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ABSTRACT

In high performance engineering, laminated composites are used in a variety of applications, including as
aeronautical, mechanical, chemical, civil, and spacecraft applications, and they are crucial for FEM-based
mathematical models. Accurate design and later production depended on the analysis of these structures
and its components utilizing mathematical, experimental, or simulation-based models. Over the course of
their useful lives, these structures withstand extreme weather, vibration, inertia excitation, and intense aural
stimulation. The initial vibration/fundamental frequency mode puts a structural component under a lot of
stress and compression, which eventually wears it out since it is intrinsically linked to large amplitude. This
emphasizes how important vibration analysis is for laminated constructions composed of composite and
hybrid materials. We use code in the MATLAB environment to solve the equations and obtain the
necessary results.Moreover, for each possible outcome, an ANSYS simulation model has been developed
and validated to show that the model is applicable in all cases.

Keywords: Free vibration, Mathematical Model, FEM, ANSYS, Modular ratio.

1. Introduction

Nowadays, the structural components of a large number of contemporary cars, buildings, and
historical and technical objects are made of laminated composite shells. Compared to conventional
materials like concrete, metal, and wood, laminated composites are significantly lighter. Composite
materials have exceptional chemical resistance, exceptional elastic characteristics, remarkable corrosion
resistance, and a low coefficient of thermal expansion. They also show incredible strength, especially in
relation to their weight or volume. The composites' adaptability for high-performance engineering
applications is increased by their ability to modify their structural characteristics to satisfy particular needs.
Since this has an immediate influence on the cost and availability of composite structures, mass production
is required to overcome the existing economic problems. These components must be examined using a
mathematical and/or simulation-based model before design and manufacture. Thin laminated composites
with a panel-like form make up the outside skins of cars, spacecraft, and airplanes. As was previously
indicated, aerodynamic heating from the operation of rockets, launch vehicles, and high-speed aircraft puts
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significant strain on the structural elements. These components' buckling, deformations, and natural

frequencies are all significantly impacted by this pressure. Because the membrane stiffness of the shell
panel is larger than its bending stiffness, it can absorb a large amount of strain energy in its membrane
without deforming excessively.

Nowadays, designed structural components have mostly been replaced with laminated composite
curved/flat panels because of their customized features. Panel structures are widely recognized for their
outstanding capacity to absorb energy. Furthermore, it is accurate to say that the panel's fundamental shape
is altered by the extra deformation brought on by the in-plane thermal/mechanical stress. As a result, the
panel structure's stiffness characteristics are affected. Strong, high-amplitude vibrations increase stress
levels and shorten life expectancy through exhaustion. It is commonly known that thin laminated structures
are brittle, and that how well they function overall under combined loads is largely dependent on the
structural geometry.

It is essential to have a practical grasp of how laminated composite curved and flat panels respond
structurally to vibration. Because of these fascinating and difficult issues, the introduction of laminated
composite structural elements has made modeling and analysis necessary. From a designer's perspective,
the prediction of the fundamental frequency characteristics depends on the modeling of these structures.
The restrictions of loading types, material properties, layered structure geometries, and their impacts are all
explained via parametric analysis. In order to highlight the current issue, this part will discuss earlier
research that has been done by different academics.

2. Literature Review

Using the body of existing knowledge, this part investigates laminated constructions' vibration
properties. When forecasting and developing structures with new and innovative concepts, experts are
particularly concerned about the vibration behavior of laminated structures. An analytically computed
mathematical model based on higher order refined theory was created by Kant and Swaminathan [1] to
investigate the free vibration behavior of sandwich and laminated composite plates. Matsunaga [2—3] uses
power series expansion to solve the issues of stability and free vibration in laminated (angle- and cross-ply)
composite plates. Using an improved plate theory, Putcha and Reddy [4] investigated the stability and
vibration properties of laminated plates. The static and vibration properties of laminated composite shells
are analyzed and solved using Navier's-type exact solution in the HSDT kinematic model created by Reddy
and Liu [5]. Using the FSDT, Ferreira et al. [6] investigated the buckling and vibration properties of
laminated and isotropic plates. In the framework of the first-order shear deformation theory (FSDT) and the
higher-order shear deformation theory (HSDT) kinematics, Bhar et al. [7] employed the finite element
method (FEM) to ascertain the structural responses of laminated composite stiffened plates. Mantari et al.
[8] investigate the static and dynamic properties of laminated composite plates using a novel higher order
shear deformation theory. Using the CLPT, Xiang and Kang [9] examined the free vibration properties of
moving laminated composite plates. Xiang et al. [10] investigate the natural vibration behavior of
laminated composite shells using a meshless global collocation approach inside the First-order Shear

