www.ijcrt.org © 2017 JCRT | Volume 5, Issue 4 November 2017 | ISSN: 2320-2882

MODELLING OF MEMS INERTIAL SENSORS AND ACCURACY IMPROVEMENT
USING EXTENDED KALMAN FILTER

Mohamed Sameer T K, Ajith V.S", Kavinkumar.K ", K.Vidhya™~
"Assistant Professor, Department of Aeronautical Engineering,
" Assistant Professor, Department of Electronics and & Communication Engineering,
Jawaharlal College of Engineering and Technology, Lakkidi, Palakkad,

Affiliated to APJ Abdul Kalam Technological University, Kerala.

Abstract— Inertial navigation uses gyroscopes and accelerometers to maintain an estimate of the position, velocity, attitude
and attitude rates of the aircraft. Gyroscopes are used in various applications to sense either the angle tumed through by a vehicle or
structure (displacement gyroscopes) or its angular rate of turn about some defined axis (rate gyroscopes). Micro Electro Mechanical
System (MEMS) devices are one of the most exciting developments in inertial sensors

Micro inertial sensors, such as MEMS gyroscopes, can provide small, inexpensive, low power devices; however, the
accuracy of these devices is insufficient for many space applications. The aim of this project is to develop a mathematical model of the
vibratory MEMS gyroscope and to derive the governing equations of motion of these systems using the Newton-Euler approach. The
individual outputs of many nominally identical micro sensors can be combined to generate an arithmetic average of the sensor
measurements and then processed this average in an appropriate Extended Kalman Filter (EKF). The estimates are generally much
more accurate than the measurements taken directly from the sensors.
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1. INTRODUCTION

Navigation, guidance, and control systems for small space vehicles, such as satellites, require compact inertial measurement
sensors to provide accurate position, velocity, and angular information about the vehicle. Recent developments in Micro Electro
Mechanical Systems technology promise sufficiently small inertial sensors, but these sensors are not sufficiently accurate for many
space applications. On the other hand, the cost of these sensors promises to be quite inexpensive; therefore, one method of improving
sensor accuracy is by using many sensors to make measurements of the same quantity and then combining these measurements to
generate one accurate measurement. Note that the use of many inexpensive micro-sensors measuring the same quantity can also
provide reliability, through redundancy, at a reasonable cost. The specific problem discussed here is that of combining the outputs of
many micro-sensors, all measuring the same quantity, so that the accuracy of the combination greatly exceeds the accuracy of the
individual micro-sensors.

2. MEMS Sensors

New applications that have demanded low-cost sensors for providing measurements of acceleration and angular motion have
provided a major incentive for the development of micro-machined electromechanical system (MEMS) sensors. MEMS devices are
one of the most exciting developments in inertial sensors in the last 30 years. These devices overcome many of the features that have
impeded the adoption of inertial systems by many potential applications, especially where cost, size and power consumption have
been governing parameters.

3. MEMS VIBRATORY GYROSCOPE

MEMS Gyroscopes are vibratory rate gyroscopes, which have no rotating parts that require bearings, and hence they can be
easily miniaturized and batch fabricated using micromachining techniques. These structures fabricated on polysilicon or crystal
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silicon, and their main mechanical component is a two degree of freedom vibrating proof mass, which is capable of oscillating on two
directions in a plane. Their operation is based on the Coriolis effect. When the gyroscope is subjected to an angular velocity along an
axs (input axis) orthogonal to the axis of initial oscillation (driven axis), the Coriolis effect transfers energy from one vibrating mode
to another. The response of the second vibrating mode, which is along a third axis (sense axis) orthogonal to the previous two,
provides information about the applied angular velocity.

4. EXTENDED KALMAN FILTER

The Kalman filter addresses the general problem of trying to estimate the state of a discrete-time controlled process that i
governed by a linear stochastic difference equation. A Kalman filter that linearizes about the current mean and covariance is referred
to as an extended Kalman filter or EKF. The extended Kalman filter (EKF) has become a standard technique used in a number of
nonlinear estimation and machine learning applications. These include estimating the state of a nonlinear dynamic system, estimating
parameters for nonlinear system identification, where both states and parameters are estimated simultaneously.

5. CONFIGURATION OF MEMS GYROSCOPES

The simplest model for a vibratory rate Gyroscope is illustrated in Fig 1. The system consists of a proof mass suspended by a set
of springs. The springs allow deflection in two orthogonal directions or modes. The mode along the X-axis is driven into oscillation
and the second mode along the Y-axis is excited by Coriolis acceleration. The Coriolis acceleration results fromthe oscillatory motion
in the driven mode and the rotation rate about the Z-axis.

