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Abstract 

In this paper, we establish results involving common fixed points and point of coincidence for two self-

mappings satisfying (𝜓, 𝛼, 𝛽) −weak contractive condition in cone metric space. 

Introduction 

Banach contraction principle is a very important tool for solving existence problems in many branches of mathematics. 

This contraction principle has further several generalizations in metric spaces as well as cone metric spaces. Huang and 

Zhang [10] introduced the concept of cone metric space, where every pair of elements is assigned to an element of a 

Banach space and defined a partial order on the Banach space with the help of a subset of the Banach             space called 

cone which satisfy certain properties. In the same work Huang and Zhang established some fixed point theorems for 

cone metric spaces. Further many authors have given several generalizations of that theorems. Some of which were 

established with the help of weak contraction in cone metric spaces. 

Weak contraction was introduced by Alber et al. [14] for Hilbert spaces and subsequently extended to metric spaces 

by Rhodes [1]. In particular Choudhury et. al. [3, 4] established some fixed point results in cone metric spaces 

with the help of two control functions 𝜓 and 𝜑. In the present work, we established three fixed point results for two 

self- mapping in cone metric spaces with the help of three different control functions 𝜓, 𝛼  and 𝛽. 

Before coming to our main result we give some preliminaries of cone metric space which was firstly introduced by 

Huang and Zhang [10]. 

 

 

1 Mathematical preliminaries 

Definition 1.1 [10]Let 𝐸 be a real Banach space and 𝜃 is the zero of the Banach space 𝐸. Let P be a subset 

of 𝐸. 𝑃 is called a cone if 

(i) 𝑃 is closed, non-empty and P ≠ {𝜃} 

(ii) 𝑎𝑥 +  𝑏𝑦 ∈  𝑃 for all 𝑥, 𝑦 ∈  𝑃 and non- negative real numbers 𝑎, 𝑏 

(iii)     𝑃 ∩ (−𝑃) = {𝜃} 

For a given cone 𝑃 we can define a partial ordering  ≤ with respect to 𝑃 by 𝑥 ≤ 𝑦 if  and only if𝑦 − 𝑥 ∈ 𝑃.  

Here𝑥 < 𝑦 will  stand for 𝑥 ≤ 𝑦 and𝑥 ≠ 𝑦,  while 𝑥 ≪ 𝑦 will  stand for𝑥 − 𝑦 ∈ 𝑖𝑛𝑡𝑃;  where 𝑖𝑛𝑡𝑃 
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denotes the interior of𝑃.  𝑥 ≤ 𝑦 is same as 𝑦 ≥ 𝑥 and 𝑥 ≪ 𝑦 is same as 𝑦 ≫ 𝑥. 

A cone 𝑃 is called normal if there is a real number 𝐾 >  0 such that for all 

𝑥, 𝑦 ∈  𝐸, 

𝜃 ≤  𝑥 ≤  𝑦 implies ǁ𝑥ǁ ≤  𝐾ǁ𝑦ǁ. 

The least positive number satisfying the above inequality is called the normal constant of 𝑃. The cone is called 

regular if every increasing and bounded above sequence {𝑥𝑛} in 𝐸 is convergent.  Equivalently the cone 𝑃  is 

regu lar if and only if every decreasing and bounded below sequence is convergent. 

Definition 1.2 [10] Let 𝑋 be a non-empty set. Suppose the mapping 

𝑑 ∶  𝑋 ×  𝑋 →  𝐸 satisfies: 

(i) 𝜃 ≤  𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈  𝑋 and 𝑑(𝑥, 𝑦)  =  𝜃 if and only if 𝑥 =  𝑦 

(ii) 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈  𝑋. 

(iii) 𝑑(𝑥, 𝑦) ≤  𝑑(𝑥, 𝑧) +  𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈  𝑋. 

Then 𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is called a cone metric space. 

Definition 1.3  [10] Let (𝑋, 𝑑) be a cone metric space, {𝑥𝑛} a sequence in 

𝑋 and 𝑥 ∈ 𝑋. For every 𝑐 ∈  𝐸 with << 𝑐 ; we say that {𝑥𝑛} is: 

(i) a Cauchy sequence if there is a natural number 𝑁 such that for all 

𝑛, 𝑚 >  𝑁; 𝑑(𝑥𝑛 , 𝑥𝑚)  <<  𝑐 

(ii) convergent to 𝑥 if there is a natural number 𝑁 such that for all 𝑛 >  𝑁; 

𝑑(𝑥𝑛 , 𝑥)  <<  𝑐 for some 𝑥 ∈  𝑋. 

