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Abstract 

Recent advancements in artificial intelligence (AI) have sparked renewed interest in creating systems that 

learn and reason like humans. Many of these breakthroughs have stemmed from deep neural networks trained 

end-to-end on tasks like object recognition, playing video games, and board games—often achieving or 

surpassing human-level performance. However, despite being inspired by biological systems and 

demonstrating impressive results, these AI models still differ significantly from human intelligence. 

Insights from cognitive science suggest that to build machines that truly think and learn like people, we must 

move beyond current engineering trends in both the content and methods of learning. We argue that such 

systems should: 

 (a) construct causal models of the world to enable explanation and deep understanding, not just pattern 

recognition; 

 (b) base learning on intuitive theories of physics and psychology to provide a richer foundation for acquiring 

knowledge; and 

 (c) leverage compositionality and meta-learning ("learning-to-learn") to enable rapid knowledge acquisition 

and flexible generalization across new tasks and environments. 

We outline specific challenges and offer potential directions for integrating the strengths of modern neural 

networks with more structured, cognitively inspired models to advance toward these goals. 

1. Introduction: 

Artificial intelligence (AI) has experienced cycles of rapid growth and decline, but recent years have seen 

unprecedented advancements by most conventional standards. A major driver of this progress is deep 

learning, a method that trains large, multi-layered neural network models. These models have made 

significant strides across various fields, including object recognition, speech processing, and control systems 

(LeCun, Bengio, & Hinton, 2015; Schmidhuber, 2015). 

For example, in object recognition, Krizhevsky, Sutskever, and Hinton (2012) introduced a deep 

convolutional neural network (convnet) that drastically reduced the error rate compared to previous state-of-

the-art models. Since then, convnets have become the dominant approach, achieving near-human performance 

on several benchmarks (He et al., 2015; Russakovsky et al., 2015; Szegedy et al., 2014). 

Similarly, in speech recognition, traditional Hidden Markov Models (HMMs)—a standard since the late 

1980s—have been increasingly replaced by deep learning techniques. Fully neural network-based systems 

now lead the field (Graves et al., 2013; Weng et al., 2014), outperforming earlier hybrid approaches (Hinton 

et al., 2012). 
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Deep learning has also been successfully applied to complex control tasks. For instance, Mnih et al. (2015) 

merged deep learning with reinforcement learning to create an algorithm that learns to play Atari games 

directly from raw pixel data and score signals, achieving performance levels on par with or surpassing human 

players (see also Guo et al., 2014; Schaul et al., 2016; Stadie et al., 2016). 

These breakthroughs have helped re-establish neural networks as a dominant framework in machine learning, 

reminiscent of their popularity in the late '80s and early '90s. The success has also extended into the tech 

industry, with major players like Google and Facebook heavily investing in deep learning research. These 

methods now power core features in mobile apps and online platforms. Media coverage often portrays these 

advances as evidence of neural networks' ability to mimic human thought processes and learning, thanks to 

their brain-inspired design. 

In this article, we take the current excitement around artificial intelligence as an opportunity to explore what it 

truly means for a machine to learn and think like a human. We begin by examining criteria that cognitive 

scientists, developmental psychologists, and AI researchers have previously proposed. Next, we outline what 

we believe are the fundamental components needed to build machines that think and learn like people, 

drawing on both theoretical frameworks and experimental evidence from cognitive science. 

We then analyze how modern AI—especially deep learning—measures up against these components. Our 

assessment reveals that while deep learning has made great strides, it still lacks many essential aspects of 

human-like intelligence. This suggests that such systems may be solving problems in fundamentally different 

ways than humans do. We conclude by outlining promising directions for creating machines that more closely 

resemble human thinkers. These include integrating deep learning with key cognitive elements—such as 

attention, working memory, and data structures like stacks and queues—drawn from classic psychology and 

computer science, which have traditionally seemed at odds with neural network approaches. 

Beyond listing specific components, we highlight a deeper divide between two major approaches to 

intelligence. The first, statistical pattern recognition, focuses on prediction within well-defined tasks like 

classification, regression, or control. In this view, learning is about identifying patterns or features that 

consistently correlate with specific outcomes across large, diverse datasets. 

