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Abstract

Recent advancements in artificial intelligence (Al) have sparked renewed interest in creating systems that
learn and reason like humans. Many of these breakthroughs have stemmed from deep neural networks trained
end-to-end on tasks like object recognition, playing video games, and board games—often achieving or
surpassing human-level performance. However, despite being inspired by biological systems and
demonstrating impressive results, these Al models still differ significantly from human intelligence.

Insights from cognitive science suggest that to build machines that truly think and learn like people, we must
move beyond current engineering trends in both the content and methods of learning. We argue that such
systems should:
(@) construct causal models of the world to enable explanation and deep understanding, not just pattern
recognition;

(b) base learning on intuitive theories of physics and psychology to provide a richer foundation for acquiring
knowledge; and
(c) leverage compositionality and meta-learning (“learning-to-learn™) to enable rapid knowledge acquisition
and flexible generalization across new tasks and environments.

We outline specific challenges and offer potential directions for integrating the strengths of modern neural
networks with more structured, cognitively inspired models to advance toward these goals.

1. Introduction:

Artificial intelligence (Al) has experienced cycles of rapid growth and decline, but recent years have seen
unprecedented advancements by most conventional standards. A major driver of this progress is deep
learning, a method that trains large, multi-layered neural network models. These models have made
significant strides across various fields, including object recognition, speech processing, and control systems
(LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015).

For example, in object recognition, Krizhevsky, Sutskever, and Hinton (2012) introduced a deep
convolutional neural network (convnet) that drastically reduced the error rate compared to previous state-of-
the-art models. Since then, convnets have become the dominant approach, achieving near-human performance
on several benchmarks (He et al., 2015; Russakovsky et al., 2015; Szegedy et al., 2014).

Similarly, in speech recognition, traditional Hidden Markov Models (HMMs)—a standard since the late
1980s—have been increasingly replaced by deep learning techniques. Fully neural network-based systems
now lead the field (Graves et al., 2013; Weng et al., 2014), outperforming earlier hybrid approaches (Hinton
etal., 2012).
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Deep learning has also been successfully applied to complex control tasks. For instance, Mnih et al. (2015)
merged deep learning with reinforcement learning to create an algorithm that learns to play Atari games
directly from raw pixel data and score signals, achieving performance levels on par with or surpassing human
players (see also Guo et al., 2014; Schaul et al., 2016; Stadie et al., 2016).

These breakthroughs have helped re-establish neural networks as a dominant framework in machine learning,
reminiscent of their popularity in the late '80s and early '90s. The success has also extended into the tech
industry, with major players like Google and Facebook heavily investing in deep learning research. These
methods now power core features in mobile apps and online platforms. Media coverage often portrays these
advances as evidence of neural networks' ability to mimic human thought processes and learning, thanks to
their brain-inspired design.

In this article, we take the current excitement around artificial intelligence as an opportunity to explore what it
truly means for a machine to learn and think like a human. We begin by examining criteria that cognitive
scientists, developmental psychologists, and Al researchers have previously proposed. Next, we outline what
we believe are the fundamental components needed to build machines that think and learn like people,
drawing on both theoretical frameworks and experimental evidence from cognitive science.

We then analyze how modern Al—especially deep learning—measures up against these components. Our
assessment reveals that while deep learning has made great strides, it still lacks many essential aspects of
human-like intelligence. This suggests that such systems may be solving problems in fundamentally different
ways than humans do. We conclude by outlining promising directions for creating machines that more closely
resemble human thinkers. These include integrating deep learning with key cognitive elements—such as
attention, working memory, and data structures like stacks and queues—drawn from classic psychology and
computer science, which have traditionally seemed at odds with neural network approaches.

Beyond listing specific components, we highlight a deeper divide between two major approaches to
intelligence. The first, statistical pattern recognition, focuses on prediction within well-defined tasks like
classification, regression, or control. In this view, learning is about identifying patterns or features that
consistently correlate with specific outcomes across large, diverse datasets.

The second approach prioritizes world modeling, where learning involves constructing internal models to
make sense of the world. Here, cognition centers on using these models for explanation, imagination, and
planning—understanding what we observe, contemplating alternative possibilities, and determining how to
influence outcomes. This contrast—between pattern recognition and model-building, or between prediction
and explanation—is at the heart of our understanding of human intelligence.