Definition  1.4  [10] If 𝑃  is a normal cone,  then {𝑥𝑛} converges to 𝑥 if and only if 𝑑(𝑥𝑛 , 𝑥) −→  𝜃 as 𝑛 →  ∞. 

Further, in this case {𝑥𝑛} is a Cauchy sequence if and only if 𝑑(𝑥𝑛, 𝑥𝑚)  →  𝜃 as 𝑛, 𝑚 →  ∞. 

Definition 1.5 [10] (𝑋, 𝑑) is called a complete cone metric space if every Cauchy sequence in 𝑋 is 

convergent. 

Lemma 1.1: [5] If 𝑃 is a normal cone in 𝐸 then 

(i) If 𝜃 ≤  𝑥 ≤  𝑦 and 𝜃 ≤  𝑎, where 𝑎 is a real number, then 𝜃 ≤  𝑎𝑥 ≤  𝑎𝑦. 

(ii) If 𝜃 ≤  𝑥𝑛  ≤  𝑦𝑛, for 𝑛 ∈  𝑁 and lim
𝑛

𝑦𝑛 =  𝑦, then 𝜃 ≤  𝑥 ≤  𝑦. 

Lemma 1.2: [8] If 𝐸 be a real Banach space with cone 𝑃 in 𝐸, then for 

𝑎, 𝑏, 𝑐 ∈  𝐸 

(i) If 𝑎 ≤  𝑏 and 𝑏 <<  𝑐, then 𝑎 << 𝑐. 

(ii) If 𝑎 <<  𝑏 and 𝑏 << 𝑐, then 𝑎 << 𝑐. 

Lemma 1.3:  [9] Let 𝐸  be a real Banach space with cone  𝑃  in 𝐸,  then 𝑃 is normal if and only if 𝑥𝑛  ≤

 𝑦𝑛  ≤  𝑧𝑛 and lim
𝑛

𝑥𝑛  = lim
𝑛

𝑧𝑛  =  𝑥 imply lim
𝑛

𝑦𝑛 =  𝑥. 

Lemma 1.4:  [4] Let (𝑋, 𝑑) be a complete cone metric space with regular cone 𝑃 such that 𝑑(𝑥, 𝑦)  ∈  𝑖𝑛𝑡𝑃 , for 

𝑥, 𝑦 ∈  𝑋 with 𝑥 ≠  𝑦. Let 

𝛽 ∶  𝑖𝑛𝑡𝑃 ∪  {𝜃}  →  𝑖𝑛𝑡𝑃 ∪  {𝜃} be a function with the following properties: 

(i) 𝛽(𝑡)  =  𝜃 if and only if 𝑡 =  𝜃 

(ii) 𝛽(𝑡)  <<  𝑡, for 𝑡 ∈  𝑖𝑛𝑡𝑃 and 
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(iii) either 𝛽(𝑡) ≤ 𝑑(𝑥, 𝑦) or 𝑑(𝑥, 𝑦) ≤ 𝛽(𝑡), for 𝑡 ∈ 𝑖𝑛𝑡𝑃 ∪  𝜃} and 𝑥, 𝑦 ∈  𝑋 

Let {𝑥𝑛} be a sequence in 𝑋 for which {𝑑(𝑥𝑛 , 𝑥𝑛+1)} is monotonic decreasing.  Then {𝑑(𝑥𝑛 , 𝑥𝑛+1)} is 

convergent to either 𝑟 =  𝜃 or 𝑟 ∈ 𝑖𝑛𝑡𝑃. 

Definition 1.6 [7] Let 𝑇 and 𝑆  be self-maps of a set 𝑋.  If 𝑤 = 𝑇𝑥 = 𝑆𝑥 for some   𝑥  ∈  𝑋, then 𝑥 is called 

a coincidence point of 𝑇 and 𝑆, and 𝑤 is called a point of coincidence of 𝑇 and 𝑆. Self-maps 𝑇 and 𝑆 are 

said to be weakly compatible if they commute at their coincidence point; that is, if 𝑇𝑥 =  𝑆𝑥 for some 𝑥 ∈  𝑋, 

then                                    𝑇𝑆𝑥 =  𝑆𝑇𝑥. 

Lemma 1.5: [11] Let 𝑇  and 𝑆 be weakly compatible self-maps of a set 𝑋. If 𝑇 and 𝑆 have a unique point of 

coincidence 𝑤 =  𝑇𝑥 =  𝑆𝑥, then 𝑤 is the unique common fixed point of 𝑇 and 𝑆. 

