, the 

accuracy of these devices is insufficient for many space applications. The aim of this project is to develop a mathematical model of the 

vibratory MEMS gyroscope and to derive the governing equations of motion of these systems using the Newton-Euler approach. The 

individual outputs of many nominally identical micro sensors can be combined to generate an arithmetic average of the sensor 

measurements and then processed this average in an appropriate Extended Kalman Filter (EKF). The estimates are generally much 

more accurate than the measurements taken directly from the sensors.  

 

Keywords—MEMS, EKF, Gyroscope, Accelerometers  

 

 

1. INTRODUCTION 

 

Navigation, guidance, and control systems for small space vehicles, such as satellites, require compact inertial measurement 

sensors to provide accurate position, velocity, and angular informat ion about the vehicle. Recent developments in Micro Elect ro 

Mechanical Systems technology promise sufficiently small inert ial sensors, but these sensors are not sufficiently accurate for many 

space applications. On the other hand, the cost of these sensors promises to be quite inexpensive; therefore, one method of improving 

sensor accuracy is by using many sensors to make measurements of the same quantity and then combining these measurements to 

generate one accurate measurement. Note that the use of many inexpensive micro -sensors measuring the same quantity can also 

provide reliab ility, through redundancy, at a reasonable cost. The specific problem discussed here is that of combining the outputs of 

many micro-sensors, all measuring the same quantity, so that the accuracy of the combination greatly exceeds the accuracy of the 

individual micro-sensors. 

 

2. MEMS  Sensors 

 

New applicat ions that have demanded low-cost sensors for providing measurements of acceleration and angular mot ion have 

provided a major incentive for the development of micro-machined electromechanical system (MEMS) sensors. MEMS devices are 

one of the most exciting developments in inertial sensors in the last 30 years. These devices overcome many of the features that have 

impeded the adoption of inertial systems by many potential applications, especially where cost, size and power consumption ha ve 

been governing parameters. 

 

3. MEMS  VIBRATORY GYROSCOPE 

 

MEMS Gyroscopes are vibratory rate gyroscopes, which have no rotating parts that require bearings, and hence they can be 

easily min iaturized and batch fabricated using micromachin ing techniques. These structures fabricated on polysilicon or cryst al 
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silicon, and their main mechanical component is a two degree of freedom vibrating proof mass, which is capable of oscillat ing on two 

directions in a plane. Their operation is based on the Coriolis effect. When the gyroscope is subjected to an angular velocit y along an 

axis (input axis) orthogonal to the axis of initial oscillation (driven axis), the Corio lis effect transfers energy from one vibrating mode 

to another. The response of the second vibrating mode, which is along a third  axis (sense axis) orthogonal to the previous two, 

provides information about the applied angular velocity. 

 

4. EXTENDED KALMAN FILTER 

 

The Kalman filter addresses the general problem of trying to estimate the state of a discrete -time controlled process that is 

governed by a linear stochastic difference equation. A Kalman filter that linearizes about the current mean and covariance is referred 

to as an extended Kalman filter or EKF. The extended Kalman filter (EKF) has become a standard technique used in a number of  

nonlinear estimation and machine learn ing applications. These include estimating the state of a nonlinear dynamic system, estimat ing 

parameters for nonlinear system identificat ion, where both states and parameters are estimated simultaneously.  

 

5. CONFIGURATION OF MEMS GYROSCOPES  

 

The simplest model for a vibratory rate Gyroscope is illustrated in Fig  1. The system consists    of a proof mass suspended by a set 

of springs. The springs allow deflection in two orthogonal directions or modes. The mode along the X-axis is driven into oscillation 

and the second mode along the Y-axis is excited by Coriolis accelerat ion. The Corio lis acceleration results from the oscillatory motion 

in the driven mode and the rotation rate about the Z-axis. 

 

 

 

Fig. 1: Model of a Vibratory MEMS gyroscope 

 

6. DYNAMICS OF MEMS GYROSCOPES  

 

Here provided a vectorial derivation of the equations of motion characterizing the dynamic behavior of vibratory micro machin ed 

gyroscopes. The derivation presented here utilizes the Newton-Euler approach. The configuration of a vibratory rate Gyroscope is 

illustrated in figure 2. 