Just as scientists aim to explain natural phenomena rather than merely predict them, we argue that human
cognition is primarily a model-building endeavor. Although pattern recognition isn’t the full story of
intelligence, it can play a supporting role by enabling efficient model-building through experience-based,
“model-free” learning that makes key inferences easier to compute.
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2. Cognitive and Neural Inspiration in Artificial Intelligence

The relationship between Al and human cognitive psychology has deep roots—predating even the terms
“artificial intelligence” and “cognitive psychology” themselves. Alan Turing once proposed that instead of
replicating adult human intelligence directly, it might be more feasible to build and educate a ‘“child-
machine.” He imagined such a machine as starting with a mostly blank slate—like a notebook with minimal
built-in mechanisms—and learning through experiences of reward and punishment, a concept reminiscent of
reinforcement learning. Turing’s perspective aligned with the behaviorist psychology dominant in his era and
also shares common ground with the modern connectionist view that much of our knowledge can be learned
from sensory patterns in the environment.

Cognitive science later moved beyond the simplicity of behaviorism and became foundational to early Al
research. For instance, Newell and Simon (1961) developed the “General Problem Solver” as both an Al
system and a model of how humans solve problems, which they validated through experiments. Other early
Al researchers often referenced human cognition in their work, publishing in cognitive psychology journals
and aiming to emulate how children learn rather than hard-coding intelligence. Schank (1972), for example,
expressed a desire to build systems that learn as children do, rather than being programmed with vast amounts
of pre-set knowledge. Minsky (1974) shared a similar view, suggesting that theories of human thinking and
intelligent machines are so closely related that they should be developed together.

During this time, much Al research assumed that human thought could be understood through symbolic
representations—discrete, structured units used in reasoning, planning, language, and vision. Alongside this
symbolic tradition, another approach was emerging: subsymbolic computation. This model was based on
neuron-like units inspired more by neuroscience than psychology, with early work from researchers like
Rosenblatt (1958), Fukushima (1980), and Grossberg (1976). These ideas later evolved into the influential
parallel distributed processing (PDP) framework developed by McClelland, Rumelhart, and colleagues in
the 1980s.

PDP emphasized that intelligent computation could emerge from many simple units operating in parallel, with
knowledge represented in a distributed fashion across these units—unlike the localized representations in
symbolic systems. The current wave of enthusiasm for deep learning is a modern extension of this idea.
While benefiting from more advanced hardware, vast datasets, and deeper architectures, deep learning still
retains many of the principles introduced in PDP, building powerful models through stacked layers of learned
representations (see LeCun et al., 2015; Schmidhuber, 2015).

It’s important to note that the Parallel Distributed Processing (PDP) approach isn’t limited to just pattern
recognition—it can also support model-building. In fact, some of the early PDP work (Rumelhart,
McClelland, & the PDP Research Group, 1986) leaned more towards building internal models than simply
identifying patterns. In contrast, many of today’s large-scale deep learning systems are more narrowly focused
on discriminative pattern recognition (as Bottou, 2014, also discusses). Still, key questions remain about the
nature of the learned representations—specifically their form, compositional structure, and ability to
generalize or transfer—as well as the initial learning setup or “startup software” that helped these models get
started. This paper zeroes in on those aspects.

Neural network models and the PDP perspective propose a view of intelligence that is sub-symbolic, where
learning occurs with minimal pre-defined structure or inductive biases. Supporters of this view argue that
traditional notions of structured knowledge—Ilike rules, graphs, grammars, or object hierarchies—might not
reflect how thinking actually works. Instead, these structures could be emergent byproducts of more
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fundamental sub-symbolic processes (McClelland et al., 2010). In this view, learning starts from a nearly
blank slate, similar to Turing’s idea of a child-like machine mind with little built-in knowledge.

A typical research strategy within this framework is to start by training a simple, general-purpose neural
network on a task, and only add complexity if necessary. This approach has produced impressive results:
networks have successfully mimicked structured behaviors, like learning past-tense rules in language
(Rumelhart & McClelland, 1986), solving basic physics problems (McClelland, 1988), or categorizing living
things in a tree-like hierarchy (Rogers & McClelland, 2004).