 

2 Results 

Theorem 2.1 Let (𝑋, 𝑑) be a cone metric space with regular cone 𝑃  such that                                  𝑑(𝑥, 𝑦) ∈

𝑖𝑛𝑡𝑃, for 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Let 𝑇, 𝑆 ∶ 𝑋 → 𝑋 are mappings satisfying the inequality 

𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼(𝑑(𝑆𝑥, 𝑆𝑦)) − 𝛽(𝑑(𝑆𝑥, 𝑆𝑦)) for 𝑥, 𝑦 ∈  𝑋              (1) 

Where 𝜓, 𝛼, 𝛽 ∶  𝑖𝑛𝑡𝑃 ∪ {𝜃} → 𝑖𝑛𝑡𝑃 ∪ {𝜃} are such that 𝜓 is continuous and monotone non decreasing, 𝛼 and 𝛽 

are continuous functions with 

(i) 𝜓(𝑡) =  𝛼(𝑡) =  𝛽(𝑡) = 𝜃 if and only if 𝑡 =  𝜃; 

(ii) 𝜓(𝑡)  −  𝛼(𝑡)  +  𝛽(𝑡)  >  𝜃 for all 𝑡 >  𝜃; 

(iii) 𝛽(𝑡)  <<  𝑡 for 𝑡 ∈  𝑖𝑛𝑡𝑃 ; 

(iv) either 𝛽(𝑡) ≤ 𝑑(𝑥, 𝑦) or 𝑑(𝑥, 𝑦)  ≤  𝛽(𝑡) for 𝑡 ∈ 𝑖𝑛𝑡𝑃 ∪  {𝜃} and 𝑥, 𝑦 ∈ 𝑋. 

If  𝑇(𝑋) ⊆ 𝑆(𝑥) and 𝑆(𝑋) is a complete subspace of 𝑋, then 𝑇 and 𝑆 have a unique point of coincidence 

in 𝑋. Moreover if 𝑇 and 𝑆 are weakly compatible, then 𝑇 and 𝑆 have a unique common fixed point in 𝑋. 

Proof:  Let 𝑥0  ∈  𝑋.  Since 𝑇 (𝑋)  ⊆  𝑆(𝑋), we can construct a sequence {𝑥𝑛} in 𝑋 such that 𝑇𝑥𝑛  =  𝑆𝑥𝑛+1, 

for all n ≥ 0. If there exists an integer 𝑁 ≥  0 such that 𝑇𝑥𝑁  =  𝑇𝑥𝑁+1, then 𝑆𝑥𝑁+1 = 𝑇𝑥𝑁+1, which 

means that 𝑇 and 𝑆have a point of coincidence and we have nothing to prove. So we will assume  that 𝑇𝑥𝑁  ≠

 𝑇𝑥𝑁+1, for all 𝑛 ≥  0. 

Now substituting 𝑥 =  𝑥𝑛+1 and 𝑦 =  𝑥𝑛 in equation (1), for a l l  𝑛 ≥ 0   we 

have,  

𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)) ≤ 𝛼(𝑑(𝑆𝑥𝑛+1, 𝑆𝑥𝑛+2)) −  𝛽(𝑑(𝑆𝑥𝑛+1, 𝑆𝑥𝑛+2))  

i.e;  

𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)) ≤ 𝛼(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)) − 𝛽(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1))     (2) 

Now, for all 𝑛 ≥  1, we have, 

𝜓(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1))  −  𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)) 

≥ 𝜓(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)) − 𝛼(𝑑(𝑆𝑥𝑛+1, 𝑆𝑥𝑛+2)) + 𝛽(𝑑(𝑆𝑥𝑛+1, 𝑆𝑥𝑛+2)) 

≥  𝜓(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)) − 𝛼(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)) + 𝛽(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)) 

≥  𝜃 

This implies 𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2))  ≤  𝜓(𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)).  That is 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)  ≤  𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1), 
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for all 𝑛 ≥  0.  

This implies that the sequence {𝑑(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)} is monotone decreasing and bounded below by  𝜃, so it must 

converge because the cone 𝑃 is regular.   

So there exists 𝑟 ∈  𝑖𝑛𝑡𝑃 ∪  {𝜃} such that 

𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  →  𝑟   as    𝑛 →  ∞. 