The second approach prioritizes world modeling, where learning involves constructing internal models to 

make sense of the world. Here, cognition centers on using these models for explanation, imagination, and 

planning—understanding what we observe, contemplating alternative possibilities, and determining how to 

influence outcomes. This contrast—between pattern recognition and model-building, or between prediction 

and explanation—is at the heart of our understanding of human intelligence. 

Just as scientists aim to explain natural phenomena rather than merely predict them, we argue that human 

cognition is primarily a model-building endeavor. Although pattern recognition isn’t the full story of 

intelligence, it can play a supporting role by enabling efficient model-building through experience-based, 

“model-free” learning that makes key inferences easier to compute. 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                         © 2017 IJCRT | Volume 5, Issue 2 June 2017 | ISSN: 2320-2882 

IJCRT1135989 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 905 
 

2. Cognitive and Neural Inspiration in Artificial Intelligence 

The relationship between AI and human cognitive psychology has deep roots—predating even the terms 

“artificial intelligence” and “cognitive psychology” themselves. Alan Turing once proposed that instead of 

replicating adult human intelligence directly, it might be more feasible to build and educate a “child-

machine.” He imagined such a machine as starting with a mostly blank slate—like a notebook with minimal 

built-in mechanisms—and learning through experiences of reward and punishment, a concept reminiscent of 

reinforcement learning. Turing’s perspective aligned with the behaviorist psychology dominant in his era and 

also shares common ground with the modern connectionist view that much of our knowledge can be learned 

from sensory patterns in the environment. 

Cognitive science later moved beyond the simplicity of behaviorism and became foundational to early AI 

research. For instance, Newell and Simon (1961) developed the “General Problem Solver” as both an AI 

system and a model of how humans solve problems, which they validated through experiments. Other early 

AI researchers often referenced human cognition in their work, publishing in cognitive psychology journals 

and aiming to emulate how children learn rather than hard-coding intelligence. Schank (1972), for example, 

expressed a desire to build systems that learn as children do, rather than being programmed with vast amounts 

of pre-set knowledge. Minsky (1974) shared a similar view, suggesting that theories of human thinking and 

intelligent machines are so closely related that they should be developed together. 

During this time, much AI research assumed that human thought could be understood through symbolic 

representations—discrete, structured units used in reasoning, planning, language, and vision. Alongside this 

symbolic tradition, another approach was emerging: subsymbolic computation. This model was based on 

neuron-like units inspired more by neuroscience than psychology, with early work from researchers like 

Rosenblatt (1958), Fukushima (1980), and Grossberg (1976). These ideas later evolved into the influential 

parallel distributed processing (PDP) framework developed by McClelland, Rumelhart, and colleagues in 

the 1980s. 

PDP emphasized that intelligent computation could emerge from many simple units operating in parallel, with 

knowledge represented in a distributed fashion across these units—unlike the localized representations in 

symbolic systems. The current wave of enthusiasm for deep learning is a modern extension of this idea. 

While benefiting from more advanced hardware, vast datasets, and deeper architectures, deep learning still 

retains many of the principles introduced in PDP, building powerful models through stacked layers of learned 

representations (see LeCun et al., 2015; Schmidhuber, 2015). 

It’s important to note that the Parallel Distributed Processing (PDP) approach isn’t limited to just pattern 

recognition—it can also support model-building. In fact, some of the early PDP work (Rumelhart, 

McClelland, & the PDP Research Group, 1986) leaned more towards building internal models than simply 

identifying patterns. In contrast, many of today’s large-scale deep learning systems are more narrowly focused 

on discriminative pattern recognition (as Bottou, 2014, also discusses). Still, key questions remain about the 

nature of the learned representations—specifically their form, compositional structure, and ability to 

generalize or transfer—as well as the initial learning setup or “startup software” that helped these models get 

started. This paper zeroes in on those aspects. 