Modern deep networks trained on object recognition tasks (e.g., He et al., 2015; Krizhevsky et al., 2012) also
generate high-level features that align with human neural responses in the brain (Khaligh-Razavi &
Kriegeskorte, 2014), and can even predict human judgments about image similarity and typicality (Lake et al.,
2015; Peterson et al., 2016). Generic neural networks have also been trained to take on more complex,
structured behaviors—such as learning to play video games via Deep Q-learning Networks (DQNSs) (Mnih
etal., 2015).

Given these wide-ranging successes—in vision, language, and control—and the ability of neural networks to
reproduce behaviors that appear rule-based or structured, the key question becomes: Do we need more than
this to build truly human-like learning and thinking machines? Or can relatively generic neural networks
alone take us all the way to that goal?

3. Challenges for building more human-like machines:

Although cognitive science hasn't yet reached a unified theory of the mind or intelligence, the idea that the
mind is made up solely of general-purpose neural networks with minimal built-in structure is seen as quite
extreme by most experts today. Instead, a more widely accepted view emphasizes the role of innate
inductive biases—such as early-developing concepts of numbers, space, agents, and physical objects. These
built-in foundations, along with powerful learning algorithms that use prior knowledge, allow humans to
learn from very limited data. The knowledge we acquire tends to be deeply structured and theory-like,
supporting the flexible reasoning and creative thinking that are hallmarks of human cognition.

To illustrate this, the authors introduce two key challenge problems for Al and machine learning:

1. Learning simple visual concepts (Lake, Salakhutdinov, & Tenenbaum, 2015)

2. Learning to play the Atari game Frostbite (Mnih et al., 2015)

These two examples are used throughout the paper to highlight the importance of incorporating core
cognitive components into Al systems.

3.1 The Characters Challenge:

The first challenge revolves around recognizing handwritten characters, a long-standing task used to evaluate
different machine learning techniques. Hofstadter (1985) once suggested that understanding characters the
way humans do—whether handwritten or printed—captures many of the core difficulties in artificial
intelligence. Whether or not that's entirely accurate, it does underscore how even seemingly basic concepts
like letters involve deep complexity. On a more practical note, people—both kids and adults—need to learn
this skill, and it has real-world uses, such as reading addresses on mail or processing handwritten checks at
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ATMs. Compared to broader object recognition tasks, recognizing characters is relatively straightforward:
characters are flat, visually isolated from their background, and rarely blocked by other elements. Given this,
it seems more achievable in the short term to design algorithms that can perceive the same meaningful
patterns in characters that humans do.

The MNIST dataset is the widely used standard for evaluating digit recognition systems, where the goal is to
classify images of handwritten digits from ‘0’ to ‘9’ (LeCun, Bottou, Bengio, & Haffner, 1998). It includes
60,000 training images, with 6,000 examples for each digit. Because of the large volume of training data, a
variety of machine learning algorithms have achieved strong performance. For instance, K-nearest neighbors
reports around a 5% test error, support vector machines bring it down to about 1%, and convolutional neural
networks (CNNs) perform even better, with error rates under 1%. Some of the most advanced deep CNN
models have pushed this error down to just 0.2%, which is comparable to how well humans do (Ciresan,
Meier, & Schmidhuber, 2012). Similarly, CNNs have also made significant progress on the more difficult
ImageNet benchmark, approaching human-level accuracy in object recognition tasks (Russakovsky et al.,

2015).
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Figure 1: The characters challenge: human-level learning of a novel handwritten characters (A),
with the same abilities also illustrated for a novel two-wheeled vehicle (B). A single example of a
new visual concept (red box) can be enough information to support the (i) classification of new
examples, (ii) generation of new examples, (iii) parsing an object into parts and relations, and
(iv) generation of new concepts from related concepts. Adapted from Lake, Salakhutdinov, and
Tenenbaum (2015).
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3.2 The Frostbite Challenge:

The second challenge involves the Atari game Frostbite (see Figure 2), which was among the games tackled
by the Deep Q-Network (DQN) developed by V. Mnih et al. (2015). DQN marked a major milestone in
reinforcement learning by demonstrating that a single algorithm could learn to handle a broad range of
complex games. It was trained on 49 classic Atari games (as proposed by Bellemare et al., 2013) and achieved
human-level or better performance in 29 of them. However, the model particularly struggled with Frostbite
and other games that demand planning over extended time frames.