 

 
Fig.2:  Angular Vibratory Rate Gyro  
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The rotor is angularly oscillated about the 
p

X If the spacecraft is rotating about the y,-axis (input-axis) with some Here provided a 

vectorial derivation of the equations of motion characterizing the dynamic behavior of vibratory micro machined gyroscopes. The 

derivation presented here utilizes the Newton-Euler approach. 

 

The rotor is angularly oscillated about the 
p

X If the spacecraft is rotating about the y,-axis (input-axis) with some nonzero 
p

Z  axis  

resulting in an oscillating angular momentum vector angular rate 
z , (i.e ., the rate to be sensed), an oscillating Corio lis moment  is 

developed across the transverse 
pY axis (sense axis). 

 

7. VECTORIAL EQUATIONS OF MOTION 

 

The following reference frames shown in Figure 2 will play an important role:  

 

i. 
IF  - a suitable inertial frame of reference. 

ii. 
PF  - The platform reference frame rig idly attached at the center of mass of the platform and rotating with the platform 

(the platform frame can be taken equal to the spacecraft's body fixed frame FB). 

iii. 
RF  - The rotor frame rigidly attached at the mass center of the rotor and rotating with the same angular mot ion of the 

rotor. 

Applying the balance of angular momentum about the center of mass of the system,  

I R

R

dH
M=

dt

H=J . ω

  

                   Where , H denotes the total angular momentum of the system about the system center-of-mass. 

RJ denotes the inertia of the rotor about its center of mass, 

I Rω  is the angular velocity of the rotor relat ive to IF . 

The time rate of change of a vector Q as seen by an observer rigid ly fixed to AF  is related to the time rate of change of the same 

vector as seen by an observer rig idly fixed to BF  via the transport theorem. 

 
A B

A BdQ dQ
= + ω ×Q

dt dt
 

Applying the transport theorem to the balance of angular momentum.  
I P

I PdH dH
= + ω ×H

dt dt
 

Where  
P R

P RdH dH
= + ω ×H

dt dt
           

I R
I P P RdH dH

= +( ω + ω )×H
dt dt

 

               
R

I P P RdH
+( ω + ω )×H

dt
  

This equation can be further simplified as follows  

 
R R

I R

R

dH d
= (J . ω )

dt dt
 

         
R R I R

I RR
R

dJ d ω
=( ) . ω +J .( )

dt dt
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However, since the rotor is assumed rigid (i.e., does not suffer any deformat ion) and 
RF  is rig idly attached to the rotor structure, 

 
R

RdJ
( ) 0

dt
            

The resulting vectorial of motion are expressed concisely as, 

 

R I R
I R I R

R R

d ω
M=J .( )+ ω ×J . ω

dt
 …….(i) 

It is also important to observe from applying the transport theorem to 
I Rω  that 

 

I I R R I R
I R I Rd ω d ω

= + ω × ω
dt dt

………(ii) 

             
R I Rd ω

=
dt

    

8. REPRES ENTATION OF THE EQUATIONS OF MOTION IN ROTOR FRAME 

 

The vectorial equation (i) along with the vectorial statement time rate of change (ii) prov ide a concise and exact characterization of 

the non-linear equations of motion of the micro gyroscope. As a first step in expressing the equations of motion in compo nent form 

resolved in 
RF  we must describe the orientation of 

RF  relat ive to 
PF . : p RC F F  describing the attitude of 

RF  relative to 
PF  is 

parameterized via Euler angles. Consider the following Euler sequence: 

z z y y x xC=C (θ )C (θ )C (θ )  

where the principal rotation matrices are defined by 

 

 

x x x x

x x

y y

y y

y y

z z

z z z z

1 0 0

c (θ )= 0 cos(θ ) sin(θ )

0 -sin(θ ) cos(θ )

cos(θ ) 0 -sin(θ )

c (θ )= 0 1 0

sin(θ ) 0 cos(θ )

cos(θ ) sin(θ ) 0

c (θ )= -sin(θ ) cos(θ ) 0

0 0 1

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

          

 

The Euler angles ( xθ , yθ , zθ ) correspond physically to s mall rotations about the drive axis ,sense axis and input -axis respectively. 