Now taking 𝑛 → ∞  in equation (2) and using the continuity of 𝜓, 𝛼 and 

𝛽, we have 

𝜓(𝑟) ≤ 𝛼(𝑟) − 𝛽(𝑟)  ⇒  𝜓(𝑟)  −  𝛼(𝑟)  +  𝛽(𝑟)  ≤  𝜃  ⇒  𝑟 = 𝜃, 

 i.e;                     lim
𝑛→∞

𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)  =  𝜃                                                  (3) 

Now we show that {𝑇𝑥𝑛} is a Cauchy sequence. If not then, there exists some 𝑐 ∈  𝐸 with 𝜃 <<  𝑐 such that 

for all 𝑛0  ∈  𝑁 , there exist 𝑛, 𝑚 ∈  𝑁 with    𝑛 >  𝑚 >  𝑛0 such that 

 𝑑(𝑇𝑥𝑚, 𝑇𝑥𝑛) << 𝑐 ⇒  𝑑(𝑇𝑥𝑚 , 𝑇𝑥𝑛) ≮< 𝛽(𝑐). 

       Hence by property (iv) of 𝛽 in the theorem, we have 𝛽(𝑐) ≤ 𝑑(𝑇𝑥𝑚 , 𝑇𝑥𝑛). 

       Therefore, there exist sequences 𝑚(𝑘) and 𝑛(𝑘) in 𝑁 such that for all positive integers 𝑘, 

        𝑛(𝑘)  >  𝑚(𝑘)  >  𝑘 and 𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)) ≥ 𝛽(𝑐). 

  Assuming that 𝑛(𝑘) is the smallest such positive integer, we get 

𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))  ≥  𝛽(𝑐)               (4) 

and                                𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)−1)  <<  𝛽(𝑐)                                    (5) 

 Now,  𝛽(𝑐) ≤  𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))  ≤  𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)−1) + 𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘)) 

⇒   𝛽(𝑐)   ≤  𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)) ≤  𝛽(𝑐) + 𝑑(𝑇𝑥𝑛(𝑘)−1, 𝑇𝑥𝑚(𝑘))  

Taking 𝑛 →  ∞ in the above inequality and using Lemma (1.3) 

lim
𝑘→∞

𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))  =  𝛽(𝑐)                                                     (6) 

 Also by triangular inequality, for all 𝑘 ≥  0, we have 

𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1) ≤ 𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑚(𝑘)) + 𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))  

                                                             + 𝑑(𝑇𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)+1)                                                             (7) 

and         

𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)) ≤ 𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)+1) + 𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1) + 𝑑( 𝑇𝑥𝑛(𝑘)+1, 𝑇𝑥𝑛(𝑘))                                                                                                                         

(8) 

Taking 𝑘 → ∞ in the above inequalities and using (3) and (6) 

lim
𝑘→∞

𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1) = 𝛽(𝑐)                                                                                           (9) 

Now putting 𝑥 = 𝑥𝑚(𝑘)+1and 𝑦 = 𝑥𝑛(𝑘)+1in (1), for all 𝑘 ≥ 0, we have  

 

𝜓 (𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1)) ≤ 𝛼 (𝑑(𝑆𝑥𝑚(𝑘)+1, 𝑆𝑥𝑛(𝑘)+1)) − 𝛽 (𝑑(𝑆𝑥𝑚(𝑘)+1, 𝑆𝑥𝑛(𝑘)+1)) 

⇒ 𝜓 (𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1)) ≤ 𝛼 (𝑑(𝑇𝑥𝑚𝑇, 𝑆𝑥𝑛(𝑘))) − 𝛽 (𝑑(𝑇𝑥𝑚(𝑘), 𝑆𝑥𝑛(𝑘))) 

Taking 𝑘 → ∞ in the above inequality and using (6) and (9) with the continuity of 𝜓, 𝛼 and 𝛽, we obtain 
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𝜓(𝛽(𝑐)) ≤ 𝛼(𝛽(𝑐)) − 𝛽(𝛽(𝑐)) 

Which is a contradiction. 

Therefore {𝑇𝑥𝑛} is a Cauchy sequence in 𝑆(𝑋) and therefore it will converge to some 𝑧, because 𝑆(𝑋) is complete. 

i.e., 

                                            lim
𝑛→∞

𝑇𝑥𝑛 = 𝑧.                                                                               (10) 

Since 𝑧 ∈ 𝑆(𝑋), we can find 𝑝 ∈ 𝑋 such that 𝑆𝑝 = 𝑧. 