In Frostbite, the player controls the character Frostbite Bailey, who must build an igloo before the timer runs
out. This is done by jumping across moving ice floes—each jump on a white (active) floe contributes a piece
to the igloo’s construction (Figure 2A—C). The complexity arises because the ice floes are constantly moving
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in different directions, and only active ones count toward building. Along the way, the player can earn extra
points by collecting fish, but must also avoid various dangers like falling into the water, snow geese, and polar
bears. Completing the game level requires forming a long-term plan, achieving sub-goals such as reaching
particular floes, and doing so while avoiding hazards. Once the igloo is fully built, the player must reach it
before time runs out to finish the level (Figure 2C).

The DQN learns to play Atari games like Frostbite by combining a deep convolutional neural network (CNN),
which acts as a powerful pattern recognizer, with a simple, model-free reinforcement learning algorithm (Q-
learning). This combination enables the network to translate
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Figure 2: Screenshots of Frostbite, a 1983 video game designed for the Atari game console. A) The
start of a level in Frostbite. The agent must construct an igloo by hopping between ice floes and
avoiding obstacles such as birds. The floes are in constant motion (either left or right), making
multi-step planning essential to success. B) The agent receives pieces of the igloo (top right) by
jumping on the active ice floes (white), which then deactivates them (blue). C) At the end of a
level, the agent must safely reach the completed igloo. D) Later levels include additional rewards
(fish) and deadly obstacles (crabs, clams, and bears).

visual inputs (pixel frames) into a policy for a limited set of actions, optimizing for long-term rewards, such as
the game score. The network follows a largely empirical approach, common in connectionist models, where
only basic assumptions about image structure are encoded into the convolutional layers. As a result, the
network must learn both a visual and conceptual system from scratch for each new game. In the study by V.
Mnih et al. (2015), the network architecture and hyper-parameters were fixed, but it was trained individually
for each game, making the visual system and policy highly specific to the game at hand. Later research has
demonstrated how game-specific networks can share visual features (Rusu et al., 2016) or be used in multi-
task networks (Parisotto, Ba, & Salakhutdinov, 2016), leading to small improvements in transfer learning
when playing new games.
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Figure 3: Comparing learning speed for people versus Deep Q-Networks (DQNs). Test performance
on the Atari 2600 game “Frostbite” is plotted as a function of game experience (in hours at a frame
rate of 60 fps), which does not include additional experience replay. Learning curves (if available)
and scores are shown from different networks: DQN (V. Mnih et al., 2015), DQN+ (Schaul et
al., 2016), and DQN++ (Wang et al., 2016). Random play achieves a score of 66.4. The “human
starts” performance measure is used (van Hasselt et al., 2016).

There are other behavioral differences that highlight the contrasting ways humans and the DQN represent and
learn tasks. For example, in the game Frostbite, the DQN receives incremental rewards for reaching each
active ice floe, which helps it identify the sub-goals needed to complete the larger task of building an igloo.
Without these sub-goals, the DQN would have to rely on random actions until it accidentally builds an igloo
and gets rewarded for finishing the level. On the other hand, humans likely don’t depend on incremental
rewards in the same way when learning a new game. In Frostbite, a person can figure out the overarching goal
of building an igloo without needing the incremental feedback. Similarly, sparse feedback poses challenges in
other Atari 2600 games like Montezuma’s Revenge, where humans significantly outperform current DQN
methods.

4. Core ingredients of human intelligence:

In the Introduction, we outlined what we consider to be the fundamental components of intelligence. In this
section, we examine these components in more detail and compare them to the current state of neural network
modeling. While these are not the only necessary ingredients for human-like learning and thinking (as
discussed in Section 5 regarding language), they are critical building blocks that are typically absent in most
current learning-based Al systems, especially when not all of them are integrated together. We believe that
combining these components could significantly enhance Al systems, making them more powerful and
capable of human-like learning and reasoning.