Proof mass

Fig. 1: Model of a Vibratory MEM S gyroscope
6. DYNAMICS OF MEMS GYROSCOPES

Here provided a vectorial derivation of the equations of motion characterizing the dynamic behavior of vibratory micro machined
gyroscopes. The derivation presented here utilizes the Newton-Euler approach. The configuration of a vibratory rate Gyroscope i
illustrated in figure 2.
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Fig.2: Angular Vibratory Rate Gyro
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The rotor is angularly oscillated about the X If the spacecraft is rotating about the y,-axis (input-axis) with some Here provided a
p

vectorial derivation of the equations of motion characterizing the dynamic behavior of vibratory micro machined gyroscopes. The
derivation presented here utilizes the Newton-Euler approach.

The rotor is angularly oscillated about the X If the spacecraft is rotating about the y,-axis (input-axis) with some nonzero Z axis
P p

resulting in an oscillating angular momentum vector angular rate €, (i.e., the rate to be sensed), an oscillating Coriolis moment is

developed across the transverse Yp axis (sense axis).

7. VECTORIAL EQUATIONS OF MOTION

The following reference frames shown in Figure 2 will play an important role:

i. F, -asuitable inertial frame of reference.

il F, - The platform reference frame rigidly attached at the center of mass of the platform and rotating with the platform
(the platform frame can be taken equal to the spacecraft's body fixed frame FB).
iii. F, - The rotor frame rigidly attached at the mass center of the rotor and rotating with the same angular motion of the

rotor.
Applying the balance of angular momentumabout the center of mass of the system,
Y=
dt
H=J,.'o"

Where , H denotes the total angular mo mentum of the systemabout the system center-of-mass.
J denotes the inertia of the rotor about its center of mass,

'o® is the angular velocity of the rotor relative to F, .
The time rate of change of a vector Q as seen by an observer rigidly fixed to FA is related to the time rate of change of the same

vector as seen by an observer rigidly fixed to F via the transport theorem.

A B
dQ _ *dQ , a o,

dt dt Q
Applying the transport theoremto the balance of angular momentum.
1 P
dH _ dH £’ xH
dt dt
P R | R
Where ﬂ:ﬂ#wRXH ﬂz dH +(' 0P +P R )xH
dt dt dt dt
R
=%+(|QP+P(DR)>(H

This equation can be further simplified as follows

RdH _*d

dt :E(‘]R-lmR)

RdJR R Rd I(DR
=(—R) o+ (————
()0 e (=)
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However, since the rotor is assumed rigid (i.e., does not suffer any deformation) and FR is rigidly attached to the rotor structure,

( Rdd,
dt
The resulting vectorial of motion are expressed concisely as,

)=0

Ry | R
ZMz‘]R'(%)‘FImRXJRJ@R """"" (i)

It is also important to observe from applying the transport theoremto 'oR that

Rd 'R
dt
8. REPRESENTATION OF THE EQUATIONS OF MOTION IN ROTOR FRAME

The vectorial equation (i) along with the vectorial statement time rate of change (ii) provide a concise and exact characterization of
the non-linear equations of motion of the micro gyroscope. As a first step in expressing the equations of motion in compo nent form

resolved in F, we must describe the orientation of F; relative to F,.C:F  — F; describing the attitude of F; relative to F, is

parameterized via Euler angles. Consider the following Euler sequence:
C=C,(6,)C,(6,)C,(0,)

where the principal rotation matrices are defined by

1 0 0

c,(8,)=| 0 cos(8,) sin(6,)
0 -sin(0,) cos(9,)
cos(0,) 0 -sin(0,)
c,(0)= 0 1 0

sin(®,) 0 cos(6,)
cos(0,) sin(@,) O
c,(6,)=| -sin(0,) cos(6,) O
0 0 1

The Euler angles (OX ,Gy , Gz)correspond physically to small rotations about the drive axis ,sense axis and input-axis respectively.
The princip le rotation matrices yields,
ch,c0, s6,s0,c0,+c0,80, -c0,80 cO,+50,s6,
c=|-cO,0, -s0,s0,s0,+cO,cO, c0,s0,s0,+s0.,c0, |Once the rotation matrix C: F, — F; is known, the angular velocity
sO -s6,c0, 0,0,

y

of F; relativeto F,expressed in F is given by

[P(DR]:_CCT
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=-c.¢,"-C. (cyc,")c, ¢ ¢y (exc,T)e,'c,”