Now, putting 𝑥 = 𝑥𝑛+1and 𝑦 = 𝑝 in (1), we have 

𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑝)) ≤ 𝛼(𝑑(𝑆𝑥𝑛+1, 𝑆𝑝)) − 𝛽(𝑑(𝑆𝑥𝑛+1, 𝑆𝑝)) 

⇒  𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑝)) ≤ 𝛼(𝑑(𝑇𝑥𝑛 , 𝑧)) − 𝛽(𝑑(𝑇𝑥𝑛 , 𝑧)) 

Making 𝑛 → ∞ in the above inequality, using (10) and the properties of 𝜓, 𝛼and 𝛽, we have 

𝜓(𝑑(𝑧, 𝑇𝑝)) ≤ 𝜃, which implies that 𝑑(𝑧, 𝑇𝑝) = 𝜃; that is, 𝑇𝑝 = 𝑧. Therefore, we have that                   

                                  𝑧 = 𝑇𝑝 = 𝑆𝑝                                                                                        (11) 

Hence 𝑝 is a coincidence point and 𝑧  is a point of coincidence of 𝑇 and 𝑆. For uniqueness, suppose that there 

exists another point 𝑞 in 𝑋 such that 𝑧1 = 𝑇𝑞 = 𝑆𝑞 and 𝑧 ≠ 𝑧1. Then putting 𝑥 = 𝑝 and 𝑦 = 𝑞 in equation (1), we 

have, 

𝜓(𝑑(𝑇𝑝, 𝑇𝑞)) ≤ 𝛼(𝑑(𝑆𝑝, 𝑆𝑞)) − 𝛽(𝑑(𝑆𝑝, 𝑆𝑞)) 

⇒ 𝜓(𝑑(𝑧, 𝑧1)) ≤ 𝛼(𝑑(𝑧, 𝑧1)) − 𝛽(𝑑(𝑧, 𝑧1)) 

Which is a contradiction unless 𝑧 = 𝑧1. Therefore, 𝑧 is the unique point of coincidence of 𝑇 and 𝑆. 

Now, if 𝑇 and 𝑆 are weakly compatible, then by Lemma 1.5, 𝑧 is the unique common fixed point of 𝑇 and 𝑆. 

Theorem 2.2 Let (𝑋, 𝑑) be a cone metric space with regular cone 𝑃  such that                         𝑑(𝑥, 𝑦) ∈ 𝑖𝑛𝑡𝑃, 

for 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Let 𝑇, 𝑆 ∶ 𝑋 → 𝑋 are mappings such that for 𝑥, 𝑦 ∈ 𝑋, they satisfy the inequality 

         𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (
1

2
[𝑑(𝑇𝑥, 𝑆𝑥) + 𝑑(𝑇𝑦, 𝑆𝑦)]) − 𝛽 (

1

2
[𝑑(𝑇𝑥, 𝑆𝑥) + 𝑑(𝑇𝑦, 𝑆𝑦)])  (12) 

Where 𝜓, 𝛼, 𝛽 ∶  𝑖𝑛𝑡𝑃 ∪ {𝜃} → 𝑖𝑛𝑡𝑃 ∪ {𝜃} are such that 𝜓 is continuous and monotone non decreasing, 𝛼 and 𝛽 

are continuous functions with 

(i) 𝜓(𝑡) =  𝛼(𝑡) =  𝛽(𝑡) = 𝜃 if and only if 𝑡 =  𝜃; 

(ii) 𝜓(𝑡)  −  𝛼(𝑡)  +  𝛽(𝑡)  >  𝜃 for all 𝑡 >  𝜃; 

(iii) 𝛽(𝑡)  <<  𝑡 for 𝑡 ∈  𝑖𝑛𝑡𝑃 ; 

(iv) either 𝛽(𝑡) ≤ 𝑑(𝑥, 𝑦) or 𝑑(𝑥, 𝑦)  ≤  𝛽(𝑡) for 𝑡 ∈ 𝑖𝑛𝑡𝑃 ∪  {𝜃} and 𝑥, 𝑦 ∈ 𝑋. 

If  𝑇(𝑋) ⊆ 𝑆(𝑥) and 𝑆(𝑋) is a complete subspace of 𝑋, then 𝑇 and 𝑆 have  a unique point of coincidence 

in 𝑋. Moreover if 𝑇 and 𝑆 are weakly compatible, then 𝑇 and 𝑆 have a unique common fixed point in 𝑋. 