Before diving deeper into each component, it's important to clarify that when we refer to “core ingredients,"
we don't mean elements that are necessarily hardwired by genetics or must be "built in" to any learning
algorithm. Our discussion remains neutral regarding the origins of these key ingredients. By the time a child
or adult is learning a new character or figuring out how to play Frostbite, they bring a wealth of real-world
experience that deep learning systems lack—experience that would be difficult to replicate in a general way.
While the core ingredients are shaped by this experience, some may even be a direct result of it. Whether they
are learned, innate, or enriched by experience, the key point is that these ingredients are vital for enabling
human-like learning and thought, in ways that current machine learning has not yet achieved.
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4.1 Developmental start-up software

In early development, humans possess a basic understanding of several core domains, including numbers
(numerical and set operations), space (geometry and navigation), physics (inanimate objects and mechanics),
and psychology (agents and groups). These domains serve as fundamental frameworks for cognition, each
organized around specific entities and abstract principles that relate them. The cognitive representations
within these domains can be seen as "intuitive theories,” with causal structures resembling scientific theories.
The idea of the "child as scientist" suggests that learning itself is a scientific process. Recent studies show that
children actively seek out new data to test hypotheses, isolate variables, assess causal relationships, draw
conclusions from data, and selectively learn from others. We will explore the learning mechanisms in more
detail in Section 4.2.

Each of these core domains has been extensively studied, and they are believed to be universally shared across
cultures and, to some extent, with non-human animals. While all these domains may enhance current machine
learning, we will particularly focus on the early understanding of objects and agents in this section.

4.1.1 Intuitive physics:

Young children possess a rich understanding of intuitive physics, with key physical concepts emerging at a
much earlier age than when they learn to play games like Frostbite. Whether these concepts are innate or
learned, they are available at a very early stage and can be applied to solve everyday physics-related
problems. By as early as 2 months, and possibly even earlier, infants expect inanimate objects to follow
principles such as persistence, continuity, cohesion, and solidity. For instance, they believe objects should
move along smooth paths, not disappear and reappear, not pass through each other, and not exert influence
across distances (Spelke, 1990; Spelke, Gutheil, & Van de Walle, 1995). These expectations help infants
segment objects early on, before they rely on appearance-based cues like color or texture (Spelke, 1990).

As infants grow, these early expectations guide their learning. By around 6 months, they begin to distinguish
between rigid bodies, soft bodies, and liquids. For example, they expect liquids to pass through barriers, while
solid objects cannot (Hespos, Ferry, & Rips, 2009). By their first birthday, infants have already grasped basic
physical concepts such as inertia, support, containment, and collisions (Baillargeon, 2004; Baillargeon, Li,
Ng, & Yuan, 2009; Hespos & Baillargeon, 2008).
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Add blocks, blocks made of styrofoam, blocks made of lead, blocks made of goo,
table is made of rubber, table is actually quicksand, pour water on the tower,
pour honey on the tower, blue blocks are glued together, red blocks are magnetic,
gravity is reversed, wind blows over table, table has slippery ice on top...

Figure 4: The intuitive physics-engine approach to scene understanding, illustrated through tower
stability. (A) The engine takes in inputs through perception, language, memory and other faculties.
It then constructs a physical scene with objects, physical properties and forces, simulates the scene’s
development over time and hands the output to other reasoning systems. (B) Many possible
‘tweaks’ to the input can result in much different scenes, requiring the potential discovery, training
and evaluation of new features for each tweak. Adapted from Battaglia et al. (2013).

4.1.2 Intuitive psychology

Intuitive psychology is another early-developing ability that significantly influences human learning and
thinking. Even before they can speak, infants are able to distinguish between animate agents and inanimate
objects. This ability is partially based on innate or early-present detectors for low-level cues, such as the
presence of eyes, motion from rest, and biological motion (Johnson, Slaughter, & Carey, 1998; Premack &
Premack, 1997; Schlottmann, Ray, Mitchell, & Demetriou, 2006; Tremoulet & Feldman, 2000). These cues
are often helpful, but not always necessary, for identifying agency. In addition to these low-level signals,
infants also expect agents to act in a contingent and reciprocal manner, have goals, and pursue those goals
efficiently within constraints (Csibra, 2008; Csibra, Biro, Koos, & Gergely, 2003; Spelke & Kinzler, 2007).
These goals can be social in nature; by around three months of age, infants start to distinguish between anti-
social agents, who harm or hinder others, and neutral agents (Hamlin, 2013; Hamlin, Wynn, & Bloom, 2010).
Later, they further differentiate between anti-social, neutral, and pro-social agents (Hamlin, Ullman,
Tenenbaum, Goodman, & Baker, 2013; Hamlin, Wynn, & Bloom, 2007).