Neural network models and the PDP perspective propose a view of intelligence that is sub-symbolic, where 

learning occurs with minimal pre-defined structure or inductive biases. Supporters of this view argue that 

traditional notions of structured knowledge—like rules, graphs, grammars, or object hierarchies—might not 

reflect how thinking actually works. Instead, these structures could be emergent byproducts of more 
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fundamental sub-symbolic processes (McClelland et al., 2010). In this view, learning starts from a nearly 

blank slate, similar to Turing’s idea of a child-like machine mind with little built-in knowledge. 

A typical research strategy within this framework is to start by training a simple, general-purpose neural 

network on a task, and only add complexity if necessary. This approach has produced impressive results: 

networks have successfully mimicked structured behaviors, like learning past-tense rules in language 

(Rumelhart & McClelland, 1986), solving basic physics problems (McClelland, 1988), or categorizing living 

things in a tree-like hierarchy (Rogers & McClelland, 2004). 

Modern deep networks trained on object recognition tasks (e.g., He et al., 2015; Krizhevsky et al., 2012) also 

generate high-level features that align with human neural responses in the brain (Khaligh-Razavi & 

Kriegeskorte, 2014), and can even predict human judgments about image similarity and typicality (Lake et al., 

2015; Peterson et al., 2016). Generic neural networks have also been trained to take on more complex, 

structured behaviors—such as learning to play video games via Deep Q-learning Networks (DQNs) (Mnih 

et al., 2015). 

Given these wide-ranging successes—in vision, language, and control—and the ability of neural networks to 

reproduce behaviors that appear rule-based or structured, the key question becomes: Do we need more than 

this to build truly human-like learning and thinking machines? Or can relatively generic neural networks 

alone take us all the way to that goal? 

3. Challenges for building more human-like machines: 

Although cognitive science hasn't yet reached a unified theory of the mind or intelligence, the idea that the 

mind is made up solely of general-purpose neural networks with minimal built-in structure is seen as quite 

extreme by most experts today. Instead, a more widely accepted view emphasizes the role of innate 

inductive biases—such as early-developing concepts of numbers, space, agents, and physical objects. These 

built-in foundations, along with powerful learning algorithms that use prior knowledge, allow humans to 

learn from very limited data. The knowledge we acquire tends to be deeply structured and theory-like, 

supporting the flexible reasoning and creative thinking that are hallmarks of human cognition. 

To illustrate this, the authors introduce two key challenge problems for AI and machine learning: 

1. Learning simple visual concepts (Lake, Salakhutdinov, & Tenenbaum, 2015) 

 

2. Learning to play the Atari game Frostbite (Mnih et al., 2015) 

 

These two examples are used throughout the paper to highlight the importance of incorporating core 

cognitive components into AI systems. 

3.1  The Characters Challenge: 

The first challenge revolves around recognizing handwritten characters, a long-standing task used to evaluate 

different machine learning techniques. Hofstadter (1985) once suggested that understanding characters the 

way humans do—whether handwritten or printed—captures many of the core difficulties in artificial 

intelligence. Whether or not that's entirely accurate, it does underscore how even seemingly basic concepts 

like letters involve deep complexity. On a more practical note, people—both kids and adults—need to learn 

this skill, and it has real-world uses, such as reading addresses on mail or processing handwritten checks at 
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ATMs. Compared to broader object recognition tasks, recognizing characters is relatively straightforward: 

characters are flat, visually isolated from their background, and rarely blocked by other elements. Given this, 

it seems more achievable in the short term to design algorithms that can perceive the same meaningful 

patterns in characters that humans do. 

The MNIST dataset is the widely used standard for evaluating digit recognition systems, where the goal is to 

classify images of handwritten digits from ‘0’ to ‘9’ (LeCun, Bottou, Bengio, & Haffner, 1998). It includes 

60,000 training images, with 6,000 examples for each digit. Because of the large volume of training data, a 

variety of machine learning algorithms have achieved strong performance. For instance, K-nearest neighbors 

reports around a 5% test error, support vector machines bring it down to about 1%, and convolutional neural 

networks (CNNs) perform even better, with error rates under 1%. Some of the most advanced deep CNN 

models have pushed this error down to just 0.2%, which is comparable to how well humans do (Ciresan, 

Meier, & Schmidhuber, 2012). Similarly, CNNs have also made significant progress on the more difficult 

ImageNet benchmark, approaching human-level accuracy in object recognition tasks (Russakovsky et al., 

2015). 