Deformation Theory (FSDT) framework. Cui et al. [11] use the discrete shear gap approach, which is based
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on the midplane kinematics of the first-order shear deformation theory (FSDT), to address the bending and

vibration behaviors of laminated composite plates. Hatami et al.'s study [12] used a meshless local
collocation method based on thin plate spline radial basis functions to investigate the vibration properties
of laminated composite plates. The application of the Generalized Differential Quadrature (GDQ) approach
in the HSDT kinematics for the analysis of doubly-curved laminated shell panels' free vibration was
investigated by Viola et al. [13]. To get the free vibration responses of doubly-curved laminated composite
shell panels, Tornabene et al. [14] employed HSDT kinematics analysis. By developing a thorough and
precise solution approach using the FSDT, Jin et al. [15-16] investigated the vibration responses of several

composite laminated structures, such as annular plates, cylindrical, conical, and spherical shells.
3. Finite Element Method Based Mathematical Model

Since the finite element method (FEM) is more accurate than other analytical or numerical
techniques, it is extensively utilized and considered the most reliable tool for planning any structure in
today's world. Anticipating the reactions of different commodities, components, assemblies, and
subassemblies is one of its main responsibilities. Due to its potential to expedite and enhance innovation
with more precision, as well as drastically reduce the time and expense involved with physical testing,
FEM is presently widely employed in all modern domains. Many industries and analysts utilize ANSYS, a

respected and extensively used finite element analysis (FEA) technology in the market.

A large number of elements for laminated plates using HOT. Another approach is presented in this
section. As this treatment of the unsymmetric laminated plate is more general, the theoretical formulation is
based on this case only.

The displacement fields are expressed in Taylors series expansion is as follows

du 1 d*u
u(x,v,z) =u(x,y,0) + Z(E)n +iz 37 + ...t o
dv 1, d*u
v(x,y,z) =v(x,y,0) +Z(E)u +EZ 37 + ...t o0
¥ e ¥ & i 2 BE_W
w(x,y,z) =w(xy,0) +z(az)U +=z (azg) + e+ ® "

After neglecting higher order strain terms, the appropriate displacement field can be expressed as
u(x,y, z) = ug(x,y)+ Z20,(x,y) + Z°0;(x, y)
v(x,y,2) = v, )+ 26, (x,y) + Z 3 8, (x, y)

w(x, v, 2) = Wo(X,y) 2)
Where
Ug, Vg are inplane displacements at a point in the middle plane

Wy is the transverse displacement at a point in the middle plane

8., 6, are the rotions of the normal to the middle plane about y and x —
axis respectively
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wo, 6% and HJ’ Are higher order degree terms of Taylor’s series expression.
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Stress variation in laminates
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Resultant moment
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For lamina, Resultant moment
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Shear components
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In abbreviated form the above equation is written as

{n} = [D]{e}
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In which [D] is the stiffness matrix of the composite laminate.

Where
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Stress-strain Relationship

Total potential energy is given by
T=U-W (8)
Or

T= [ {e)" {0} dv— [ (8)7{P} dv o
= 9
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Where

U is the strain energy stored in the laminate
V is the work done by the external load
{P} is the load vector

{5} is the generated displacement vector at the middle plane of the plate

{_J}T:{Jx Oy Oz Tyy Tyz Tox )

{E}T = {Ex £ Yy ¥Vyz ]{z.r}

{Y=fuvw}

[P}T:{Px Py Pz} (10)

The expression of energy assumes the following form after the strain components are substituting in above

T=~[ &) {0} dA — [ (5} {P}dA

(11)
Where
{0} ={Nx Ny Noy My My Moy My M5 My Qrz Qyz Qxz Q52)
(e} ={e0 £y0 Yay Vyz Vax K Ry Koy I K K3y e m}’z xz Oy}
[P}T:{P_ru P}rﬂ Pzﬂ]'
{ﬁ}T: {uﬂ vy Wo 0, gyz Gz ;fz} (12)
Then the resultant defined above are given by
[ N, n [ % ca,
N}r = Z [J}? ] dz
Nyl w=ilzn, B (13)
(M, M, n Ik g,
My M I%] (2,2%)dz
M,, M| i=iz_, \T= (14)
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Where ‘n’ is the number of layers of the laminate.