It is generally accepted that infants expect agents to act in a goal-directed, efficient, and socially sensitive way
(Spelke & Kinzler, 2007). However, there is less agreement on the computational structure that supports this
reasoning and whether it involves referencing mental states and explicit goals. One possibility is that intuitive
psychology operates through cues alone, without deeper mental constructs (Schlottmann, Cole, Watts, &
White, 2013; Scholl & Gao, 2013), though this would require an increasing number of cues as scenarios grow
more complex. For example, in a scenario where Agent A is moving toward a box and Agent B blocks A from
reaching it, both infants and adults are likely to interpret B’s behavior as "hindering" (Hamlin, 2013). This
inference could be captured by a cue such as "if an agent’s expected path is blocked, the blocking agent is
given a negative association."
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4.2 Learning as rapid model building:

Since their inception, neural network models have emphasized the importance of learning. There are various
algorithms used for neural networks, such as the perceptron algorithm (Rosenblatt, 1958), Hebbian learning
(Hebb, 1949), backpropagation (Rumelhart, Hinton, & Williams, 1986), and others. These algorithms
generally adjust connection strengths gradually, whether for supervised learning, where the aim is to improve
pattern recognition, or for unsupervised learning, which focuses on matching the internal patterns of the
model to the statistics of the input data.

Recently, machine learning has made significant progress using backpropagation and large datasets to solve
complex pattern recognition tasks. Although these methods have achieved human-level performance on some
benchmarks, they still fall short of human learning abilities in other areas. Deep neural networks, for instance,
often require much more data than humans to solve similar problems, such as learning to recognize a new
object or playing a new game. When learning the meanings of words, children can make meaningful
generalizations from very limited data (Carey & Bartlett, 1978; Landau, Smith, & Jones, 1988; E. M.
Markman, 1989). Children may only need a few examples of concepts like "hairbrush,” “pineapple,” or
"lightsaber™ to grasp the boundaries of these concepts, differentiating them from an infinite set of potential
objects. Children learn new concepts rapidly, acquiring around nine or ten new words a day until high school
(Bloom, 2000; Carey, 1978). Even in adulthood, this capacity for "one-shot" learning remains—an adult
might need to see only a single image or video of a new two-wheeled vehicle to understand the concept and
distinguish it from similar objects (Fig. 1B-i).

In contrast to human learning, neural networks are notoriously data-hungry, as they are general function
approximators (Geman, Bienenstock, & Doursat, 1992). For example, the ImageNet dataset for object
recognition contains hundreds or thousands of examples per class (Krizhevsky et al., 2012; Russakovsky et
al., 2015)—such as 1000 images of hairbrushes or pineapples. For tasks like learning new handwritten
characters or playing Frostbite, the MNIST benchmark provides 6000 examples per digit (LeCun et al., 1998),
and the DQN used by V. Mnih et al. (2015) required about 924 hours of unique training to play each Atari
game (Figure 3). Clearly, these algorithms are less efficient with information compared to humans performing
the same tasks.

It’s also worth noting that some types of concepts are harder for humans to learn. For instance, concepts
learned in school, such as mathematical functions, logarithms, derivatives, and scientific concepts like atoms
or evolution, are much more challenging. In certain areas, machine learners even outperform humans, such as
analyzing financial or weather data. However, for the majority of cognitively natural concepts—those learned
by children as part of acquiring language—humans still far exceed machines in learning ability. This section
focuses on this type of learning, which is central to reverse engineering and understanding the principles
behind human learning. It also presents opportunities for incorporating these principles into the next
generation of machine learning and Al algorithms, potentially improving progress in learning both easy and
difficult concepts for humans.