Proof: We take a sequence {𝑥𝑛} same as in the proof of Theorem 2.1. Now substituting 𝑥 = 𝑥𝑛+1 and 𝑦 =

𝑥𝑛+2 in equation (12), for all 𝑛 ≥ 0 we have, 

𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2))

≤ 𝛼 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑆𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+2, 𝑆𝑥𝑛+2)])

− 𝛽 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑆𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+2, 𝑆𝑥𝑛+2)]) 
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 ⇒ 𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)) ≤ 𝛼 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛+2, 𝑇𝑥𝑛+1)]) −

                                                        𝛽 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛+2, 𝑇𝑥𝑛+1)])                     (13) 

Now, for all 𝑛 ≥ 1, we have, 

𝜓 (
1

2
[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)]) − 𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2))

≥ 𝜓 (
1

2
[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)]) − 𝛼 (

1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛+2, 𝑇𝑥𝑛+1)])

− 𝛽 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑥𝑛+2, 𝑇𝑥𝑛+1)]) 

   ≥ 𝜃 

This implies 𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)) ≤  𝜓 (
1

2
[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)]) 

⇒ 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2) ≤
1

2
[𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2)] 

⇒ 𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛+2) ≤ 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) for all 𝑛 ≥ 0. 

This implies that the sequence {𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1)} is monotone decreasing and bounded below by 𝜃, so it must 

converge because the cone 𝑃 is regular. So there exist  𝑟 ∈ 𝑖𝑛𝑡𝑃 ∪ {𝜃} such that 

                                            𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) → 𝑟 as 𝑛 → ∞. 

Now taking 𝑛 → ∞ in the equation (13) and using the continuity of 𝜓, 𝛼 and 𝛽, we have  

𝜓(𝑟) ≤ 𝛼 (
1

2
[𝑟 + 𝑟]) − 𝛽 (

1

2
[𝑟 + 𝑟]) 

⇒ 𝜓(𝑟) − 𝛼(𝑟) + 𝛽(𝑟) ≤ 𝜃 ⇒  𝑟 = 𝜃 

                                           i.e., lim
𝑛→∞

𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) = 𝜃                                                          (14) 

Now we will show that {𝑇𝑥𝑛} is a Cauchy sequence. Arguing like in the proof of Theorem 2.1, we can find two 

sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} for which            

  lim
𝑘→∞

𝑑(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)) = 𝛽(𝑐)                                                                    (15) 

                    and      lim
𝑘→∞

𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1) = 𝛽(𝑐)                                                             (16) 

Now putting 𝑥 = 𝑥𝑚(𝑘)+1and 𝑦 = 𝑥𝑛(𝑘)+1 in (12), for all 𝑘 ≥ 0, we have 

𝜓 (𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1))

≤ 𝛼 (
1

2
[𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑆𝑥𝑚(𝑘)+1) + 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑆𝑥𝑛(𝑘)+1)])

− 𝛽 (
1

2
[𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑆𝑥𝑚(𝑘)+1) + 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑆𝑥𝑛(𝑘)+1)]) 

i.e., 

𝜓 (𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑛(𝑘)+1))

≤ 𝛼 (
1

2
[𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑚(𝑘)) + 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑥𝑛(𝑘))])

− 𝛽 ((
1

2
[𝑑(𝑇𝑥𝑚(𝑘)+1, 𝑇𝑥𝑚(𝑘)) + 𝑑(𝑇𝑥𝑛(𝑘)+1, 𝑇𝑥𝑛(𝑘))])) 

Taking 𝑘 → ∞ in the above inequality and using (14) and (16) with the continuity of of 𝜓, 𝛼and 𝛽, we obtain 
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/ 

𝜓(𝛽(𝑐)) ≤ 𝜃 ⇒  𝛽(𝑐) ≤ 𝜃 , which is a contradiction.  

Therefore {𝑇𝑥𝑛} is a Cauchy sequence in 𝑆(𝑋) and therefore it will converge to some 𝑧, because 𝑆(𝑋) is 

complete. i.e., 

                                           lim
𝑛→∞

𝑇𝑥𝑛 = 𝑧.                                                                            (17) 

Since 𝑧 ∈ 𝑆(𝑋), we can find 𝑝 ∈ 𝑋 such that 𝑆𝑝 = 𝑧. 