The princip le rotation matrices yields, 

z z z z z

z z z z z

cθ cθ sθ sθ cθ cθ sθ -cθ sθ cθ θ sθ

-cθ sθ -sθ sθ sθ cθ cθ cθ sθ sθ θ cθ

sθ -sθ cθ cθ cθ

y x y x x y x

y x y x x y x

y x y x y

s

c s

  
 

   
 
 

Once the rotation matrix : p RC F F  is known, the angular velocity 

of RF  relative to PF expressed in RF  is given by 

.
P R Tω =-cc  
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. . .

T T T T T T
z z y z y xz y z x y z=-c c -c (c c )c -c c (c c )c c            

 

Where    
3 2

3 1

2 1

0

0

0

 

  

 

 
 

  
  

                

 

Denoting  

 

 

.
T

x xx

.
T

y yy

.
T

z zz

ω =-c c

ω =-c c

ω =-c c

  
 

   Tc ω c = cω                                  

We get 

 
P R

z zω c (c c )yz y x                   

 

A straightforward calculat ion results in, 

.

x

.

.

ω ,0,0

ω 0, ,0

ω 0,0,

T

x

T

y y

T

z z







 
   

 
 
 
 

 
     

Combin ing  the above equations we get, 

 
. .

x y z y z

. .
P R

x y z y z

. .

z x y

θ cθ cθ +θ sθ

ω = -θ cθ sθ +θ cθ

θ +θ sθ

 
 
 
 
 
 
  

 

       

.

x
y z z

.

y z z y

.
y

z

θ
cθ cθ sθ 0

= -cθ sθ cθ 0 θ

sθ 0 1
θ

 
  
  
  
  

   
 

                            

        
.

=S(Θ)Θ                                 

Where  
T

. . .

x y zΘ= θ ,θ ,θ
 
  

                 

The angular velocity of the platform PF  relat ive to IF  expressed in PF  given by  

 

http://www.ijcrt.org/


www.ijcrt.org                  © 2017 IJCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882 

 

IJCRT1704185 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1439 

 

 

T
I P

x y zω = Ω ,Ω ,Ω  
     

Assuming that 
RF  is aligned with the principle axes of the rotor. As a result the inertia matrix of the rotor J is diagonal, 

xx yy zzJ=Diag J ,J ,J     

 Eu ler's equations take the form, 

.

x xx x zz yy y z

.

y yy y xx zz x z

.

z xx z yy xx x z

M =J ω +(J -J )ω ω

M =J ω +(J -J )ω ω

M =J ω +(J -J )ω ω

           

Assume that the rotor is symmetric about the x and y axes so that xx yyJ =J , then the resultant moment about the center of mass of the 

system can be expressed in 
PF  as 

 

.
e

xx x xx x x

.
e

yy y yy y y

.
e

zz z zz z z

-k θ -c θ +M

M= -k θ -c θ +M

-k θ -c θ +M

 
 
 
 
 
 
 

  

 

The restoring torques due to stiffness and damping along axis i=(x,y,z)  of PF  are denoted as ii i-k θ  and 
.

ii i-c θ  respectively, and 

the components of the external moment acting about axis i=(x,y,z) are denoted
e

iM . 

Simplifying the above equations using equations neglecting all cross -axis coupling and angular acceleration effects the 

equations of motion are approximated by the following linear model. 

.. . .
e

xx x xx x xx x zz z y x

.. . .
e

yy y yy y yy y zz z x y

.. .
e

zz z zz z zz z z

J θ +c θ +k θ =-J θ Ω +M

J θ +c θ +k θ =J θ Ω +M

J θ +c θ +k θ =M

                    

Div iding each equation (2.29) by the inert ia about each respective axis transforms the dynamics to standard second order form, 

e.. . .
2xn zz z

x zx x yxn

x xx xx

e
.. . .

2yn yzz
y zy y xyn

y yy yy

e.. .
2zn z

zz zzn

z zz

ω J M
θ + θ + θ =- θ Ω +

Q J J

ω MJ
θ + θ + θ = θ Ω +

Q J J

ω M
θ + θ + θ =

Q J

ω

ω

ω

                     

 

Where i

i

1
Q =

2ζ
 are the x,y and z-axes quality factors and

ii
in

ii

k
ω =

J
, iζ  denotes the damping ratio associated with axis i=(x,y,z)

.and k denotes spring constant. 
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This gives   
2

xn xx 0ω = k /mω  and   
2

yn yy 0ω = k /mω  

 

Where m  is the proof mass and 
0ω  is  the natural resonant frequency. 