0 - o
Where [w]z o, 0 -
-0, o 0
Denoting
[@X]:-éxCTx
|:(Dyj|:'éyCTy
[Q)Z]:—ézCTz

clo Je¢"=[cu]
We get
"0 =@, +¢; 0, +(c: ¢y,

A straightforward calculation results in,

T T
0, = HX,O,O}

= T
®,=]0,6,,0

.
0, = 0,0,492}

Combining the above equations we get,

0, c0,c0,+0, 50,

Pot=|-0, c0,50,+0, co,

0,40, s0,
cO,c, s6, 0 O
=| 0,80, b, 0]6,
s, 0 1 9'2
=5(0)®
Where
;
@—[e'x 0, e}

The angular velocity of the platform F, relative to F, expressed in F, given by
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I P_ T
0"=[Q,.Q,.Q, ]
Assuming that F; is aligned with the principle axes of the rotor. As a result the inertia matrix of the rotor J is diagonal,
J=Diag| J,, J.J,,

Euler's equations take the form,
Mx :‘]xx Wy +(Jzz -Jyy )(Dymz
M,=J,, o, +(J,-T,, o0,

Mz :‘]xx (Dlz +(Jyy -Jxx )(Dx('oz

Assume that the rotor is symmetric about the xand y axes so that J,, =J,, , then the resultant moment about the center of mass of the
systemcan be expressed in F, as

_kxxex “Cux e.>< +1\/Iex
Z M=| -k, 0, -c 0, +M°

-kzzez €, e.z +Mez

The restoring torques due to stiffness and damping along axis i=(X,y,z) of F, are denoted as -K;0; and -C;; Qi respectively, and

the components of the external moment acting about axis i=(X,Y,Zz) are denoted M°, .

Simplifying the above equations using equations neglecting all cross-axis coupling and angular acceleration effects the
equations of motion are approximated by the following linear model.

JXX e)( +CXX e.X +kXX e)( :_JZZ e.Z Qy—‘rMeX

1,0, +c, 0, +k, 0, =J,6,Q M

3,0, +c,,0,+k,, 0, =M,

2z "z z 7z

Dividing each equation (2.29) by the inertia about each respective axis transforms the dynamics to standard second order form,

: 2 I, M°,
ex +O~)xn X:-\] 92 Qy+

X XX J XX

C®
ex + Xn

e

\ (D” : 2 ‘]zz . M
O+ Qy ey+(Dyn y=J—OZQX+_y

y Yy v
SN 2 M
0,+2-0,+ =
z Qz (Dzn z ‘]zz
. kii . . . . ..
Where Q, =z are the xy and z-axes quality factors and ®;, = J_ , C; denotes the damping ratio associated with axis 1=(X,Y,Z2)
i i

.and k denotes spring constant.
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This gives @, =y/K,,/me; and coynzﬂfkyy/moag

Where m is the proof mass and ®, is the natural resonant frequency.

Generally, sense axis is under force to balance control so the control signal can be used to measure the desired rotation rate.

therefore, we can assume that Oyzely =0 and simplifying (2.30) yielding system transfer function for the driven axis.

1/m

GS)=5——m—
©) S’ +2{m, S+o’

1
Where (=—— and o,=0,
X

9. DEVELOPMENT OF STATE EQUATIONS

A sinusoidal torque, T(t), is applied to the plate about the x-axis producing a periodic motion about the x-axis. The other torques
about the x-axis are a damping torque and a spring torque, both due to the mechanical properties of the supporting wires along the x-
axis. The applied torque about the y-axis is a damping torque and a spring torque due to the supporting wires. The damping
coefficients and spring constants are assumed to be equal about the x-axis and the y-axis because of the symmetry of the plate in the x

—y plane. When the housing is rotated at an angular rate of €2, rad/sec about the z-axis, a torque is transmitted to the plate by the
support wires and consists of a damping torque and a spring torque given by

C, (Qz'ez )
Kz (ej Qz (t')dtl'ez)

where Cz and KZ are the damping coefficient and the spring constant about the z-axis. The input rate €2 induces a motion in the y-

axis and €2, is determined fromthe measurement of the angular motion about the y-axis.
10. EULER’S EQUATIONS

Based on the above conditions, simplified Euler’s equations can be written as,
Ox +a, Ox +a, 0x +A Oy 0, =T sinw,t
Oy +a1 Gy +a0 Gy -A0x0,=0

t
0: +b, 0 +b, 0 =b,Q, +b, [ Q, (1 )dt
0

The desired output of the gyroscope is the input angular rate €2, (t) This is obtained by measuring and processing the angular rate

0y(t).
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Assuming that the rate of change of the angular rate input €, (t) is small relative to the rates of change induced by the applied torque

TOSin(Dot and that the nonlinear effects in the x and y equations are relatively small, the steady-state value of the Oy(t) can be

written as, By (H)=KQ, (t)sinw,t

Thus Gy (t) is the sine wave sine wave amplitude-modulated by the applied angular rate €2, (t).€2,(t) can therefore be obtained by

a simple amplitude modulation (AM) demodulator.