Now, putting 𝑥 = 𝑥𝑛+1and 𝑦 = 𝑝 in (12), we have                                       𝜓 (
1

2
𝑑(𝑇𝑥𝑛+1, 𝑇𝑝)) ≤

𝜓(𝑑(𝑇𝑥𝑛+1, 𝑇𝑝)) ≤ 𝛼 (
1

2
[𝑑(𝑇𝑥𝑛+1, 𝑆𝑥𝑛+1) + 𝑑(𝑇𝑝, 𝑆𝑝)]) − 𝛽 (

1

2
[𝑑(𝑇𝑥𝑛+1, 𝑆𝑥𝑛+1) + 𝑑(𝑇𝑝, 𝑆𝑝)]) 

⇒ 𝜓 (
1

2
𝑑(𝑇𝑥𝑛+1, 𝑇𝑝)) ≤ 𝛼 (

1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑝, 𝑧)]) − 𝛽 (

1

2
[𝑑(𝑇𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑇𝑝, 𝑧)]) 

Making 𝑛 → ∞ in the above inequality, using (17) and properties of  𝜓, 𝛼and 𝛽, we have 

𝜓 (
1

2
𝑑(𝑧, 𝑇𝑝)) ≤ 𝛼 (

1

2
[𝑑(𝑇𝑝, 𝑧)]) − 𝛽 (

1

2
[𝑑(𝑇𝑝, 𝑧)]) 

This implies 

𝜓 (
1

2
𝑑(𝑧, 𝑇𝑝)) − 𝛼 (

1

2
[𝑑(𝑇𝑝, 𝑧)]) + 𝛽 (

1

2
[𝑑(𝑇𝑝, 𝑧)]) ≤ 𝜃 

⇒ 𝑑(𝑧, 𝑇𝑝) = 𝜃 ⇒ 𝑧 = 𝑇𝑝, which is a contradiction unless 𝑇𝑝 = 𝑧. Therefore, we have that      

     𝑧 = 𝑇𝑝 = 𝑆𝑝                                                     (18) 

Hence 𝑝 is a coincidence point and 𝑧 is a point of coincidence of 𝑇 and 𝑆.  

For uniqueness, suppose that there exists another point 𝑞 in 𝑋 such that  𝑧1  =  𝑇𝑞 =  𝑆𝑞 and 𝑧 =  𝑧1. Then 

putting 𝑥 =  𝑝 and 𝑦 =  𝑞 in equation (12),   we have,  

𝜓(𝑑(𝑇𝑝, 𝑇𝑞)) ≤ 𝛼 (
1

2
[𝑑(𝑇𝑝, 𝑆𝑝) + 𝑑(𝑇𝑞, 𝑆𝑞)]) − 𝛽 (

1

2
[𝑑(𝑇𝑝, 𝑆𝑝) + 𝑑(𝑇𝑝, 𝑆𝑞)]) 

⇒  𝜓(𝑑(𝑧, 𝑧1)) ≤ 𝜃 

which is a contradiction unless 𝑧 =  𝑧1. Therefore, 𝑧 is the unique point of coincidence of 𝑇 and 𝑆. 

Now, if 𝑇 and 𝑆 are weakly compatible, then by Lemma 1.5, 𝑧 is the unique common fixed point of 𝑇 and 𝑆. 

Theorem 2.3 Let (𝑋, 𝑑) be a cone metric space with regular cone 𝑃  such 

that 𝑑(𝑥, 𝑦) ∈ 𝑖𝑛𝑡𝑃, for 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Let 𝑇, 𝑆 ∶ 𝑋 → 𝑋 are mappings such that for 𝑥, 𝑦 ∈ 𝑋, they satisfy the 

inequality 

𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 (
1

2
[𝑑(𝑇𝑥, 𝑆𝑦) + 𝑑(𝑇𝑦, 𝑆𝑥)]) − 𝛽 (

1

2
[𝑑(𝑇𝑥, 𝑆𝑦) + 𝑑(𝑇𝑦, 𝑆𝑥)])           (19) 

Where 𝜓, 𝛼, 𝛽 ∶  𝑖𝑛𝑡𝑃 ∪ {𝜃} → 𝑖𝑛𝑡𝑃 ∪ {𝜃} are such that 𝜓 is continuous and monotone non decreasing, 𝛼 and 𝛽 

are continuous functions with 

(i) 𝜓(𝑡) =  𝛼(𝑡) =  𝛽(𝑡) = 𝜃 if and only if 𝑡 =  𝜃; 

(ii) 𝜓(𝑡)  −  𝛼(𝑡)  +  𝛽(𝑡)  >  𝜃 for all 𝑡 >  𝜃; 

(iii) 𝛽(𝑡)  <<  𝑡 for 𝑡 ∈  𝑖𝑛𝑡𝑃; 

(iv)  either 𝛽(𝑡) ≤ 𝑑(𝑥, 𝑦) or 𝑑(𝑥, 𝑦)  ≤  𝛽(𝑡) for 𝑡 ∈ 𝑖𝑛𝑡𝑃 ∪ {𝜃} and 𝑥, 𝑦 ∈ 𝑋. 