 

3.2 The Frostbite Challenge: 

The second challenge involves the Atari game Frostbite (see Figure 2), which was among the games tackled 

by the Deep Q-Network (DQN) developed by V. Mnih et al. (2015). DQN marked a major milestone in 

reinforcement learning by demonstrating that a single algorithm could learn to handle a broad range of 

complex games. It was trained on 49 classic Atari games (as proposed by Bellemare et al., 2013) and achieved 

human-level or better performance in 29 of them. However, the model particularly struggled with Frostbite 

and other games that demand planning over extended time frames. 

In Frostbite, the player controls the character Frostbite Bailey, who must build an igloo before the timer runs 

out. This is done by jumping across moving ice floes—each jump on a white (active) floe contributes a piece 

to the igloo’s construction (Figure 2A–C). The complexity arises because the ice floes are constantly moving 
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in different directions, and only active ones count toward building. Along the way, the player can earn extra 

points by collecting fish, but must also avoid various dangers like falling into the water, snow geese, and polar 

bears. Completing the game level requires forming a long-term plan, achieving sub-goals such as reaching 

particular floes, and doing so while avoiding hazards. Once the igloo is fully built, the player must reach it 

before time runs out to finish the level (Figure 2C). 

The DQN learns to play Atari games like Frostbite by combining a deep convolutional neural network (CNN), 

which acts as a powerful pattern recognizer, with a simple, model-free reinforcement learning algorithm (Q-

learning). This combination enables the network to translate  

 

visual inputs (pixel frames) into a policy for a limited set of actions, optimizing for long-term rewards, such as 

the game score. The network follows a largely empirical approach, common in connectionist models, where 

only basic assumptions about image structure are encoded into the convolutional layers. As a result, the 

network must learn both a visual and conceptual system from scratch for each new game. In the study by V. 

Mnih et al. (2015), the network architecture and hyper-parameters were fixed, but it was trained individually 

for each game, making the visual system and policy highly specific to the game at hand. Later research has 

demonstrated how game-specific networks can share visual features (Rusu et al., 2016) or be used in multi-

task networks (Parisotto, Ba, & Salakhutdinov, 2016), leading to small improvements in transfer learning 

when playing new games. 
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There are other behavioral differences that highlight the contrasting ways humans and the DQN represent and 

learn tasks. For example, in the game Frostbite, the DQN receives incremental rewards for reaching each 

active ice floe, which helps it identify the sub-goals needed to complete the larger task of building an igloo. 

Without these sub-goals, the DQN would have to rely on random actions until it accidentally builds an igloo 

and gets rewarded for finishing the level. On the other hand, humans likely don’t depend on incremental 

rewards in the same way when learning a new game. In Frostbite, a person can figure out the overarching goal 

of building an igloo without needing the incremental feedback. Similarly, sparse feedback poses challenges in 

other Atari 2600 games like Montezuma’s Revenge, where humans significantly outperform current DQN 

methods. 

4. Core ingredients of human intelligence: 

In the Introduction, we outlined what we consider to be the fundamental components of intelligence. In this 

section, we examine these components in more detail and compare them to the current state of neural network 

modeling. While these are not the only necessary ingredients for human-like learning and thinking (as 

discussed in Section 5 regarding language), they are critical building blocks that are typically absent in most 

current learning-based AI systems, especially when not all of them are integrated together. We believe that 

combining these components could significantly enhance AI systems, making them more powerful and 

capable of human-like learning and reasoning. 

Before diving deeper into each component, it's important to clarify that when we refer to "core ingredients," 

we don't mean elements that are necessarily hardwired by genetics or must be "built in" to any learning 

algorithm. Our discussion remains neutral regarding the origins of these key ingredients. By the time a child 

or adult is learning a new character or figuring out how to play Frostbite, they bring a wealth of real-world 

experience that deep learning systems lack—experience that would be difficult to replicate in a general way. 