After integrating through the thickness, (13) to (15) can be combined and written as

(N} = [D]{&} (16)
Stiffness matrix

The displacement vector within an element is expresses as

{6} = INl{x1. (17)
At each node, the unknown displacement are
{x}. = {Uo; Vor Wo; Orz; O3z s H;rzf}T (18)
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The strain vector corresponding to the membrane part is given by
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Thus the stiffness matrix is
[K], = [ [B]" [D][B] dz (19)

4. Results and Discussions

It was suggested and described in the prior discussion that ANSY'S is used in order to develop a
finite element code that is dependent on the mathematical panel model that was produced. A free vibration
analysis of laminated composite shell panels has been generated for the five degrees of freedom (DOFs)
model. This study was carried out. As part of the investigation into the validity and accuracy of the
algorithm that is presently being researched, a comparison of the results with those that are available in the
literature is carried out. In addition to this, a simulation model is also built in ANSYS by using code
written in ANSYS parametric design language (APDL) in order to cross validate the mathematical model
that is already in place. In order to validate the model that has been created, a comparison is done between
the answers that are generated via the use of the MATLAB code and ANSYS (by means of the Block-
Lanczos technique) and those that are available in the published literature. It is possible to observe, on the
basis of the results of the validation and convergence study, that the present findings are displaying a high
degree of concordance with the literature that is already available. Within the scope of this paper, we
investigate the influence that a number of different combinations of parameters, such as the thickness ratio
(a/h), the modular ratio (E«/E2), the lay-up scheme, and the support condition, have on the vibration

responses of composite shell panels. Material properties uesd are shown in the table 1.
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Table 1 Material properties of the laminated composite structures

MI1: EyEy=25 G1=G13=0.5E> Gr3=0.2E>
v17=v13=0.25 p=1

M2: Ei/E-x=open G17=G137=0.6E> G13=0.5E>
v1=v13=0.25 p=1

4.1 Free vibration analysis using ANSYS model

Figure 1 presents the free vibration responses of cross-ply (0%90°), laminated composite flat panel
for SSSS and CCCC supports. The responses are obtained by varying the thickness ratio (a/h=10, 20, 50
and 100) and the modular ratio (E1/E>=10, 20, 30, 40 and 50).
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Figure 1 Non-dimensional fundamental frequency of cross-ply (0°/90°)2 laminated composite flat panel

In this current examples, the effect of number of layers and support conditions (CCCC and CSCS)
on the vibration behaviour is examined and presented in Figure 2 and Figure 2. In this numerical examples,
six thickness ratios (a/h = 5, 10, 15, 20, 50, and 100), five modular ratios (E1/E2=10, 20, 30, 40 and 50) and
different lay-up scheme [(0%/90%)2, (00/90%s, (00/900)s] is used for the computation using the material
property M2. It is clear from the figure that, the thickness ratio and the modular ratio increases the
nondimensional fundamental frequency increases and this behavior is expected for any laminated structure.
It is noted that the numbers of layers of the flat panel increases the non-dimensional fundamental frequency

of the flat panel also increases.
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Figure 2 Non-dimensional fundamental frequency of clamped laminated composite flat panel
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Figure 3 Non-dimensional fundamental frequency of CSCS laminated composite flat panel

5. Conclusions

This section makes use of the generic panel model that was built to look at laminated composite
panels' free vibration properties. The finite element method (FEM) code implemented in MATLAB and the
APDL code in ANSYS are used to solve the issue and calculate the free vibration of the panel using the
eigenvalue formulation. The study looks at how different support conditions, stacking sequence, thickness
ratio and modular ratio affect the fundamental frequency of different geometries. It is possible to make the
following inferences from the numerical data. The non-dimensional fundamental frequency responses are
enhanced by increasing the modular ratio and the aspect ratio, and they are decreased by increasing the
curvature ratio. The modular ratio, and support conditions have a major impact on the non-dimensional
fundamental frequency. There is a significant effect of the lay-up configuration on the dimensionless
fundamental frequency.
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