If  𝑇(𝑋) ⊆ 𝑆(𝑥) and 𝑆(𝑋) is a complete subspace of 𝑋, then 𝑇 and 𝑆 have  a unique point of coincidence 
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in 𝑋. Moreover if 𝑇 and 𝑆 are weakly compatible, then 𝑇 and 𝑆 have a unique common fixed point in 𝑋. 

      Proof: Proof is similar to that of Theorem 2.2, so it has been omitted. 

Example 2.1: : Let 𝑋 =  [0, 1], 𝐸 =  𝑅2 with usual norm, be a real Banach space,      𝑃 =  {(𝑥, 𝑦)  ∈

 𝐸 ∶  𝑥, 𝑦 ≥  0} be a regular cone and the partial ordering ≤ with respect 

to the cone 𝑃, be the usual partial ordering in 𝐸. 

We define 𝑑 ∶  𝑋 ×  𝑋 →  𝐸 as 

𝑑(𝑥, 𝑦)  =  (|𝑥 −  𝑦|, |𝑥 −  𝑦|), for 𝑥, 𝑦 ∈  𝑋. 

Then (𝑋, 𝑑) is a complete cone metric space with (𝑥, 𝑦) ∈ 𝑖𝑛𝑡𝑃 , for 𝑥, 𝑦 ∈ 𝑋 

with 𝑥 ≠ 𝑦.  L e t  u s  d ef i ne  𝜓, 𝛼, 𝛽 ∶  𝑖𝑛𝑡𝑃 ∪ {0} → 𝑖𝑛𝑡𝑃 ∪ {0} as 

𝜓(𝑡1, 𝑡2) = (𝑡1 2⁄ , 𝑡2 2⁄ ), 𝛼(𝑡1 , 𝑡2) = (𝑡1 3⁄ , 𝑡2 3⁄ ) and 𝛽(𝑡1, 𝑡2) = 2
3⁄ [(𝑡1

2, 𝑡2
2)]  

     for (𝑡1, 𝑡2)  ∈ 𝑖𝑛𝑡𝑃 ∪ {0}. Clearly, 𝜓 and 𝜑 has all its required properties. 

Let us define 𝑇 ∶ 𝑋 → 𝑋 as 𝑇 (𝑥) =
𝑥

3
− 

𝑥2

3
 and 𝑆(𝑥) =

𝑥

2
, for 𝑥 ∈ 𝑋. For 𝑥, 𝑦 ∈  𝑋, we can take 𝑥 >  𝑦 

without loss of generality because the equation (2) is symmetric in 𝑥 and 𝑦. 

Now, 

𝜓(𝑑(𝑡𝑥, 𝑇𝑦)) = 𝜓 (𝑑 (
𝑥

3
− 

𝑥2

3
,

𝑦

3
−

𝑦2

3
)) = 𝜓 (

𝑥 − 𝑦

3
−

𝑥2 − 𝑦2

3
,

𝑥 − 𝑦

3
−

𝑥2 − 𝑦2

3
)

=
1

2
(

𝑥 − 𝑦

3
−

𝑥2 − 𝑦2

3
,

𝑥 − 𝑦

3
−

𝑥2 − 𝑦2

3
) ≤

1

2
(

𝑥 − 𝑦

3
−

(𝑥 − 𝑦)2

3
,

𝑥 − 𝑦

3
−

(𝑥 − 𝑦)2

3
)

=  (
𝑥 − 𝑦

6
,

𝑥 − 𝑦

6
) − (

(𝑥 − 𝑦)2

6
,

(𝑥 − 𝑦)2

6
) 

= 𝛼 (
𝑥−𝑦

2
,

𝑥−𝑦

2
) − 𝛽 (

𝑥−𝑦

2
,

𝑥−𝑦

2
) =  𝛼(𝑑(𝑆𝑥, 𝑆𝑦)) − 𝛽(𝑑(𝑆𝑥, 𝑆𝑦)) . 

So the inequality (1) is also satisfied. Hence 𝑇 and 𝑆 have unique point of coincidence and also the unique 

common fixed point. 

Here 0 ∈  𝑋  is the unique common fixed point of 𝑇 and 𝑆. 
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