While the core ingredients are shaped by this experience, some may even be a direct result of it. Whether they 

are learned, innate, or enriched by experience, the key point is that these ingredients are vital for enabling 

human-like learning and thought, in ways that current machine learning has not yet achieved. 
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4.1 Developmental start-up software 

In early development, humans possess a basic understanding of several core domains, including numbers 

(numerical and set operations), space (geometry and navigation), physics (inanimate objects and mechanics), 

and psychology (agents and groups). These domains serve as fundamental frameworks for cognition, each 

organized around specific entities and abstract principles that relate them. The cognitive representations 

within these domains can be seen as "intuitive theories," with causal structures resembling scientific theories. 

The idea of the "child as scientist" suggests that learning itself is a scientific process. Recent studies show that 

children actively seek out new data to test hypotheses, isolate variables, assess causal relationships, draw 

conclusions from data, and selectively learn from others. We will explore the learning mechanisms in more 

detail in Section 4.2. 

Each of these core domains has been extensively studied, and they are believed to be universally shared across 

cultures and, to some extent, with non-human animals. While all these domains may enhance current machine 

learning, we will particularly focus on the early understanding of objects and agents in this section. 

4.1.1 Intuitive physics: 

Young children possess a rich understanding of intuitive physics, with key physical concepts emerging at a 

much earlier age than when they learn to play games like Frostbite. Whether these concepts are innate or 

learned, they are available at a very early stage and can be applied to solve everyday physics-related 

problems. By as early as 2 months, and possibly even earlier, infants expect inanimate objects to follow 

principles such as persistence, continuity, cohesion, and solidity. For instance, they believe objects should 

move along smooth paths, not disappear and reappear, not pass through each other, and not exert influence 

across distances (Spelke, 1990; Spelke, Gutheil, & Van de Walle, 1995). These expectations help infants 

segment objects early on, before they rely on appearance-based cues like color or texture (Spelke, 1990). 

As infants grow, these early expectations guide their learning. By around 6 months, they begin to distinguish 

between rigid bodies, soft bodies, and liquids. For example, they expect liquids to pass through barriers, while 

solid objects cannot (Hespos, Ferry, & Rips, 2009). By their first birthday, infants have already grasped basic 

physical concepts such as inertia, support, containment, and collisions (Baillargeon, 2004; Baillargeon, Li, 

Ng, & Yuan, 2009; Hespos & Baillargeon, 2008). 
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4.1.2 Intuitive psychology 

Intuitive psychology is another early-developing ability that significantly influences human learning and 

thinking. Even before they can speak, infants are able to distinguish between animate agents and inanimate 

objects. This ability is partially based on innate or early-present detectors for low-level cues, such as the 

presence of eyes, motion from rest, and biological motion (Johnson, Slaughter, & Carey, 1998; Premack & 

Premack, 1997; Schlottmann, Ray, Mitchell, & Demetriou, 2006; Tremoulet & Feldman, 2000). These cues 

are often helpful, but not always necessary, for identifying agency. In addition to these low-level signals, 

infants also expect agents to act in a contingent and reciprocal manner, have goals, and pursue those goals 

efficiently within constraints (Csibra, 2008; Csibra, Biro, Koos, & Gergely, 2003; Spelke & Kinzler, 2007). 

These goals can be social in nature; by around three months of age, infants start to distinguish between anti-

social agents, who harm or hinder others, and neutral agents (Hamlin, 2013; Hamlin, Wynn, & Bloom, 2010). 

Later, they further differentiate between anti-social, neutral, and pro-social agents (Hamlin, Ullman, 

Tenenbaum, Goodman, & Baker, 2013; Hamlin, Wynn, & Bloom, 2007). 