4.3 Thinking Fast:

The previous section focused on learning complex models from limited data and suggested key ingredients for
achieving human-like learning abilities. These cognitive abilities become even more impressive when
considering the speed at which humans perceive, think, and make decisions. Typically, richer and more
structured models require more complex and slower inference algorithms, much like how complex models
demand more data. This makes the speed of human perception and thought all the more remarkable.
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The combination of detailed models with efficient inference presents another area where psychology and
neuroscience could offer valuable insights for Al. It also suggests ways to build on the strengths of deep
learning, particularly its efficient inference and scalable learning capabilities. This section explores potential
solutions to the challenge of balancing fast inference with structured representations, such as using
Helmholtz-machine-style approximate inference in generative models (Dayan, Hinton, Neal, & Zemel, 1995;
Hinton et al., 1995) and fostering cooperation between model-free and model-based reinforcement learning
systems.

5. Responses to Common Questions

Throughout discussions of this paper, three recurring critiques or questions have emerged. We believe it’s
useful to address these points directly to further the discussion and move forward collectively.

1. Comparing human and neural network learning speeds is unfair due to humans’ prior
experience. It may seem unjust to compare the learning speeds of neural networks and humans for
tasks like learning to play Atari games or recognizing handwritten characters, given that humans have
extensive prior experience. People have spent many hours playing different games, reading, and
writing various characters, among other related activities. The argument is that if neural networks were
"pre-trained™ with similar experiences, they might generalize in a manner similar to humans when
presented with novel tasks.

2. The biological plausibility of neural networks suggests intelligence theories should begin there.
Our focus has been on how cognitive science can guide the creation of human-like Al, rather than
beginning with neuroscience, as some deep learning proponents do. We take a practical view that the
best way to formally understand human intelligence is by examining the "software" before the
"hardware." In this paper, we outlined key ingredients of this "software.” However, we acknowledge
that neuroscience can provide valuable insights for both cognitive models and Al. For example, our
focus on neural networks and model-free reinforcement learning in the “Thinking Fast” section
reflects this connection. That said, what we know about the brain is not always clear or certain, and
many widely accepted ideas in neural computation are biologically questionable. Therefore, challenges
to cognitive theories that arise from brain-inspired models do not necessarily invalidate these theories.

3. Language is a crucial aspect of human intelligence. Why is it not emphasized more here? We
have said relatively little about language in this paper, despite its importance to human cognition.
While natural language processing (NLP) is an active field of research in deep learning (e.g.,
Bahdanau, Cho, & Bengio, 2015; Mikolov et al., 2013), it is well recognized that current neural
networks fall far short of achieving human-like language abilities. The question arises: how can we
develop machines with richer language capabilities?

4. We believe that understanding language and its role in intelligence is closely linked with
understanding the foundational abilities discussed in this paper. Intuitive physics, psychology, and
rapid learning with compositional, causal models are core abilities that precede language acquisition in
children and serve as building blocks for linguistic meaning. We hope that by gaining a deeper
understanding of these earlier ingredients and their computational implementation, we can better grasp
linguistic meaning and language acquisition, ultimately contributing to the development of more
sophisticated language-based Al systems.
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6. Looking Forward

In recent decades, Al and machine learning have achieved significant milestones: Al systems have defeated
chess masters, triumphed over Jeopardy champions, apps can recognize friends' photos, and machines have
reached or surpassed human performance in large-scale object recognition. Furthermore, Al has enabled
speech recognition on smartphones and is expected to make great strides in fields like self-driving cars,
medicine, genetics, drug design, and robotics. These accomplishments are noteworthy, as they have moved Al
research beyond academic circles and into practical applications that enhance our daily lives.

However, it's important to acknowledge both the achievements and the limitations of Al. Despite impressive
progress, natural intelligence remains the gold standard. While Al algorithms may perform at or even exceed
human levels in certain tasks, they don’t learn or think like humans. Achieving a deeper understanding of
human-like intelligence could lead to even more powerful algorithms and may also unlock insights into the
workings of the human mind.

When comparing human learning to current Al capabilities, humans stand out for their ability to learn from
fewer data points and generalize more flexibly and richly. For instance, humans can recognize and generate
new examples or concepts from just a few instances—something deep neural networks still struggle with,
even for tasks like handwritten character recognition, where Al models require many examples to train and do
not easily generalize to new tasks. We believe that the flexibility and power of human inferences come from
the causal and compositional nature of our cognitive representations.

We propose that deep learning and other Al methods can come closer to human-like learning by integrating
psychological principles such as those discussed in this paper. Looking ahead, we highlight several promising
trends in deep learning that could lead to significant breakthroughs in Al development.
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