 

Generally, sense axis is under force to balance control so the control signal can be used to measure the desired rotation rat e. 

therefore, we can assume that 
.

y yθ =θ =0  and simplifying (2.30)  y ield ing system transfer function for the driven axis.

2 2

n n

1/m
G(s)=

S +2ζω S+ω
 

Where 

x

1
ζ=

2Q
 and 

n xω =ω  

9. DEVELOPMENT OF STATE EQUATIONS  

 

A sinusoidal torque, T(t), is applied to the plate about the x-axis producing a periodic motion about the x-axis. The other torques 

about the x-axis are a damping torque and a spring torque, both due to the mechanical properties of the supporting wires alo ng the x-

axis. The applied torque about the y-axis is a damping torque and a spring torque due to the supporting wires. The damping 

coefficients and spring constants are assumed to be equal about the x-axis and the y-axis because of the symmetry of the plate in the x 

− y plane. When the housing is rotated at an angular rate of 
z rad/sec about the z-axis, a torque is transmitted to the plate by the 

support wires and consists of a damping torque and a spring torque given by 

     

.

ZZ Z

t

' '

Z Z Z

0

C (Ω -θ )

K (θ Ω (t )dt -θ )
 

where ZC  and ZK  are the damping coefficient and the spring constant about the z-axis. The input rate ZΩ induces a motion in the y-

axis and ZΩ is determined from the measurement of the angular motion about the y-axis. 

10. EULER’S EQUATIONS  

 

Based on the above conditions, simplified Euler’s equations can be written as, 

.. . . .

x x x y z1 0 0 0

.. . . .

y y y x z1 0

t.. .
' '

z z z1 0 1 z 0 Z

0

θ +a θ +a θ +Aθ θ =T sinω t

θ +a θ +a θ -Aθ θ =0

θ +b θ +b θ =b Ω +b Ω (t )dt

                   

The desired output of the gyroscope is the input angular rate ZΩ (t) This is obtained by measuring and processing the angular rate 

.

yθ ( )t .  
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Assuming that the rate of change of the angular rate input 
ZΩ (t)  is small relative to the rates of change induced by the applied torque 

0 0T sinω t and that the nonlinear effects in the x and y equations are relatively small, the steady-state value of the 
.

yθ ( )t  can be 

written as,                     

.

y Z 0θ (t)=KΩ (t)sinω t
 

Thus 
.

yθ (t) is the sine wave sine wave amplitude-modulated by the applied angular rate 
ZΩ (t) .

ZΩ (t) can therefore be obtained by 

a simple amplitude modulation (AM) demodulator. 

 

11. STATE  EQUATIONS 

                    

             1 xx =θ          

.

x2x =θ     3 yx =θ                      

.

y4x =θ          z5x =θ      

.

z6x =θ                 

Resulting in the state equations, 

               

1

2

3

4

5

6

7

.

2

.

1 2 0 1 4 6 0 0

.

4

.

1 4 0 3 2 6

.

6

.

7 1 6 0 5 1 z

.

0 z

x =x

x =-a x -a x -Ax x +T sinω t

x =x

x =-a x -a x +Ax x

x =x

x =x -b x -b x +b Ω

x =b Ω

            

AM demodulation of the variab le 
.

y4x (t)=θ ( )t generates the desired output ZΩ (t) . The equation defining the demodulator is,  

                   

.. .

0 1 0 4 0z =-c z-c z +c x sinω t     

 

where the coefficients in Equation are chosen to provide low pass filtering, with a corner frequency at 0 /10 rad/sec, after the 

demodulation. The output measurement is the demodulator output z(t) . Ideally, ZΩ (t)  is given by 

                     
z

K
Ω (t)= z(t)

2
      

 

The design coefficients for the gyroscope simulated in this work are  

 

4

1

8

0

1.8621 10

3.4483 10

a

a

 

 
               

1

8

0

9.3750 10

3.3750 10

b

b

 

 
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1

2

0

1200

(600 )

c

c








                   

0

4.5172

2 3000 /

A

rad sec 



 
 

 

0  was chosen to be near the resonant frequency of the linear part of the y-axis equation and the magnitude 
0T of the forcing 

function was chosen to be  

    
8

0 1.5 10T    

The resulting equations of motion, using these coefficients, provide the ‘truth model’of the gyroscope. 