It is generally accepted that infants expect agents to act in a goal-directed, efficient, and socially sensitive way 

(Spelke & Kinzler, 2007). However, there is less agreement on the computational structure that supports this 

reasoning and whether it involves referencing mental states and explicit goals. One possibility is that intuitive 

psychology operates through cues alone, without deeper mental constructs (Schlottmann, Cole, Watts, & 

White, 2013; Scholl & Gao, 2013), though this would require an increasing number of cues as scenarios grow 

more complex. For example, in a scenario where Agent A is moving toward a box and Agent B blocks A from 

reaching it, both infants and adults are likely to interpret B’s behavior as "hindering" (Hamlin, 2013). This 

inference could be captured by a cue such as "if an agent’s expected path is blocked, the blocking agent is 

given a negative association." 
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4.2 Learning as rapid model building: 

Since their inception, neural network models have emphasized the importance of learning. There are various 

algorithms used for neural networks, such as the perceptron algorithm (Rosenblatt, 1958), Hebbian learning 

(Hebb, 1949), backpropagation (Rumelhart, Hinton, & Williams, 1986), and others. These algorithms 

generally adjust connection strengths gradually, whether for supervised learning, where the aim is to improve 

pattern recognition, or for unsupervised learning, which focuses on matching the internal patterns of the 

model to the statistics of the input data. 

Recently, machine learning has made significant progress using backpropagation and large datasets to solve 

complex pattern recognition tasks. Although these methods have achieved human-level performance on some 

benchmarks, they still fall short of human learning abilities in other areas. Deep neural networks, for instance, 

often require much more data than humans to solve similar problems, such as learning to recognize a new 

object or playing a new game. When learning the meanings of words, children can make meaningful 

generalizations from very limited data (Carey & Bartlett, 1978; Landau, Smith, & Jones, 1988; E. M. 

Markman, 1989). Children may only need a few examples of concepts like "hairbrush," "pineapple," or 

"lightsaber" to grasp the boundaries of these concepts, differentiating them from an infinite set of potential 

objects. Children learn new concepts rapidly, acquiring around nine or ten new words a day until high school 

(Bloom, 2000; Carey, 1978). Even in adulthood, this capacity for "one-shot" learning remains—an adult 

might need to see only a single image or video of a new two-wheeled vehicle to understand the concept and 

distinguish it from similar objects (Fig. 1B-i). 

In contrast to human learning, neural networks are notoriously data-hungry, as they are general function 

approximators (Geman, Bienenstock, & Doursat, 1992). For example, the ImageNet dataset for object 

recognition contains hundreds or thousands of examples per class (Krizhevsky et al., 2012; Russakovsky et 

al., 2015)—such as 1000 images of hairbrushes or pineapples. For tasks like learning new handwritten 

characters or playing Frostbite, the MNIST benchmark provides 6000 examples per digit (LeCun et al., 1998), 

and the DQN used by V. Mnih et al. (2015) required about 924 hours of unique training to play each Atari 

game (Figure 3). Clearly, these algorithms are less efficient with information compared to humans performing 

the same tasks. 

It’s also worth noting that some types of concepts are harder for humans to learn. For instance, concepts 

learned in school, such as mathematical functions, logarithms, derivatives, and scientific concepts like atoms 

or evolution, are much more challenging. In certain areas, machine learners even outperform humans, such as 

analyzing financial or weather data. However, for the majority of cognitively natural concepts—those learned 

by children as part of acquiring language—humans still far exceed machines in learning ability. This section 

focuses on this type of learning, which is central to reverse engineering and understanding the principles 

behind human learning. It also presents opportunities for incorporating these principles into the next 

generation of machine learning and AI algorithms, potentially improving progress in learning both easy and 

difficult concepts for humans. 

4.3 Thinking Fast: 

The previous section focused on learning complex models from limited data and suggested key ingredients for 

achieving human-like learning abilities. These cognitive abilities become even more impressive when 

considering the speed at which humans perceive, think, and make decisions. Typically, richer and more 

structured models require more complex and slower inference algorithms, much like how complex models 

demand more data. This makes the speed of human perception and thought all the more remarkable. 
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The combination of detailed models with efficient inference presents another area where psychology and 

neuroscience could offer valuable insights for AI. It also suggests ways to build on the strengths of deep 

learning, particularly its efficient inference and scalable learning capabilities. This section explores potential 

solutions to the challenge of balancing fast inference with structured representations, such as using 

Helmholtz-machine-style approximate inference in generative models (Dayan, Hinton, Neal, & Zemel, 1995; 

Hinton et al., 1995) and fostering cooperation between model-free and model-based reinforcement learning 

systems. 