11. STATE EQUATIONS

Xl=9X XZZGX X3 :e

X4:ey XS:GZ XG:OZ

Resulting in the state equations,

X, =X,

X, =-a,X, -8, X, -AX, Xz +T,SiNo,t
=X,
o =78, X, -8 X5 FAX, X
5 :XG

X, =X,-b,X-b X5 +b,Q,

X, =b,Q,

AM demodulation of the variable X, (t)= Gy(t) generates the desired output €2 (t) . The equation defining the demodulator is,

Z=-C,Z-C, Z+CyX,SiNm,t

where the coefficients in Equation are chosen to provide low pass filtering, with a corner frequency at @), /10 rad/sec, after the

demodulation. The output measurement is the demodulator output z(t) . Ideally, Q. (t) is given by

Qz(t)=§z<t>

The design coefficients for the gyroscope simulated in this work are

a, =1.8621x10" b, =9.3750x10
a, =3.4483x10° b, =3.3750x10°
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¢, =12007 A=4.5172
¢, = (6007)* @, =27 x3000rad / sec

@, was chosen to be near the resonant frequency of the linear part of the y-axis equation and the magnitude TO of the forcing
function was chosen to be
T,=15 x10°

The resulting equations of motion, using these coefficients, provide the ‘truth model’of the gyroscope.

To generate a set of Kalman filter equations the unknown €2, cannot appear in the equations; therefore the following modification
was made to the gyroscope state equations. Let:
X =€, tng

where N is the unknown difference between the input €2, and the state X, =2, . The revised state equations can now be rewritten:
1 :X2

) =7, X, -8 X, -AX X+ Tosinw, t+n,

:X4
X, =-a,X, -8, X3 TAX, X, + 1,
:XG
s =X7-DoX5 0,1

X, =b,Xs —byn,

The demodulator equation is rewritten in state form as
Xg = Xo

X g =-CyXg-C;Xq+CyX ,SiNw, t+n,

The measurement equation is given by
Z=Xg+V
The quantities N,,N,,N;,Ng and V are random quantities, including random noise and modeling errors, which in the development of

the extended Kalman filter (EKF) are assumed to be white noises. For convenience, the gyroscope model is now rewritten in the
vector-matrix form:

X =FX+, (X)+Gn+g(X)sinwm,t
and
z=h"X+v
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Where
Xl _0 i _0_ _0 n
X, T, 0 AX, X,
X 0 0
3 0 n,
X4 0 0 AX, X, n
4
X=| X, g(x)=| 0 h=0 x=|0 n= "
X, 0 0 0 n6
X, 0 0 0 ’
Xq 0 1 0
X9 _COX4_ _0_ 0
[0 2 0 0 0 0 0 0 O] [0 0 0 O]
-4, -a 0 0 00 0 O 10 0 0
O 0 0 1 0 0O O O 00 0 O
o 0 a a 0 00 0 O 01 0 0
F<f0 0 0 O 0 1 0 0 O G=|0 0 0 0
DRGYF (0= iRNEl 1/INERR0 00 b O
EFSOSG 0 0 N O[INGEE 0 00 b, O
BR 0 0" 0 0 il OSCREL 00 0 O
o0 O T 10 0 0 1]

12. KALMAN FILTER (EKF) EQUATIONS USED FOR GYROSCOPE MODEL

The EKF equations can be written for gyroscope model as as
X=f(x)+k(z-h"X)+g(X)sinw,t
where f(X)=FX+f,(X)

The output of the Kalman filter, x , is the estimate of the combined state vectors of the gyroscope and the demodulator. The estimate

of the applied torque €2, (t) is obtained fromthe state estimate X, (t) as

Qz<t)=§x8(t>

The Kalman gain vector is given by k=Ph/R and the error covariance P is calculated by the equation

- Phh'P

P=FP+PF- +GQG”

where F=F+F .The matrix F is defined previously and
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13. SIMULATION RESULTS

Using values m=107"Kg, ®, =1.57><103’radlsec,é':O.5><O’3 the system transfer function for the driven axis of
gyroscope is obtained as

10°
S%+1.575+2.46x10°

G(s)=

Vreme se—

Fig :1. Bode diagram of MEMS Gyro driven axis
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Fig:2. Step response of MEMS Gyro driven axis

Measurement noises, V; with standard deviations of twenty per cent of the maximum value (.02) of the output signal of the truth

model was used to corrupt the output of each micro gyroscope. Simulation results are shown below.
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Fig 3.Plot of estimated state variables without adding noise
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Fig 4 .Plot of estimated state variables with added noise
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Fig 5. Plot of mean square error

14. CONCLUSION

In this paper, studied the configuration of MEMS vibratory Gyroscopes and derived the goveming equations of motion of
these systems using the Newton- Euler approach and modeled them based on a second order system. Because of the relatively low
cost of micro-sensors, accuracy can be increased by using a large number of micro sensors to measure the same quantity and then
using extended kalman filtering to combine the measurements.
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