 

To generate a set of Kalman filter equations the unknown 
zΩ cannot appear in the equations; therefore the following modificat ion 

was made to the gyroscope state equations. Let: 

6 z 6x =Ω +n  

where 
6n  is the unknown difference between the input 

zΩ and the state
6 zx =Ω . The revised state equations can now be rewritten:  

           

1

2

3

4

5

6

7

.

2

.

1 2 0 1 4 6 0 0 2

.

4

.

1 4 0 3 2 6 4

.

6

.

7 0 5 1 6

.

0 6 0 6

x =x

x =-a x -a x -Ax x +T sinω t+n

x =x

x =-a x -a x +Ax x

x =x

x =x -b x +b

x =b

n

n

x b n





   

 

The demodulator equation is rewritten in state form as  

            

.

8 9

.

9 0 8 1 9 0 4 0 8

x = x

x =-c x -c x +c x sinω t+n

   

 

The measurement equation is given by 

       8z=x +v        

The quantities 2 4 6 8n ,n ,n ,n  and V are random quantities, including random noise and modeling errors, which in the development of 

the extended Kalman filter (EKF) are assumed to be white noises. For convenience, the gyroscope model is now rewritten in the 

vector-matrix form:  

.

1 0X=FX+f (x)+Gn+g(X)sinω t      

and  

Tz=h X+v         
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Where 

1

2

3

4

5

6

7

8

9

x

x

x

x

X= x

x

x

x

x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      

0

0 4

0

T

0

0

g(x)= 0

0

0

0

c x

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

0

0

0

0

h= 0

0

0

1

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

4 6

2 6

0

-Ax x

0

Ax x

X= 0

0

0

0

0

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

1

4

6

8

n

n
n=

n

n

 
 
 
 
 
 

 

0 1

0 1

0

0

0 1

0 1 0 0 0 0 0 0 0

-a -a 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 -a -a 0 0 0 0 0

F= 0 0 0 0 0 1 0 0 0

0 0 0 0 -b 0 1 0 0

0 0 0 0 0 b 0 0 0

0 0 0 0 0 0 0 0 1
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12. KALMAN FILTER (EKF) EQUATIONS US ED FOR GYROSCOPE  MODEL  

 

The EKF equations can be written for gyroscope model as as 

T

0X=f(x)+k(z-h X)+g(X)sinω t  

where  1f(x)=FX+f (x)  

 

The output of the Kalman filter, x , is the estimate of the combined state vectors of the gyroscope and the demodulator. The estimate 

of the applied torque ZΩ (t) is obtained from the state estimate 8x (t)  as 

z 8

K
Ω (t)= x (t)

2
 

The Kalman gain vector is given by k=Ph/R and the error covariance P is calculated by the equation 

T.
TPhh P

P = FP+P F- +GQG
R

 

 

where 1F=F+F


.The matrix F is defined  prev iously  and 
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13. SIMULATION RES ULTS  

 

Using  values 910m Kg , 31.57 10 / secn rad   ,
30.5 0    the system  transfer function for the driven axis of 

gyroscope  is obtained as 

 
9

2 6

10
G(s)=

S +1.57S+2.46 10
 

 

 
Fig :1. Bode diagram of MEMS Gyro driven axis  

 
Fig :2. Step response of MEMS Gyro driven axis  

 

Measurement noises, iv  with standard deviations of twenty per cent of the maximum value (.02) of the output signal of the truth 

model was used to corrupt the output of each micro gyroscope. Simulat ion results are shown below.  
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Fig 3 .Plot of estimated state variables without adding noise 

 

 

 
 

Fig 4 .Plot of estimated state variables with added noise 

 

 

 

 

Fig  5. Plot of mean square error 

 

14. CONCLUS ION 

In this paper, studied the configuration of MEMS vibratory Gyroscopes and derived the governing equations of motion of 

these systems using the Newton- Euler approach and modeled them based on a second order system. Because of the relatively low 

cost of micro-sensors, accuracy can be increased by using a large number of micro sensors to measure the same quantity and then 

using extended kalman filtering to combine the measurements. 
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