5. Responses to Common Questions 

Throughout discussions of this paper, three recurring critiques or questions have emerged. We believe it’s 

useful to address these points directly to further the discussion and move forward collectively. 

1. Comparing human and neural network learning speeds is unfair due to humans’ prior 

experience. It may seem unjust to compare the learning speeds of neural networks and humans for 

tasks like learning to play Atari games or recognizing handwritten characters, given that humans have 

extensive prior experience. People have spent many hours playing different games, reading, and 

writing various characters, among other related activities. The argument is that if neural networks were 

"pre-trained" with similar experiences, they might generalize in a manner similar to humans when 

presented with novel tasks. 

 

2. The biological plausibility of neural networks suggests intelligence theories should begin there. 

Our focus has been on how cognitive science can guide the creation of human-like AI, rather than 

beginning with neuroscience, as some deep learning proponents do. We take a practical view that the 

best way to formally understand human intelligence is by examining the "software" before the 

"hardware." In this paper, we outlined key ingredients of this "software." However, we acknowledge 

that neuroscience can provide valuable insights for both cognitive models and AI. For example, our 

focus on neural networks and model-free reinforcement learning in the “Thinking Fast” section 

reflects this connection. That said, what we know about the brain is not always clear or certain, and 

many widely accepted ideas in neural computation are biologically questionable. Therefore, challenges 

to cognitive theories that arise from brain-inspired models do not necessarily invalidate these theories. 

 

3. Language is a crucial aspect of human intelligence. Why is it not emphasized more here? We 

have said relatively little about language in this paper, despite its importance to human cognition. 

While natural language processing (NLP) is an active field of research in deep learning (e.g., 

Bahdanau, Cho, & Bengio, 2015; Mikolov et al., 2013), it is well recognized that current neural 

networks fall far short of achieving human-like language abilities. The question arises: how can we 

develop machines with richer language capabilities? 

4.  We believe that understanding language and its role in intelligence is closely linked with 

understanding the foundational abilities discussed in this paper. Intuitive physics, psychology, and 

rapid learning with compositional, causal models are core abilities that precede language acquisition in 

children and serve as building blocks for linguistic meaning. We hope that by gaining a deeper 

understanding of these earlier ingredients and their computational implementation, we can better grasp 

linguistic meaning and language acquisition, ultimately contributing to the development of more 

sophisticated language-based AI systems. 
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6. Looking Forward 

In recent decades, AI and machine learning have achieved significant milestones: AI systems have defeated 

chess masters, triumphed over Jeopardy champions, apps can recognize friends' photos, and machines have 

reached or surpassed human performance in large-scale object recognition. Furthermore, AI has enabled 

speech recognition on smartphones and is expected to make great strides in fields like self-driving cars, 

medicine, genetics, drug design, and robotics. These accomplishments are noteworthy, as they have moved AI 

research beyond academic circles and into practical applications that enhance our daily lives. 

However, it's important to acknowledge both the achievements and the limitations of AI. Despite impressive 

progress, natural intelligence remains the gold standard. While AI algorithms may perform at or even exceed 

human levels in certain tasks, they don’t learn or think like humans. Achieving a deeper understanding of 

human-like intelligence could lead to even more powerful algorithms and may also unlock insights into the 

workings of the human mind. 

When comparing human learning to current AI capabilities, humans stand out for their ability to learn from 

fewer data points and generalize more flexibly and richly. For instance, humans can recognize and generate 

new examples or concepts from just a few instances—something deep neural networks still struggle with, 

even for tasks like handwritten character recognition, where AI models require many examples to train and do 

not easily generalize to new tasks. We believe that the flexibility and power of human inferences come from 

the causal and compositional nature of our cognitive representations. 

We propose that deep learning and other AI methods can come closer to human-like learning by integrating 

psychological principles such as those discussed in this paper. Looking ahead, we highlight several promising 

trends in deep learning that could lead to significant breakthroughs in AI development. 
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